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macrophages
Cong Liua*, Shimeng Huanga*, Zhenhua Wua, Tiantian Lib, Na Lia, Bing Zhangc, Dandan Hana, Shilan Wanga, 
Jiangchao Zhaod, and Junjun Wang a

aState Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China; bAcademy 
of National Food and Strategic Reserves Administration, Beijing, China; cKey Laboratory of Animal Epidemiology of the Ministry of Agriculture 
and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China; dDepartment of Animal Science, Division of 
Agriculture, University of Arkansas, Fayetteville, AR, USA

ABSTRACT
Human milk oligosaccharides (HMOs) and milk fat globule membrane (MFGM) are highly abundant 
in breast milk, and have been shown to exhibit potent immunomodulatory effects. Yet, their role in 
the gut microbiota modulation in relation to colitis remains understudied. Since the mixtures of 
fructo-oligosaccharides (FOS) and galacto-oligosaccharides (GOS) perfectly mimic the properties 
and functions of HMOs, the combination of MFGM, FOS, and GOS (CMFG) has therefore been 
developed and used in this study. Here, CMFG were pre-fed to mice for three weeks to investigate 
its preventive effect on dextran sodium sulfate (DSS) induced colitis. Moreover, CMFG-treated and 
vehicle-treated mice were cohoused to further elucidate the preventive role of the gut microbiota 
transfer in colitis. At the end of the study, 16S rDNA gene amplicon sequencing, short-chain fatty 
acids (SCFAs) profiling, transcriptome sequencing, histological analysis, immunofluorescence stain-
ing and flow cytometry analysis were conducted. Our results showed that CMFG pre- 
supplementation alleviated DSS-induced colitis as evidenced by decreased disease activity index 
(DAI) score, reduced body weight loss, increased colon length and mucin secretion, and amelio-
rated intestinal damage. Moreover, CMFG reduced macrophages in the colon, resulting in 
decreased levels of IL-1β, IL-6, IL-8, TNF-α, and MPO in the colon and circulation. Furthermore, 
CMFG altered the gut microbiota composition and promoted SCFAs production in DSS-induced 
colitis. Markedly, the cohousing study revealed that transfer of gut microbiota from CMFG-treated 
mice largely improved the DSS-induced colitis as evidenced by reduced intestinal damage and 
decreased macrophages infiltration in the colon. Moreover, transfer of the gut microbiota from 
CMFG-treated mice protected against DSS-induced gut microbiota dysbiosis and promotes SCFAs 
production, which showed to be associated with colitis amelioration. Collectively, these findings 
demonstrate the beneficial role of CMFG in the gastrointestinal diseases, and further provide 
evidence for the rational design of effective prophylactic functional diets in both animals and 
humans.
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Introduction

The intestine is a complex ecosystem harboring 
a dense and diverse microbial community called 
the gut microbiota, which co-evolved with the 
host to develop a mutualistic relationship.1–123 

Loss of the equilibrium within this complex ecosys-
tem has been shown to be implicated in numerous 
human diseases, such as inflammatory bowel dis-
ease (IBD) that affects up to six million individuals 
worldwide.4–7 IBD is a chronic inflammatory 

condition of the gastrointestinal tract, resulting 
from altered interactions between gut microbes 
and the intestinal immune system.4,5 There are 
two main IBD subtypes, Crohn’s disease (CD) and 
ulcerative colitis (UC), which localize in the small 
and large intestine, respectively, and are character-
ized by unique microbial composition.8,9 Patients 
with IBD exhibit major shifts in the gut microbial 
composition.10 Moreover, the composition of the 
gut microbiota directly or indirectly (via its meta-
bolites) shapes the environment in the colon by 
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modulating signaling, and immune response.10–13 

The composition of the gut microbiota is affected 
by a wide range of factors, among which diet has 
been regarded as the most important modulators.14 

Diet has been shown to participate in the regulation 
of the intestinal inflammation by modifying the gut 
microbiota composition and function, suggesting 
that dietary intervention can play a key role in 
alleviating IBD.10,14–16 However, novel and effec-
tive dietary intervention strategies are still lacking.

There are growing interest in the use of fecal 
microbiota for the treatment of patients with 
chronic gastrointestinal infections and IBD.17,18 

Fecal microbiota transplantation (FMT) is gaining 
attention for the treatment of UC,18–20 since the 
donated gut microbial structure can repair the gut 
microbiota of the recipient and thus suppress 
harmful microbes overgrowth, promoting patient 
recovery.19,21 Growing studies demonstrated that 
cohousing promotes recovery from colitis via 
induction of epithelial cell proliferation and 
restoration of a functional epithelial barrier.22,23 

In this study, we systematically addressed the role 
of diet in the successful microbiota transfer in 
murine models of colitis.

Human milk oligosaccharides (HMOs) and milk 
fat globule membrane (MFGM) are highly abun-
dant in breast milk.24,25 HMOs resist gastrointest-
inal hydrolysis and digestion by pancreatic and 
brush-border enzymes, and are thus not absorbed 
in high amounts.26 Instead, they serve as prebiotic 
substrates for the gut microbes.27 Recent evidence 
has indicated that HMOs facilitate the gut micro-
biota establishment, promote intestinal develop-
ment and stimulate immune maturation.27–29 

Considering these beneficial effects and therapeutic 
potential of HMOs, mixtures of fructo- 
oligosaccharides (FOS), and galacto- 
oligosaccharides (GOS) have therefore been devel-
oped to resemble the molecular size distribution of 
the natural HMOs fraction found in human milk. 
Furthermore, they mimic the prebiotic from 
human milk, and are accessible to the gut 
microbiota.30 Therefore, the combination of FOS, 
and GOS could be used to examine the effects of 
HMOs on the gut microbial composition and 
intestinal epithelial barrier function.31 Also, 
MFGM has been shown to play an important role 
in modulating intestinal immune responses and the 

gut microbiota function.32–35 However, the roles of 
HMOs and MFGM in IBD remain unclear.

With respect to the underlying mechanism of the 
initiation and progression of IBD, past efforts have 
elucidated that the mucosal bacteria and other 
luminal antigens are associated with the immune 
responses induced by tissue-resident innate 
immune cells (e.g., dendritic cells and 
macrophages).36,37 Studies have shown that the 
gut microbial dysbiosis in IBD disturbs the innate 
immune system balance, as evidenced by altering 
the number and phenotype of dendritic cells and 
macrophages, thereby triggering a series of pro- 
inflammatory cascades in the colonic lamina 
propria.38–40 Markedly, the phenotype and func-
tional state of macrophages are known to be closely 
associated with the intestinal environments.41,42 

They are able to differentiate into two subtypes, 
including M1 and M2 with pro-inflammatory 
(e.g., IL-6, TNF-α, and IFN-γ) and anti- 
inflammatory (e.g., IL-10 and TGF-β) properties, 
respectively.37,38,41 Therefore, gut microbiota dys-
biosis-induced macrophage polarization is a critical 
process in IBD development.42

In this study, we hypothesized that the combina-
tion of MFGM, FOS, and GOS (CMFG) regulates 
the colonic immune response, and especially 
reduce colonic infiltrating macrophages, via mod-
ulating gut microbial structure and function, lead-
ing to alleviated DSS-induced colitis. Given that gut 
microbiome has been implicated in the pathophy-
siology of IBD, and diet shapes the gut microbial 
structure, we investigated the impact of prophylac-
tic CMFG intervention and microbiota transfer 
from the CMFG-treated mice to modulate the gut 
microbial composition, short-chain fatty acids 
(SCFAs) production, intestinal epithelial barrier 
function and colonic immune homeostasis in DSS- 
induced colitis in mice.

Results

Prophylactic CMFG intervention alleviated 
DSS-induced colitis

To investigate the effect of CMFG pre- 
supplementation on IBD, mice were administrated 
with either CMFG or vehicle (PBS) for 21 days fol-
lowed by DSS treatment for 7 days (Figure 1a). As 
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compared to the DSS group, mice in the CMFG + 
DSS group showed a lower disease activity index 
(DAI) score, lower weight loss, and colon length 
(Figure 1b,1,1d, and 1e). Moreover, CMFG increased 

crypts depth, reduced mononuclear cell infiltration 
and prevented mucosal damage in the colon tissue, 
resulting in a decreased histology score in DSS- 
treated mice when compared to mice in the DSS 

Figure 1. Prophylactic CMFG intervention prevents acute DSS colitis. A) experimental strategy, B) DAI score, C) body weight change, D) 
colon length, E) representative picture of the colon, F) summarized histological score, G) H&E staining of the colon, H) Alican blue 
staining, I) PAS staining, J) representative pictures of transmission electron microscopy. IL-1β (k), IL-6 (l), IFN-γ (m), TNF-α (n), T-SOD (o), 
MDA (p) level in the plasma. Asterisks denote significant differences (* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001), n = 6 per group, data are 
represented as mean ± SEM.
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group (figure 1f,1g,1h, and 1i). Consistently, CMFG 
largely alleviated DSS-induced damage of brush bor-
ders and tight junctions in the colon (Figure 1j).

We next evaluated the effect of CMFG interven-
tion on the inflammation and oxidative stress in 
IBD. To this end, the levels of inflammatory cyto-
kines and oxidation products, and the activities of 
antioxidative enzymes in the colon and in the cir-
culation were measured. As compared the DSS 
group, lower levels of IL-6, TNF-α, MPO, EPO 
and MDA and higher levels of T-AOC, CAT, 
T-SOD, and GSH-px were observed in the colon 
tissues of CMFG + DSS-treated mice (Figure S1). In 
line with these findings, CMFG + DSS-treated mice 
showed decreased levels of IL-1β, IL-6, IFN-γ, 
TNF-α and MDA, and increased levels of T-SOD 
in the circulation when compared to DSS-treated 
mice (Figure 1k-1p). Taken together, these results 
showed that CMFG treatment markedly amelio-
rated DSS-induced colitis.

Prophylactic CMFG intervention modulate the 
colonic intestinal function in DSS-induced colitis

To elucidate the underlying mechanisms of the 
CMFG induced improvement of DSS-induced coli-
tis, RNA-seq were performed. A total of 215 genes 
were downregulated in the CMFG + DSS group, 
while 203 genes were upregulated when compared 
to the DSS group (Figure 2a and 2b). Gene 
Ontology (GO) enrichment analysis was subse-
quently performed to uncover the potential path-
ways of these differentially expression genes 
(DEGs). Interestingly, the most enriched pathways 
(CMFG + DSS vs. DSS) were closely related to 
immune responses, including the major histocom-
patibility complex (MHC) class II protein complex, 
neutrophil migration, response to interferon- 
gamma, and positive regulation of neutrophil 
migration. These findings suggest that CMFG 
mainly modulates the immune response in DSS- 
induced colitis (Figure 2c). The Kyoto 
Encyclopedia of Genes and Genomes (KEGG) 
pathway analysis further revealed that CMFG is 
involved in IgA production and NF-κB signaling 
pathway, which thus confirmed the functional role 
of CMFG in immunomodulation in IBD 
(Figure 2d).

Prophylactic CMFG intervention alleviates 
DSS-induced colonic inflammation and intestinal 
barrier dysfunction

To understand how CMFG modulate colonic 
immunity, the profile of colonic immune cells was 
analyzed. As shown in Figure 3a,3b and 3c, the 
numbers of dendritic cells (DC), macrophages, 
and neutrophils were much lower in CMFG + 
DSS group than those in the DSS group.

Since disturbed immune system balance has 
been shown to induce cell proliferation and apop-
tosis, we next investigated the impact of prophylac-
tic CMFG intervention on the proliferation and 
apoptosis of colonic epithelial cells in DSS- 
induced colitis. Strikingly, colonic epithelial cells 
proliferation (represented by Bromodeoxyuridine, 
BrdU) was increased in CMFG + DSS-treated mice 
when compared to that in DSS-treated mice (Figure 
4a). Moreover, CMFG largely inhibited DSS- 
induced epithelial cell apoptosis as demonstrated 
by reduced terminal deoxynucleotidyl transferase- 
mediated dUTP nick-end labeling (TUNEL) posi-
tive nuclei in colonic epithelium (Figure 4b). 
Furthermore, the effect of CMFG on the inflamma-
tory status, oxidative stress and intestinal barrier in 
IBD was evaluated (Figure S2). Consistently, when 
compared with the vehicle group, DSS increased 
the colonic expression of genes involved in pro- 
inflammatory (TNF-α, IFN-γ, IL-1β, and IL-6), 
and antibacterial genes (iNOS, NF-κB, and TLR-4) 
processes, and decreased levels of IL-10 (a key mar-
ker related to the anti-inflammation), and ZO-1, 
Claudin-1, and Occludin (key markers related to 
tight junctions), and Mucin-1 and Mucin-2 (key 
markers related to mucin secretion), while prophy-
lactic CMFG intervention reversed these abnormal 
changes (Figure S2). These data indicated that the 
protective effect of prophylactic CMFG interven-
tion was associated with reduced inflammatory 
responses, oxidative stress, and cell apoptosis in 
colonic tissues.

Prophylactic CMFG intervention alters gut 
microbiota and its metabolites SCFAs production in 
DSS-induced colitis

Since the gut microbiota plays a pivotal role in the 
initiation and progression of the IBD, we next 
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Figure 2. RNA-seq data exhibit distinct colonic function in colonic tissues. A) Heatmap summary of the differentially expressed genes. 
The scale bar shows the gene expression in each group. B) Volcano plot of differentially expressed transcripts with DSS and CMFG + 
DSS groups. C) GO enrichment of up-regulated and down-regulated genes in DSS vs. CMFG + DSS. D) KEGG enrichment of up-regulated 
and down-regulated genes in DSS vs. CMFG + DSS, n = 5 per group.
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investigated the effect of CMFG on gut microbial 
composition in DSS-induced colitis. In the present 
study, we observed that the gut microbiota of 
CMFG-treated mice had a lower alpha diversity 

(Shannon index) than that of the vehicle-treated 
mice group at day 0 (Figure 5a). The gut microbial 
alpha diversity (Shannon index and Sobs index) 
differed between DSS-treated and CMFG + DSS- 

Figure 3. Prophylactic CMFG intervention altered the frequency of colon-infiltrating immune cells in colonic tissues. Representative 
plot of DC cells (a), Macrophages (b), Neutrophils (c), NK cells (d), and Treg cells (e) in the colonic tissues from DSS and CMFG + DSS 
groups. Asterisks denote significant differences (*p ≤ 0.05), n = 4 per group, data are represented as mean ± SEM.
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treated mice at day 3 (Figure 5a and 5b), while this 
difference disappeared at day 7 (Figure 5a and 5b). 
To extend our understanding of the role of gut 
microbial composition at the start of CMFG pre- 
supplementation (day 0), in the middle of DSS 
intervention (day 3), and further alterations 
occurred at the peak of inflammation (day 7), the 
principal coordinates analysis (PCoA) using Bray- 
Curtis metric distance was performed. The PCoA 

showed that the gut microbial structure of CMFG- 
treated mice differs from that of the vehicle-treated 
mice at day 0 and that of vehicle-treated and DSS- 
treated mice at day 3 and day 7 (Figure 5c-e and 
Figure S4).

Moreover, the gut microbial composition analysis 
showed that at the phylum level, all samples shared 
similar taxonomic communities and exhibited 
a relatively high abundance of the Firmicutes, 

Figure 4. Prophylactic CMFG intervention alters the levels of cellular proliferation and apoptosis. Representative plot of cellular 
proliferation (a) and cellular apoptosis (b) in the colonic tissues among vehicle, DSS and CMFG + DSS groups. Asterisks denote 
significant differences (*p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001), n = 6 per group, data are represented as mean ± SEM.
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Bacteroidetes, Proteobacteria, and Verrucomicrobia 
(figure 5f). At the genus level, the vehicle and CMFG 
groups shared a high abundance of the genera 
Lachnospiraceae_NK4A136_group, Bacteroidetes, 
and Prevotellaceae_UCG-001 at day 0, while the 
CMFG + DSS-treated mice and DSS-treated dis-
played differential compositions at day 3 and 7 (fig-
ure 5f). Based on the linear discriminant analysis 
(LDA) of effect size (LEfSe) analysis, at day 0 
(Figure 5g), Bacteroides, Ruminiclostridium_9, 
Rodentibacter, and Mucispirillum were more abun-
dant in the gut microbiota of the CMFG-treated 
mice, while Parasutterella, Lactobacillus, and 
Muribaculum were enriched at day 3. At day 7, 
Helicobacter and Candidatus_Arthromitus were the 

most abundant microbes in the gut of the CMFG + 
DSS-treated mice (Figure 5h). However, 
Mucispirillum and norank_f_Eggerthellaceae (uni-
dentified genus belonging to the family of 
Eggerthellaceae) were enriched in the DSS group 
at day 7 (Figure 5i). Considering the role of the gut 
microbiota in IBD, the differences of gut microbial 
composition between these two groups may be clo-
sely related to the phenotype changes of DSS colitis.

Next, the levels of SCFAs, key metabolites of the 
gut microbiota in the gut were measured. As com-
pared to the vehicle group, CMFG-treated mice 
showed higher levels of acetate and propionate 
at day 0 (Figure 5j and 5k). Interestingly, CMFG 
treatment largely promoted the production of 

Figure 5. Prophylactic CMFG intervention alters the gut microbial composition and SCFAs production. A) Shannon index of OTU level. 
B) Sobs index of OTU level. C-E) PCoA plots assessed by Adonis analysis among these groups at day 0, at day 3, and at day 7, 
respectively. F) shows the relative abundance of microbial OTUs, classified at the phylum and genus level, in different groups. Linear 
discriminate analysis effect size (LEfSe) was performed to determine the difference in abundance at day 0 (g), day 3 (h), and at day 7 (i). 
SCFAs concentrations from feces among Vehicle, DSS, and CMFG + DSS groups are shown in J (acetate), K (propionate) and L (butyrate). 
Asterisks denote significant differences (*p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001), n = 6 per group, data are represented as mean ± SEM.
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butyrate after 3 days of DSS intervention when com-
pared to the DSS group (Figure 5l), while there is no 
difference in the levels of acetate and propionate 
(Figure 5j and 5k). At day 7, CMFG + DSS-treated 
mice showed increased propionate and butyrate levels 
when compared to DSS-treated mice (Figure 5k and 
5l). Accordingly, CMFG pre-supplementation alters 
of the gut microbiota structure and promotes SCFAs 
production in DSS-induced colitis.

Cohousing of CMFG-dosed mice promotes colitis 
symptoms recovery in DSS-induced mice

Although we observed that CMFG intervention 
alters the gut microbial composition and 
improves DSS-induced colitis, the association 
between CMFG-derived gut microbiota and DSS- 
induced colitis improvement was unclear. 
Therefore, an additional mice experiment was 
performed, in which mice treated with or with-
out CMFG were cohoused during the DSS inter-
vention period (Figure 6a). As expected, the DAI 
score and body weight loss of DSS-treated mice 
were decreased, and were comparable to their 
cohoused CMFG-treated counterparts (Figure 
6b and 6c). Also, DSS-treated mice had longer 
colon length when they were cohoused with 
CMFG treated mice, and the colon length was 
comparable between these two groups. Likewise, 
under the cohousing conditions, DSS-treated 
mice exhibited lower histological score, which 
was within a similar range of that in CMFG- 
treated mice (Figure 6d,6e, and 6f). As compared 
to the controls (Vehicle-cohousing + DSS and 
DSS groups), mice in the CMFG-cohousing + 
DSS group exhibited less pro-inflammatory cell 
infiltration, relatively intact colonic architecture, 
less mucosal damage, and lower histology score 
(Figure 6g,6h, and 6i). Furthermore, DSS- 
induced damages of the brush borders and tight 
junctions were largely alleviated when they were 
cohoused with CMFG-treated mice (Figure 6j).

To address whether cohousing with CMFG-dosed 
mice displays anti-inflammatory and anti-oxidative 
characteristics, the levels of inflammatory and oxida-
tive markers were measured in the colon tissues and 
circulation. Compared with DSS-treated mice, 
Vehicle-cohousing + DSS mice had lower concentra-
tions of IL-1β, IL-6, and TNF-α in the plasma 

samples (Figure 6k,6l, and 6n). Also, the amount of 
IL-1β, IL-6, IFN-γ, TNF-α, and MDA in the CMFG- 
cohousing + DSS group were lower than those in the 
DSS group, while a higher concentrations of colonic 
T-SOD was presented in the CMFG-cohousing + 
DSS group (Figure 6o). Of note, compared with DSS- 
treated mice, Vehicle-cohousing + DSS mice had 
lower concentrations of inflammatory biomarker 
MPO in the colon (Figure S3C). Moreover, micro-
biota transfer from the CMFG-treated mice (Vehicle- 
cohousing + DSS mice) tended to reduce the levels of 
TNF-α, EPO, and MDA, and increase the concentra-
tions of T-AOC, CAT, T-SOD, and GSH-px in DSS- 
treated mice (Figure S3). These results indicate that 
CMFG-derived gut microbiota transfer (via cohous-
ing) alleviates DSS-induced colitis.

Cohousing mediated transfer of the microbiota from 
CMFG-treated mice alleviates DSS-induced colonic 
inflammation through regulating macrophages and 
intestinal barrier function

To further uncover the mechanisms of alleviated 
DSS-induced colitis mediated by the transfer of the 
gut microbiota from CMFG-dosed mice, FACS was 
performed. As compared to DSS-treated mice, micro-
biota transfer from the CMFG-treated mice (Vehicle- 
cohousing + DSS mice) showed significantly reduced 
macrophages and neutrophils in the colonic lamina 
propria, and the levels of these parameters are com-
parable to the CMFG + DSS group (Figure 7b and 7c).

As shown in Figure 8a and 8b, the levels of BrdU 
positive cells and TUNEL positive cells were similar 
among CMFG + DSS and CMFG-cohousing + DSS 
mice groups. Compared with the DSS group, mice in 
the CMFG-cohousing + DSS group had higher con-
centrations of BrdU positive cells and lower level of 
TUNEL positive cells in the colon (Figure 8a and 8b). 
Strikingly, the TUNEL positive cells in colonic tissue 
were decreased in the Vehicle-cohousing + DSS 
group (Figure 8b), while Vehicle-cohousing + DSS 
mice tended to increase the levels of BrdU positive 
cells in DSS-treated mice (Figure 8a). Consistently, 
Vehicle-cohousing + DSS group showed lower levels 
of IL-1β, IL-6, NF-κB and TLR-4, as well as higher 
level of IL-10 in the colonic tissues than those in the 
DSS group (Figure 9c,9d,9g,9h, and 9e). CMFG- 
cohousing + DSS group showed lower levels of 
TNF-α, IFN-γ, IL-1β, IL-6, iNOS, NF-κB, and TLR- 
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4, as well as higher level of IL-10 than those in the 
DSS group, and the levels of these parameters are 
comparable to the CMFG group (Figure 
9a,9b,9c,9d,9f,9g,9h, and 9e). In addition, increased 
mRNA levels of IL-10, ZO-1, Claudin-1, Occludin, 
and Mucin-1 in the colon tissues were observed in 
Vehicle-cohousing + DSS mice when compared to 
mice in the DSS group (Figure 9e,9i,9j, and 9k). Also, 
increased mRNA levels of IL-10, ZO-1, Claudin-1, 
and Occludin, as well as Mucin-1 and Mucin-2 in the 
colon tissues were observed in CMFG-cohousing + 
DSS mice when compared to the mice in the DSS 
group (Figure 9e,9i,9j,9k, and 9l). These data indi-
cates that microbiota derived from CMFG-dosed 

mice has protective properties in maintaining intest-
inal barrier integrity.

Cohousing mediated transfer of the microbiota from 
CMFG-treated mice alters gut microbiota 
composition and SCFAs production in DSS-induced 
colitis

To further confirm the functional role of CMFG- 
derived gut microbiota in alleviating IBD, the com-
position of gut microbiota and SCFAs levels were 
compared among DSS group, vehicle-cohousing + 
DSS group, and CMFG-cohousing + DSS groups. 
As shown in Figure 10C and 10d, different gut 

Figure 6. Cohousing of CMFG-dosed mice prevents acute DSS colitis. A) experimental strategy, B) DAI score, C) body weight change, D) 
colon length, E) representative picture of the colon, F) summarized histological score, G) H&E staining of the colon, H) Alican Blue 
staining, I) PAS staining, J) representative pictures of transmission electron microscopy. IL-1β (k), IL-6 (l), IFN-γ (m), TNF-α (n), T-SOD (o), 
MDA (p) level in the plasma. Asterisks denote significant differences (*p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001), n = 6 per group, data are 
represented as mean ± SEM.
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microbial structure and composition were observed 
between Vehicle-cohousing + DSS and CMFG- 
cohousing + DSS groups at day 3, while the gut 
microbial structure were similar between these two 
groups at day 7. As expected, cohousing treatment 
significantly altered the gut microbial structure and 
composition after 3 days of DSS intervention com-
pared to the DSS group (Figure S5A). Interestingly, 
mice in the CMFG + DSS group, Vehicle-cohousing 
+ DSS and CMFG-cohousing + DSS groups had 
similar gut microbial structure at day 3 and 7 
(Figure S5C, S5D and S5F). Also, the main gut 

microbial composition in both phylum and genus 
levels were comparable between mice with vehicle- 
cohousing + DSS or CMFG-cohousing + DSS (Figure 
10E). LEFSe analysis showed that Roseburia was 
enriched in CMFG-cohousing + DSS group, while 
Akkermansia was enriched in the Vehicle-cohousing 
+ DSS group at day 3. As compared to the DSS group, 
the genera of Faecalibaculum and 
Eubacterium_nodatum_group were enriched in the 
CMFG-cohousing + DSS group at day 3. In addition, 
the genus of Faecalibaculum was enriched in the 
Vehicle-cohousing + DSS group when compared to 

Figure 7. Cohousing of CMFG-dosed mice altered the frequency of colon-infiltrating immune cells in colonic tissues. Representative 
plot of DC cells (a), Macrophages (b), Neutrophils (c), NK cells (d), and Treg cells (e) in the colonic tissues among DSS, CMFG + DSS, 
vehicle-cohousing + DSS group and CMFG-cohousing + DSS. Asterisks denote significant differences (*p ≤ 0.05, ** p ≤ 0.01, *** 
p ≤ 0.001), n = 6 per group, data are represented as mean ± SEM.
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Figure 8. Cohousing of CMFG-dosed mice alters the levels of cellular proliferation and apoptosis. Representative plot of cellular 
proliferation (a) and cellular apoptosis (b) in the colonic tissues among DSS, CMFG + DSS, vehicle-cohousing + DSS group and CMFG- 
cohousing + DSS. Asterisks denote significant differences (*p ≤ 0.05, *** p ≤ 0.001), n = 5 per group, data are represented as mean ± 
SEM.

e1903826-12 C. LIU ET AL.



the DSS group at day 3. Furthermore, compared to 
the CMFG-cohousing + DSS mice after 3 days of DSS 
intervention, the genera of Ruminiclostridium, 
Anaerovorax, Butyricicoccus, Intestinimonas, and 
Ruminococcaceae_UCG_009 were significantly 
enriched in the Vehicle-cohousing + DSS mice 
(Figure 10J).

Next, we measured the concentrations of fecal 
SCFAs. As shown in Figure 10O, compared with 
the DSS group, the propionate levels were higher in 
the CMFG-cohousing + DSS group after 3 days and 
7 days of DSS intervention, and the levels of this 
parameter were comparable to the CMFG + DSS 
group. Of note, the butyrate levels were higher in the 
Vehicle-cohousing + DSS and CMFG-cohousing + 
DSS groups after 7 days of DSS intervention (Figure 
10P). These data thus suggest that microbiota from 
CMFG-treated mice could alter DSS-induced gut 
microbial structure and increase SCFAs production.

Discussion

In this study, the effect of CMFG pre- 
supplementation on IBD was investigated in a DSS- 
induced colitis murine model. Our results demon-
strated significant protective effect of prophylactic 
CMFG intervention on DSS-induced colitis, as evi-
denced by prevention of body weight loss and colon 

length shortening, reduced DAI score, decreased 
histology score, and improved mucosal barrier 
function and colonic ultrastructure. Of note, we 
also demonstrated that CMFG pre- 
supplementation alleviated colonic inflammation 
and suppressed the accumulation of colonic 
immune cells in the colonic lamina propria (e.g., 
macrophages) in a gut microbiota-dependent man-
ner. Moreover, our data revealed that a broad and 
strong effect of DSS-induced of gut microbiota 
perturbation, and further elucidated that cohousing 
mediated transfer of the gut microbiota from 
CMFG-treated mice can alter DSS-induced abnor-
mal changes and promote colitis recovery. 
Moreover, these data indicate that prophylactic 
CMFG intervention has a critical role in the pre-
vention and treatment of IBD via the gut micro-
biota modulation.

Clinical studies have shown that patients with 
IBD had an aberrant gut microbial community,43 

and the development of IBD is normally accompa-
nied by abnormal gut microbiota alterations.8,44 In 
line with previous studies, we observed lower 
microbial alpha diversity in DSS-treated mice com-
pared to the Vehicle group. Moreover, the gut 
microbial alpha diversity of mice in the CMFG 
and CMFG-cohousing groups differs from that in 
the DSS group. Furthermore, the PCoA analysis 

Figure 9. Cohousing of CMFG-dosed mice improved inflammation, oxidative, and barrier function genes expression in the colon. (a-e) 
The mRNA expression levels of the inflammation-related genes in the colon were analyzed by RT-qPCR. (f-h) The mRNA expression 
levels of the oxidative-related genes in the colon were analyzed. (i-m) The mRNA expression levels of the intestinal barrier function- 
related genes in the colon were analyzed. Asterisks denote significant differences (*p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001), n = 6 per group, 
data are represented as mean ± SEM.
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showed that the CMFG intervention prevented 
DSS-induced gut microbiota dysbiosis. Indeed, 
CMFG-treated mice, vehicle-cohousing mice, and 
CMFG-cohousing mice harbored microbial 

communities distinct from those in DSS-treated 
mice, indicating that CMFG cohousing treatment 
markedly modulates the gut microbiota structure. 
Consistently, LEfSe analysis showed different gut 

Figure 10. Cohousing of CMFG-dosed mice alters the gut microbial composition and SCFAs production. A) Shannon index of OTU level. 
B) Sobs index of OTU level. The PCoA of the gut microbiota was analyzed in different treatments at day 3 (c) and day 7 (d). E) shows the 
relative abundance of microbial OTUs, classified at the phylum and genus level, in different groups. Linear discriminate analysis effect 
size (LEfSe) was performed to determine the difference in abundance at day 3 (f-i), and at day 7 (j-m). SCFAs concentrations from feces 
in different groups are shown in N (acetate), O (propionate) and P (butyrate). Asterisks denote significant differences (*p ≤ 0.05, ** 
p ≤ 0.01, *** p ≤ 0.001), n = 6 per group, data are represented as mean ± SEM.
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microbial composition in these groups. 
Intriguingly, in the middle of DSS intervention 
(day 3), the abundance of SCFAs-producing bac-
teria genus Akkermansia and Lactobacillus was 
enriched in the Vehicle-cohousing + DSS and 
CMFG + DSS groups, respectively. Recently, 
a large number of studies have shown that micro-
biota residing in the small and large intestine are 
adept at foraging mucins including those in host 
mucus.45,46 Akkermansia is effective at degrading 
mucin and often found at high abundance in the 
mucus layer.47 Previous results suggested that 
Akkermansia is associated with an anti- 
inflammatory role in gut health, which may be 
lost in IBD.47 Moreover, the presence of specific 
commensal bacteria such as Lactobacilli have been 
directly associated to the level of anti-inflammatory 
biomarker IL-10 and has been implicated in the 
maintenance of intestinal homeostasis.48 Of note, 
SCFAs-producing Roseburia was enriched in the 
CMFG-cohousing + DSS group after 3 days of 
DSS intervention. A link between Roseburia and 
gut health, including IBD, IBS and colon cancer, 
has been reported.49,50 Regarding inflammatory 
bowel disease, associations between Roseburia spp. 
and UC or CD have been described.49,51 Roseburia, 
the SCFAs-producing (mainly butyrate) bacteria, 
have been shown to exert anti-inflammatory prop-
erties, and play an important role in promoting 
intestinal motility and balancing intestinal epithe-
lial immunity.49,52 As noted, Roseburia produces 
a significant amount of SCFAs (e.g., butyrate) 
from fermentable dietary carbohydrates.49 

Together, our findings demonstrated that prophy-
lactic CMFG intervention and microbiota transfer 
from the CMFG-dosed mice increased the abun-
dance of SCFAs-producing commensal bacteria, 
which may aids to maintain the intestinal integrity 
and promotes the intestinal immune homeostasis.

Prebiotics intervention has been shown several 
advantages over probiotics, including increased 
resistance to pathogen infections and decreased 
risks.53,54 Previous studies showed that MFGM, 
FOS, and GOS promote the enrichment of 
microbes in the gut.32,55,56 Meanwhile, HMOs pro-
mote colonization and growth of the beneficial gut 
microbes, resulting in increased SCFAs 
production.57–59 Increasing evidence suggests that 
the microbial metabolites, such as SCFAs (e.g., 

butyrate), are important to maintain the intestinal 
barrier structure and function, which promotes 
mucosal homeostasis.60–63 For instance, butyrate, 
a histone deacetylase inhibitor, has been shown to 
maintain intestinal barrier function via downregu-
lating claudin-2 in an IL-10-mediated manner.64 In 
addition, intestinal dysbiosis has been demon-
strated to reduce butyrate in the intestinal lumen 
and fecal samples,65 causing a damaged intestinal 
barrier structure and stimulated initiate immune 
response.66,67 Of note, in experimental models of 
colitis, microbiota-derived SCFAs play an essential 
role in maintaining intestinal homeostasis due to 
their anti-inflammatory and anti-oxidative 
effects.68 In line with previous studies,60,69 we 
observed that the predominant microbes in the 
CMFG + DSS, Vehicle-cohousing + DSS and 
CMFG-cohousing + DSS groups were associated 
with SCFAs production and cohousing transfer of 
the gut microbiota from CMFG-treated mice 
reduced colonic inflammatory responses and 
increased SCFAs producing-bacteria.

Regarding to colonic immune cells, such as DC 
cells, macrophages, neutrophils, NK cells, and Treg 
cells, our data showed interesting patterns in 
response to CMFG pre-supplementation and 
CMFG-cohousing in the colitis settings. In this 
study, mice in the Vehicle-cohousing and CMFG- 
cohousing groups, showed reduced immune cells 
(e.g., macrophages) in the colonic lamina propria 
when compared with the DSS group. Growing stu-
dies showed that macrophages were abundant in 
colonic tissues, and exerted important functions in 
the immunity.70 Also, these results demonstrated 
that an increased apoptosis and lowered prolifera-
tion rate of intestinal epithelial cells are related to 
abnormal macrophages in murine colitis 
model.70,71 In line with our results, our data 
revealed that the TUNEL positive cells in colonic 
tissue were decreased in the Vehicle-cohousing + 
DSS group compared to the DSS group. Also, 
CMFG-cohousing + DSS mice had higher concen-
trations of BrdU positive cells and lower level of 
TUNEL positive cells than those in the DSS mice. 
These changes may be due to the decreased prolif-
eration rate of intestinal epithelial cells induced by 
macrophage infiltrating.70,71 Macrophages infiltrat-
ing has been shown to produce tumor necrosis 
factor (TNF) and IL-6, thereby stimulating type 
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1 T helper (TH1) cell polarization. In the present 
study, the levels of TNF-α and IL-6 were decreased 
in the CMFG, Vehicle-cohousing and CMFG- 
cohousing groups. In addition, Treg cells have 
also been reported to promote the development of 
IBD.72 Studies have been showed that decreased 
Treg cells alleviates IBDs,72 which is consistent 
with our findings showing a trend in reducing 
Treg cells upon CMFG treatment. Furthermore, 
the cohousing experiment indicated that the gut 
microbiota alteration and macrophages reduction 
induced by CMFG-modulated microbiota transfer 
were closely related to the improved gut barrier 
function. Consistently, the reduced number of 
macrophages and the lowed expression of TNF-α, 
IL-1β, IL-6, NF-κB, and TLR-4 were observed 
among CMFG, Vehicle-cohousing and CMFG- 
cohousing groups. Furthermore, comparable 
amounts of macrophages in CMFG +DSS and 
Vehicle-cohousing + DSS groups were observed, 
indicating that CMFG pre-supplementation or 
transfer of the microbiota from CMFG cohousing 
could improve the disturbed immune status in the 
colon of DSS-treated mice.

MFGM, FOS, and GOS have been shown to 
exhibit anti-inflammatory and anti-bacterial 
effects.32,73–75 Growing studies showed that induci-
ble nitric oxide synthase (iNOS), a transcription 
factor, regulates the mRMA expression of anti- 
oxidative genes and produces a superoxide dismu-
tase or a glutathione peroxidase in response to 
tissue oxidative stress followed by the accumulation 
of reactive oxygen species (ROS).76,77 In line with 
these findings, we observed decreased iNOS, NF-κB 
genes expression, and then reduced oxidative stress 
in the CMFG, Vehicle-cohousing and CMFG- 
cohousing groups. Furthermore, ROS-mediated 
oxidative stress and inflammation are known to 
reciprocally affect each other through intracellular 
signaling pathways, such as TLR4 and NF-κB.78,79 

In our study, we demonstrated that the down- 
regulation of the NF-κB and TLR-4 genes in the 
CMFG, Vehicle-cohousing and CMFG-cohousing 
groups. Interestingly, the colonic levels of IL-1β, IL- 
6, and TNF-α were increased when challenged to 
DSS only, suggesting that CMFG protect against 
DSS-induced disturbance of intestinal immune 
homeostasis. Our findings demonstrated that pro-
phylactic CMFG intervention and microbiota 

transfer from the CMFG-treated mice decreased 
the expression of genes related to pro- 
inflammatory cytokines and oxidative stress. 
Studies are still needed to explore the role of 
CMFG in the NF-κB signaling.

Conclusions

In summary, prophylactic CMFG intervention and 
microbiota transfer from the CMFG-treated mice pre-
vents DSS-induced gut microbiota dysbiosis, increases 
fecal SCFAs (propionate and butyrate) and improves the 
intestinal barrier function. Furthermore, the anti- 
inflammation effect of CMFG pre-supplementation 
and transfer of the gut microbiota from CMFG-treated 
mice was accompanied by improving the stability of gut 
microbiota and suppressing the accumulation of macro-
phages in colitis models. Our study provides new 
insights into the microbiota-mediated regulation of colo-
nic immune cells and provides anti-inflammation ther-
apeutic strategy involving modulation of gut microbiota.

Materials and methods

Animals and treatments

Female C57BL/6 mice at 8 weeks of age were obtained 
from the SPF Biotechnology Co., Ltd, Beijing, China. 
Throughout the acclimatization and study periods, all 
animals were maintained on a 12 hr light-dark cycle 
(21 ± 2°C) under specific pathogen-free conditions with 
free access to food and water. The functional food 
ingredients, CMFG, were obtained from Beijing 
Sanyuan Foods Co. Ltd. Mice in the CMFG + DSS 
group were orally administered with 100 mg/kg body 
weight of CMFG solution (MFGM: GOS: FOS = 35.2%: 
62.2%: 2.6%; on a daily basis) for 21 days. Mice in the 
DSS group and Vehicle group underwent daily oral 
gavage of PBS for 21 days. DSS colitis (DSS group and 
CMFG + DSS group) was induced by administration of 
2.5% DSS (w/v; molecular weight, 36–50 kDa; MP 
Biomedicals, UK) in drinking water ad libitum for 
7 days (Figure 1a). Each mouse was scored daily for 
pathological features, including stool consistency, pre-
sence of blood stool, and body weight loss. Individual 
scores were combined to generate the Disease Activity 
Index (DAI) which was calculated daily for each mouse. 
The maximum score was 15 based on assigning a 0–5 
scoring system for following parameters.80
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Co-housing experiments

Eight-week-old C57BL/6 female mice were daily 
oral gavage with CMFG solution (100 mg/kg 
body weight) for 21 days. Meanwhile, the mice 
were dosed with PBS at the Vehicle group for 
21 days. Thereafter, mice in the Vehicle group 
were continued to receive PBS, while mice in the 
other groups started to drink 2.5% DSS for 
7 days. Meanwhile, mice in the DSS and 
CMFG + DSS groups were assigned to two sub-
groups. Half mice in the DSS and CMFG groups 
were continued to receive PBS (DSS group, 
n = 6) and CMFG (CMFG + DSS group, 
n = 6), respectively. The other half mice were 
cohoused and continued to receive either PBS 
(Vehicle-cohousing + DSS group, n = 6) or 
CMFG (CMFG-cohousing + DSS group, n = 6) 
(Figure 6a). During the DSS intervention period, 
disease activity index (DAI; including stool con-
sistency, presence of blood stool and body 
weight loss; 0–5 for each parameter) was evalu-
ated daily.80

Tissue collection, fixation and histochemistry

Ileum and colon tissues were fixed in 4% paraformalde-
hyde, embedded in paraffin, cut into 5-μm-thick sec-
tions, and subsequently stained with hematoxylin and 
eosin (H&E). Images were collected and analyzed using 
Image J software. Intestinal tissue damage was scored as 
previously described,80 and the epithelial loss of intestinal 
villi and the infiltration of inflammatory cells were eval-
uated. The colonic tissues were stained with Alcian Blue 
(AB) and periodic acid–Schiff (PAS), and the images 
were collected using microscope (Carl Zeiss AG, Jena, 
Germany). The acidic mucus-containing goblet cells 
were counted.

Transmission electron microscopy (TEM)

The distal colon tissues were washed with 0.9% 
saline and fixed with glutaraldehyde during the 
sampling period, and the follow-up preparation 
steps were performed by the electron microscopy 
center of China Agricultural University. Images 
were acquired using a transmission electron micro-
scope (Hitachi Model HT7700, Tokyo, Japan).

Enzyme-linked immunosorbent assay (ELISA)

Concentrations of IL-1β, IL-6, IFN-γ, TNF-α, mye-
loperoxidase (MPO), and erythropoietin (EPO) 
were determined in the plasma and colon samples 
using ELISA Kits according to the manufacturer’s 
instructions (Nanjing Jiancheng Biology 
Engineering Institute, Nanjing, China). The activ-
ities of total anti-oxidation capacity (T-AOC), cat-
alase (CAT), the total superoxide dismutase 
(T-SOD), glutathione peroxidase (GSH-px) and 
the concentrations of malondialdehyde (MDA) 
were determined using the commercial kits 
(Nanjing Jiancheng Biology Engineering Institute, 
Nanjing, China), and were normalized to total pro-
tein levels. These assays were performed according 
to the manufacturer’s protocol and read at 450 nm 
using a microplate reader (BioTek 
Instruments, Inc).

RNA-seq analysis

Briefly, total RNA was isolated according to the 
manufacturer’s instructions, and RNA-seq was per-
formed by Majorbio BioTech Co., Shanghai, China. 
The Illumina HiSeq 2500 platform which was used 
to construct RNA libraries and generated reads of 
125-bp long paired-end (Illumina, San Diego, CA). 
The read number of each gene was transformed 
into FPKM (fragment per kilobase of exon model 
per million mapped reads), and then differentially 
expressed genes were identified using the DEGseq2 
package.81 GO enrichment analysis of the DEGs 
was conducted by the GOseq R package. KEGG 
pathway enrichment analysis of the DEGs was 
implemented using the KOBAS software. Raw 
data files and processed files have been uploaded 
to the Gene Expression Omnibus public database 
(GSE161982).

Flow cytometric analysis

Surgically removed fresh 1-cm mouse colon tissues 
were opened and washed with cold PBS to remove 
the fecal contents. The tissues were quickly trans-
ported to the centrifuge tube containing 10 mL 
1640 medium (10% fetal bovine serum (FBS), 1% 
penicillin-streptomycin (P/S), 1 mM EDTA) on an 
orbital shaker at 300 rpm for 30 min at 37°C. After 
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washing, the colons were finely minced and 
digested with 15 mL of HBSS containing 10% 
FBS, 1.5 mg/mL Type-VIII Collagenase (C2139; 
Millipore, Sigma), and 40 μg/mL DNase I at 
300 rpm for 15 min at 37°C. After the digestion, 
the digested colonic lamina propria cells were fil-
tered through a 100-μm strainer, centrifuged at 
1500 rpm for 5 min at 4°C, and resuspended in 
2 mL PBS for flow cytometric analysis.82

The antibodies as follows: (1) CD45-Alexa Fluor 
700 (103,128, Biolegend), MHCII-APC (107,613, 
Biolegend), CD11c-PE (117,307, Biolegend), F4/80- 
FITC (123,108, Biolegend), CD11b-Percp-Cy5.5 
(101,227, Biolegend); (2) CD45-Alexa Fluor 700, 
CD3-FITC (100,203, Biolegend), CD25-APC 
(101,909, Biolegend), NK1.1-PE (108,707, 
Biolegend).

Immunofluorescence staining

Paraffin embedded 5-μm-thick sections were 
deparaffinized by heating to 60°C for 15 min, 
cleared with xylene, followed by an ethanol gradi-
ent (75%, 95%, and 100%) and water and steamed 
for 30 min in citrate buffer for antigen retrieval. 
BrdU pulse–chase experiments were performed 
according to the manufacturer’s instructions. In 
brief, BrdU was intraperitoneally injected (10 μL/g 
body weight) into mice. After 2 hr, mice were 
euthanized and incorporated BrdU was detected 
in the colon tissues. The levels of apoptosis in the 
colon tissues were detected by TUNEL staining 
according to the instructions provided as pre-
viously described.83 The DAPI blue nuclei with 
the same label were selected as the total cells, and 
the TUNEL positive cell number per field of intest-
inal epithelial cells was analyzed. Cell apoptosis was 
observed by green fluorescence microscopy 
(200 × magnification).

16S rDNA sequencing

Fecal samples for 16S rRNA amplicon sequencing 
were collected as previously described.84 Fecal 
genomic DNA was extracted from 100 mg frozen 
fecal samples using the QIAamp® Fast DNA Stool 
Mini Kit (Qiagen, Hilden, Germany) according to 
the manufacturer’s protocol. Amplicon libraries 
covering the V3-V4 distinct regions of the bacterial 

16S-rDNA gene were amplified using primers 
341 F: 5ʹ-ACTCCTACGGGRSGCAGCAG-3ʹ, and 
806 R: 5ʹ-GGACTACVV GGGTATCTAATC-3ʹ. 
All PCR products were purified using the Qiagen 
Gel Extraction Kit (Qiagen, Hilden, Germany). 
Then, the amplicon library was paired-end 
sequenced (2 × 250) on an Illumina MiSeq platform 
(Illumina) according to the standard protocols.

Raw fastq files were demultiplexed and quality 
filtered using QIIME (v.1.17; http://qiime.org/). In 
brief, the low-quality sequences with a length of <220 
nt or >500 nt, an average quality score of <20, and 
sequences containing >3 nitrogenous bases, were 
removed. The remaining high-quality sequences 
were clustered into OTUs at a 97% similarity cutoff 
using UPARSE (v.7.1; http://drive5.com/uparse/) 
and chimeric sequences were identified and removed 
using UCHIME (https://drive5.com/usearch/man 
ual/uchime_algo.html). Taxonomy assignment of 
OTUs was conducted with the RDP classifier 
(http://rdp.cme.msu.edu/) against the SILVA 16S 
rRNA gene database (https://www.arb-silva.de/) 
using confidence threshold of 70%.

SCFAs quantitative analysis

The concentrations of fecal SCFAs (acetate, propio-
nate, and butyrate) were detected with an Ion chro-
matographic method as previously described.85,86 

Briefly, 10 mg of fecal sample was added in a screw- 
capped tube with 160 μL of distilled water (Thermo 
Scientific, Waltham, MA). The mixture was treated 
with a 30 min ultrasonic bath and then centrifuged 
at 8,000 g for 10 min at 4°C. One milliliter of super-
natant was diluted with water (1:50), and filtered 
with 0.22 μm mesh. The extracted samples were 
kept in a 2 mL screw-cap vial and finally injected 
into a Dionex ICS-3000 Ion Chromatography 
System (Dionex, Sunnyvale, CA, USA).

RNA extraction and real-time PCR

The colon tissues were immediately snap-frozen in 
liquid nitrogen and homogenized. Total RNA was 
isolated from the tissues using RNeasy Mini Kit 
(QIAGEN) according to the manufacturer’s instruc-
tions. The expression was analyzed in triplicate on 
one plate per gene. The mRNA abundance of target 
genes was normalized using an internal control (β- 
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Actin) and calculated using the 2−ΔΔCt method. All 
primers were synthesized by Invitrogen Life 
Technologies (Invitrogen, Shanghai, China), which 
are shown in Supplementary Table S1.

Statistical methods

All data were represented as means ± SEM. 
Statistical analysis, excluding microbiome, was per-
formed using Prism 8.0 (GraphPad Software, San 
Diego, CA). Data from more than two groups were 
compared using one-way ANOVA followed by 
Tukey’s multiple comparison tests. P ≤ 0.05 was 
considered statistically significant.

The alpha diversity (Shannon’s diversity index 
and Sob’s diversity index) was determined by 
sampling-based operational taxonomic unit 
(OTU) analysis and presented by observed 
OTU, which was calculated using the 
MOTHUR program (version v.1.30.1). Principal 
coordinates analysis (PCoA) plots were gener-
ated on the basis of Bray-Curtis dissimilarity 
using the R (https://www.R-project.org/) package 
phyloseq, and clustering analysis was performed 
by PERMANOVA using the R package vegan. 
The predominance of bacterial communities 
between groups were analyzed by linear discri-
minant analysis (LDA) effect size method. At the 
species level, relative abundance for organism 
was calculated as follows: relative abun-
dance = (number of unique alignment positions 
in genome × 1,000,000)/(number of total aligned 
bacterial reads × genome size). The relative 
abundance values were then per-sample normal-
ized such that the total relative abundance for 
each sample summed to one.87,88 Based on the 
normalized relative abundance matrix, features 
with significantly different abundances between 
assigned taxa were determined by linear discri-
minant analysis effect size (LEfSe) with the 
Kruskal-Wallis rank-sum test (p < .05) and 
LDA was used to assess the effect size of each 
feature.
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