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Abstract
Characterization of the molecular attributes and spatial arrangements of cells and features

within complex human tissues provides a critical basis for understanding processes

involved in development and disease. Moreover, the ability to automate steps in the analy-

sis and interpretation of histological images that currently require manual inspection by

pathologists could revolutionize medical diagnostics. Toward this end, we developed a new

imaging approach called multidimensional microscopic molecular profiling (MMMP) that

can measure several independent molecular properties in situ at subcellular resolution for

the same tissue specimen. MMMP involves repeated cycles of antibody or histochemical

staining, imaging, and signal removal, which ultimately can generate information analogous

to a multidimensional flow cytometry analysis on intact tissue sections. We performed a

MMMP analysis on a tissue microarray containing a diverse set of 102 human tissues using

a panel of 15 informative antibody and 5 histochemical stains plus DAPI. Large-scale unsu-

pervised analysis of MMMP data, and visualization of the resulting classifications, identified

molecular profiles that were associated with functional tissue features. We then directly

annotated H&E images from this MMMP series such that canonical histological features of

interest (e.g. blood vessels, epithelium, red blood cells) were individually labeled. By inte-

grating image annotation data, we identified molecular signatures that were associated

with specific histological annotations and we developed statistical models for automatically

classifying these features. The classification accuracy for automated histology labeling

was objectively evaluated using a cross-validation strategy, and significant accuracy

(with a median per-pixel rate of 77% per feature from 15 annotated samples) for de novo
feature prediction was obtained. These results suggest that high-dimensional profiling may

advance the development of computer-based systems for automatically parsing relevant

histological and cellular features from molecular imaging data of arbitrary human tissue

samples, and can provide a framework and resource to spur the optimization of these

technologies.
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Introduction
Microscopic examination of cellular morphology and structure is a classical approach that has
provided an invaluable foundation for analyzing the function, development, and organization
of complex tissues. Accordingly, a large number of biomedical research and diagnostic meth-
ods are based on the identification of architectural tissue features by histopathology [1–3]. At
the same time, highly multiplexed interrogation of the molecular components of different sam-
ples has proven to be a tremendously rich complementary strategy for their characterization
and classification. Large-scale molecular studies based on microarray analysis, high-through-
put sequencing, and proteomic approaches have clearly demonstrated the advantages of quan-
titative multi-dimensional profiling for identifying functionally important subtypes of cancers
and other cellular states with important clinical ramifications [4–6]. Nevertheless, these tech-
niques often require physical disruption of the interrogated samples, which sacrifices critical
spatial information related to the individual cells and their native positional arrangements and
relationships within intact specimens. Therefore, technologies that enable the acquisition of
high-dimensional molecular profiles while retaining the spatial integrity of the examined mate-
rial offer great potential for advancing the detailed characterization of important biological
samples.

Accordingly, several different approaches for multiplex in situ profiling of tissue sections
have been pursued. Traditional multi-color fluorescence microscopy enables the simultaneous
monitoring of up to five spectrally resolvable dyes at once using standard optical filters, and up
to seven fluorophores may be detected with multispectral approaches [7]. In order to overcome
these limitations, several independent strategies based on serial staining and imaging have
been developed which greatly expand the number of molecular characteristics that can be
assayed from an individual sample [8–13]. Other novel strategies based on mass spectrometry
imaging modalities for the simultaneous detection of up to 32 distinct markers have also been
successfully applied to the dissection of cellular states from intact clinically relevant tissue sam-
ples, further demonstrating the exceptional power of such multiplex technologies in combina-
tion with advanced analytical techniques [14–18].

Here we describe a new approach, called multi-dimensional microscopic molecular profil-
ing (MMMP), that can measure several independent molecular properties in situ at subcellular
resolution for the same tissue specimen. The MMMP procedure was adapted to work with for-
malin-fixed paraffin-embedded tissue samples that are commonly used for clinical specimens,
and therefore was compatible with the use of tissue microarray (TMA) slides [19]. We con-
ducted a MMMP analysis of a TMA containing 102 unique human tissue sections, and per-
formed several large-scale data analyses on the resulting multi-dimensional datasets associated
with each sample, which we report here. By integrating manual annotation of relevant cellular
and histological properties with our molecular imaging data, we further exploited these data to
address the problem of automated histological feature recognition within tissue sections.

Results

Overview of Multi-dimensional Microscopic Molecular Profiling (MMMP)
In order to simultaneously analyze several molecular properties of cells while preserving their
native spatial arrangements in tissues, we developed an imaging approach called multi-dimen-
sional microscopic molecular profiling (MMMP) (Fig 1). The MMMP strategy involves itera-
tive cycles of antibody (or histochemical) staining, imaging, and signal removal, which can
ultimately generate information analogous to a multi-parameter flow cytometry analysis for
intact tissue sections. MMMP is conceptually similar to other serial staining techniques with
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greater efficiency that have been used for multiplex profiling of biological samples [10–13]. We
also adapted MMMP to be compatible with formalin-fixed paraffin embedded (FFPE) samples
contained on a tissue microarray (TMA), enabling us to simultaneously analyze on the order of
hundreds of distinct tissue sections in parallel. The overall approach is illustrated schematically
for a single example of a human duodenum tissue sample in Fig 1. Tissue sections were sub-
jected to multiple rounds of imaging and staining with a panel of fluorescent antibodies and
histochemical stains. This process results in a collection of separate images for every tissue sec-
tion present on the TMA, where each image reports on a distinct molecular aspect of the inter-
rogated samples. As an additional control, we repeated the antibody staining procedure for
angiotensin I converting enzyme (Ace) on an independent tissue section generated from the
same TMA to ensure that the MMMP cycling procedure did not interfere with successful anti-
body staining (S2 Fig). As expected, the observed pattern of staining for Ace (which was the
fourth antibody applied during the MMMP series) displayed characteristic positivity in sec-
tions of human endometrium, fallopian tube, and kidney medulla tissue that was consistent
between experiments, suggesting that faithful staining can be achieved through the iterative
staining procedure (S2 Fig) [20].

Before extracting multi-dimensional vectors reflecting the joint distribution of staining
intensities from each MMMP series, a number of image analysis steps must be performed to
properly process and track the thousands of image files that can be generated from a single
MMMP experiment. To this end, we established a computational pipeline that automatically
facilitates image processing and data extraction for MMMP images [21–23]. The Ariol micro-
scope system (v3.2 Genetix) that we used for imaging captures several tiling images that span
each tissue section. We found that the default Ariol software often incorrectly stitched together
the tiling images, leading to the erroneous duplication or deletion of regions in the resulting
output images that rendered them incompatible with further analysis (S1 Fig). Thus, a neces-
sary first step was to accurately assemble the separate tiling images to produce a single com-
bined image for each tissue section per staining cycle (Fig 1B). We therefore included an image
stitching procedure in our computational pipeline that successfully performs this task [22].
The next essential step was to register the stitched images from each cycle such that the pixels
corresponding to the same location within each tissue section can be identified and related
across all cycles. Our pipeline achieves image registration by using the DAPI fluorescence
included in each immunofluorescence image as a fiducial signal to help generate a multi-image
alignment for the entire MMMP series (Fig 1C). After image registration, data vectors repre-
senting the signal intensities for each stain applied in the image series were extracted for each
pixel within the tissue section, and compiled into a MMMP data matrix (Fig 1D). The resulting
MMMPmatrix of in situmolecular profiles can then be investigated and visualized using a
variety of large-scale data analysis techniques. The full set of MMMP images generated are
available online at the Stanford Tissue Microarray Database [24].

Fig 1. Overview of Multi-dimensional Microscopic Molecular Profiling (MMMP). The overall MMMP approach is depicted using an example tissue
section from normal human duodenum (sample #1.9.7). (a) Slides were subjected to repeated cycles of staining and imaging with fluorescent primary
antibodies and DAPI. At the end of each cycle, fluorescent signal was removed by a chemical bleaching process, and slides were again imaged, before
proceeding to the next round of this iterative procedure. After the final antibody stain (#15 Sma), slides were analyzed with a series of histochemical stains.
(b) A set of tiling images spanning each tissue section was initially generated by the microscope system. The tiling images were then computationally
‘stitched’ together to produce a single image per staining cycle for each sample. (c) Image registration was performed to align images from the same tissue
section across cycles. Mean intensities of the DAPI signal from all immuno-fluorescence images are shown from before (Unregistered) and after (Registered)
the image registration procedure was completed. (d) Following registration, signal intensities from the relevant channels for each image (columns) in the
MMMP series were extracted for each pixel (rows) within the tissue section and compiled into a large data matrix of in situmolecular profiles.

doi:10.1371/journal.pone.0128975.g001
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Unsupervised classification of data from MMMP Analysis of human
tissue microarrays
We carried out a MMMP analysis of a human tissue microarray (TMA) containing a diverse
set of 102 samples. The adoption of TMAs not only allowed us to simultaneously analyze a
large number of independent tissue sections in parallel, but also ensured that all samples were
processed under identical experimental conditions. This MMMP study involved a panel of 15
informative primary antibodies (Lyve1, Sparc, Cd34, Ace, Mmp11, Fzd7, Cd105, Col4a2, Ctgf,
β-cat, Dkk3, Cd44, Desmin, Col1, and Sma) as well as 5 histochemical stains (Hematoxylin,
Eosin, Alcian blue, Periodic Acid-Schiff, and Verhoeff’s stain) plus DAPI. A technical failure of
the automated microscope software to properly track and image 28 of the 146 original samples
across all of the cycles led to their exclusion from this analysis (S1 Table). Nevertheless, of the
118 samples on the TMA that yielded images for every MMMP cycle, our image processing
pipeline was able to successfully generate MMMPmatrices for 102 of them (86%). The image
channels represented in each dataset included Cy5 antibody staining intensities for all 15 IF
images in the series, plus DAPI signals from the first and last IF images, as well as intensities
from all three color channels (red, green, and blue) for each of the 4 bright-field images of his-
tochemical stains, yielding a total of 29 dimensions (29 = 15 + 2 + 12) as columns in each
MMMP data matrix (Fig 1D).

To systematically explore the landscape of molecular profiles present in each tissue section,
we performed a number of unsupervised data analyses on the large-scale MMMP datasets gen-
erated for each sample. First, we applied Principal Component Analysis (PCA) to our MMMP
matrices, as a way of transforming the data along orthogonal axes that capture the variation
present in multi-dimensional space (Fig 2). PCA was performed separately on the MMMP
dataset obtained for each independent tissue section in order to capture properties of the data
that were specific to each individual sample. Summary statistics from the PCA results for all
102 human tissue samples indicate that 20 independent dimensions (components) were typi-
cally required to account for at least 99% of the existing variance from the MMMP data, reflect-
ing a high degree of multi-dimensionality observed in the underlying molecular profiles (Fig
2A). PCA results for an example tissue section from the terminal ileum of the small intestine
(sample #1.10.7) illustrate how the intensity values for individual principal components can be
scaled and visualized as new image files, providing a useful way to facilitate the discovery and
interpretation of general trends that emerge from the in situmolecular profiles (Fig 2B–2D). In
this example, regions of high intensity values for the first principal component (PC-1), which
accounts for 49% of the total variation, tend to coincide with the overall presence of nuclear
and cytoplasmic tissue staining (Fig 2D, left panel). The second component (PC-2), which
explains 15% of the variance, instead appears to be preferentially associated with regions con-
taining extracellular matrix and is anti-correlated with nuclei (Fig 2D, center panel). Finally,
the third component (PC-3) accounts for 7.5% of the variance and tends to be positively
enriched in nuclei while being selectively decreased in regions containing themuscularis muco-
sae and endothelial cells (Fig 2D, right panel). These results underscore the potential utility for
unbiased analysis of deep molecular profiles as a general strategy for identifying specific fea-
tures with histological relevance within tissue sections.

To further characterize the diversity of molecular profiles observed within each tissue sec-
tion, we next carried out clustering analysis on the MMMP data from each sample. Using a k-
means clustering algorithm, we classified each pixel from the MMMPmatrix as belonging to
one of several (k = 100) groups based on the similarity of their molecular profiles (Fig 3). The
vector of centroid values for each cluster characterizes the molecular profiles of the pixels that
belong to that group, offering a way to identify important differences in staining intensity that
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were associated with each cluster. A value of k designating 100 clusters was arbitrarily chosen
in order to simplify the dimensionality while accommodating the possibility for a large range
of molecular heterogeneity within each sample, based on testing a range of potential cluster
sizes (S3 Fig). In order to effectively visualize the results of clustering analysis involving 100
discrete groups (or conceivably more, for larger values of k), we devised a general strategy for
color-coding the cluster membership of each pixel such that clusters with similar molecular
profiles were assigned similar color values. To accomplish this, we used Kruskal’s non-metric
multi-dimensional scaling procedure (implemented in the R function isoMDS) to transform
the vectors of cluster centroids into a three-dimensional coordinate system compatible with
RGB (red / green / blue) color space (S1 File). The goal of this transformation is to maximize
the agreement between the original molecular similarity of clusters and the relatedness of their
assigned colors (Fig 3A). After the similarity-based color mapping function has been estab-
lished, the results from cluster analysis can be readily visualized by generating an image to dis-
play the cluster membership of each pixel (Fig 3A). This approach for unsupervised
classification and visualization of recurrent patterns derived from the molecular profiles of
each tissue section can further enable the identification of significant subcellular or histological
features present in each sample. Moreover, it was possible to assess the degree to which the
clustering results faithfully captured the full extent of variation in the overall MMMP dataset
for each sample. In order to do this, we calculated the agreement between the original intensi-
ties of MMMP data from each channel and the “imputed” values that would be obtained if
every pixel was assigned a new intensity in each channel determined by the centroid of the

Fig 2. Principal Components Analysis of MMMPData. (a) The mean value of the cumulative percentage of the variance in the data explained is plotted as
a function of the number of principal components for data representing 102 human tissue samples. Red error bars indicate +/–one standard deviation. (b) The
cumulative percentage of variance explained by the first X principal components is shown as a function of X for an example tissue section from the terminal
ileum of the small intestine (sample #1.10.7). (c) H&E (hematoxylin and eosin) stained image of sample #1.10.7. (d) Images depicting scaled intensity values
for the first three principal components (PC-1, PC-2, and PC-3) of the MMMP data matrix for sample #1.10.7 are shown.

doi:10.1371/journal.pone.0128975.g002
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cluster to which it belongs. By computing the square of the Pearson correlation coefficient (r2),
we objectively assessed the extent to which the “imputed” cluster-derived values were a good
approximation for the original MMMP data (Fig 3B). The r2 values associated with k-means
clustering of all 102 human tissue samples indicate that most of the variation in molecular pro-
files is represented in the results of these clustering analyses, with an overall mean r2 of 78%
across all channels (Fig 3B). The degree of agreement in each channel for the example tissue
section of human terminal ileum is shown in Fig 3C.

Building on the clustering results from each individual MMMP tissue section, we extended
our analysis to examine the full diversity of molecular profiles observed across all of the diverse
tissue samples. We therefore extracted the full set of centroid vectors from all clusters identified
in the entire dataset, which were then collated into a single MMMP data matrix with 10,200
rows (102 samples x 100 clusters/sample). We then hierarchically clustered all of the vectors,
revealing the diversity of trends present in the high-dimensional molecular space occupied by
these profiles (Fig 4). We also applied the same similarity-based color mapping procedure as
before to generate a single color-coding palette reflecting the overall molecular diversity (Fig 4).
This allowed us to visualize each individual MMMP sample using a universal color-coding

Fig 3. k-means Clustering Analysis of MMMPData. (a) Molecular profiling data from a human small bowel
terminal ileum tissue section (#1.10.7) was clustered using a k-means algorithm with k = 100. The centroid
vectors from the k clusters were themselves clustered and displayed as rows in the heatmap, where high
intensity values are shaded in white and low values in black. Each cluster was designated to the color shown
on the right of the heatmap, such that molecularly similar vectors were assigned to visually similar colors.
Clustering results were visualized by generating an image where the cluster membership of each pixel is
illustrated using the similarity-based color code. (b) Mean values for the squared Pearson’s correlation
coefficient (R2) over all pixels between their original intensities in the MMMP data and the values imputed
based on their cluster membership are plotted for each image channel (data represents 102 tissue samples).
Red error bars indicate the standard deviations. (c) R2 values for the tissue section presented in (a) (sample
#1.10.7) are plotted as in (b).

doi:10.1371/journal.pone.0128975.g003
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transformation that can be applied similarly to all of the samples, as shown for the tissue sec-
tions of normal human duodenum, terminal ileum, and colon tissue. While this approach may
be helpful for facilitating visual comparisons between tissues by imposing an equivalent univer-
sal color-mapping scheme onto all samples, it may tend to accentuate more general molecular
features that are common across many samples (e.g. nuclei) while potentially obscuring rarer
tissue-specific profiles.

High-dimensional molecular analysis of histological tissue features
The results from our unsupervised analysis and classification of MMMP data suggested that
the high-dimensional information-rich molecular profiles that we measured may be useful for

Fig 4. Analysis of Molecular Profiles from Full MMMPDataset. (a) Cluster centroid vectors from k-means clustering of 102 human tissue samples were
compiled into a single MMMP data matrix, which was then hierarchically clustered and displayed in heatmap format. Multi-dimensional scaling was used to
generate a universal color palette (shown at right) for representing cluster membership based on similarity of molecular profiles. (b) Color-based visualization
of the molecular profiles within each of three tissue sections is shown using the universal color mapping function depicted above. Tissue sections were
derived from normal human duodenum (#1.9.7), terminal ileum of the small bowel (#1.10.7), and colon (#1.6.7), respectively.

doi:10.1371/journal.pone.0128975.g004
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enabling automatic identification of important types of cells and tissues in their native micro-
environment. In order to pursue this hypothesis more directly, we next integrated manual
“expert”-based annotation of histological features with the molecular imaging data from our
MMMP analysis.

We manually curated 15 of the tissue sections from our MMMP dataset, using the H&E
images as a reference, and focused on annotating well-established histological features from
normal human tissues. An example of this approach is illustrated for a sample of normal
human colon tissue (Fig 5). We then identified feature-specific molecular signatures that were
associated with each histological annotation by analyzing the underlying MMMP vectors that
were labeled as belonging to each annotated category (Fig 5C). This strategy enabled us to char-
acterize the molecular diversity of cells and features associated with different histological cate-
gories, and the results often recapitulated established relationships that were expected based on
known molecular identities (i.e. Collagen 1 staining was enriched in regions of extracellular
matrix, Desmin was enriched in the muscularis mucosae, etc.) (Fig 5C).

Automated recognition of histological tissue features
We next set out to develop an automated system for recognizing and predicting individual his-
tological features based on the composition of their molecular profiles, which is demonstrated
again using the human colon tissue section as an example (Fig 6). To achieve this, we imple-
mented a cross-validation strategy based on conceptual partitioning of each annotated tissue
section into discrete regions that can serve as separate “training” or “test” sets (Fig 6A). After
subdividing each image into two regions, the MMMP data vectors associated with Region 1
were used as a “training set” to build a multi-label classifier based on linear discriminant analy-
sis (LDA), which was then applied to data from Region 2 as an independent “test set” to gener-
ate automatically predicted feature annotations based on the underlying molecular profiles.
Then, the reciprocal procedure was performed, and the automated classifications resulting
from both analyses were merged to create a color-coded output image representing the de novo
prediction of annotated features within the tissue section (Fig 6B). The accuracy of the com-
puter-generated predictions was evaluated by calculating the percentage of manually annotated
pixels from each feature that were correctly predicted to belong to that category, using the

Fig 5. Molecular Analysis of Annotated Histological Features. (a) Hematoxylin and eosin image of a normal human colon tissue section (Sample #1.6.7)
was used as a reference for manual annotation of relevant cellular and histological features. (b) Different types of histological features were annotated and
assigned arbitrary color codes for visualization purposes. Each labeled feature is displayed using the indicated color scheme. (c) Feature-specific molecular
profiles were identified by cluster analysis of MMMP data associated with each annotated histological category, and presented in heatmap format. The
associated feature types are indicated by the appropriate color code on the left of the heatmap, following the color scheme used in panel (b).

doi:10.1371/journal.pone.0128975.g005
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original annotations as a ‘gold standard’ (Fig 6C). Despite the relative simplicity of this
approach, we obtained results with reasonable accuracy for many of the annotated features
(e.g. median per-pixel accuracy of 68% for sample #1.6.7 in Fig 6). The overall average per-
pixel classification accuracy across all histological features from the complete set of 15 anno-
tated tissue sections was 74% (median accuracy of 77%), indicating that considerable predictive
success could be obtained despite the fact that these predictive models were based entirely on
molecular data without explicitly incorporating morphological or contextual parameters. Nota-
bly, repeating the identical classification procedure using only data from the H&E image for
sample #1.6.7 (i.e. excluding all other channels from the analysis) led to dramatically worsened
performance for the automated feature recognition results, with the median per-feature classi-
fication accuracy declining to just 19% (Fig 6D). These findings underscore the critical value of
the high-dimensionality in our molecular profiling datasets. Visualizations of the automated

Fig 6. Automated Histology by Classification of MMMPData. (a) The normal human colon tissue section
(Sample #1.6.7) from Fig 5 was partitioned into two independent regions according to a checkerboard pattern
(Region 1 = white squares, Region 2 = black squares). Region 1 was used as a “training set” to build a
classification model for recognizing histological features based on their molecular profiles, and this model
was applied to generate predictions based on data from the “test set” of Region 2. A reciprocal analysis was
also performed (i.e. Region 2 = training set, Region 1 = test set) to generate automated labeling of histological
categories for the entire tissue section. (b) The results from the automated histology classification are
illustrated, using the appropriate color scheme for features as in Fig 5. (c) The accuracy of automated feature
recognition was evaluated by comparison to the original annotations. The ‘confusion matrix’ representing the
frequency with which pixels manually annotated to each feature (rows) were automatically classified as
belonging to any given feature (columns) is shown. The classification accuracy for each feature is shown to
the right (overall median accuracy was 68%). (d) The per-feature accuracy for classification based all
dimensions of the MMMP data for Sample #1.6.7 is plotted (y-axis) versus the corresponding classification
accuracy obtained when only data from the hematoxylin and eosin channels was used (x-axis).

doi:10.1371/journal.pone.0128975.g006
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histology results for several of these tissue sections are presented as a gallery to illustrate the
spatial coherence observed among the predicted tissue features (Fig 7).

To extend the results of our automated histology analysis, we next set out to apply our clas-
sification models for computational identification of histological features to independent tissue
samples that were not included in the original annotation procedure. We therefore identified
independent biological samples included in the TMA dataset that were derived from the same
types of normal tissues that were annotated for automated histological analysis. The high
degree of anatomical diversity represented among the TMA samples limited the number of
independent samples for which we could perform inter-sample feature prediction. However,
we were able to carry out inter-sample feature classification on six independent tissue sections
from human kidney, breast, liver, and esophagus tissues samples by applying the automated
classification models based on the corresponding individual annotated samples of each type
(S1 Table). Visualizations of these classification results are depicted in S4 Fig, using the same
color-coding scheme for representing features that was applied for the original intra-sample
annotations. Although we could not directly evaluate the quantitative accuracy of the auto-
mated inter-sample feature predictions for these non-annotated tissue sections, we believe that
the spatial coherence of the classification results does illustrate the potential for successful com-
puter-generated de novo annotations of histological features.

Finally, we sought to compare the performance of our automated feature classification mod-
els with standard methods for histological object identification by performing segmentation of
nuclei based on DAPI signal intensities. To identify nuclei by image segmentation we applied a

Fig 7. Gallery of Tissue Feature Predictions by Automated Histology. Color-coded output of de novo histological feature identification (performed as in
Fig 6) is presented for six tissue sections. The average per-pixel classification accuracy across all annotated features for these samples was 72%
(median = 75%). Tissue sections displayed are normal human colon (#1.6.7), normal human liver (#1.8.10), human breast with malignant carcinoma (#1.9.2),
normal human fallopian tube (#1.9.6), normal human duodenum (#1.9.7), and normal terminal ileum of the small bowel (#1.10.7).

doi:10.1371/journal.pone.0128975.g007
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standard algorithm for object recognition using the CellProfiler software package to DAPI
images from the 15 samples that were manually annotated (S1 File) [25]. We then constructed
annotation-based nuclei images by selecting all pixels from the automated histological predic-
tions that were assigned to features associated with nuclei (S5 Fig). There was strong concor-
dance between the sets of pixels identified as belonging to nuclei from the segmentation and
annotation-based analyses with each other, with an average overlap of 84% (median 90%)
across all 15 samples (defined as the percentage of pixels in the smaller of the two sets that were
classified as nuclei in both sets). Although neither approach appeared to perfectly distinguish
all nuclei objects from background across all images, the overall level of agreement between
both methods supports the idea that automated classification of relevant histological and sub-
cellular features can be achieved with significant accuracy from multiplex imaging data.

Discussion
We developed an approach for multi-dimensional microscopic molecular profiling, which
relies on iterative cycles of staining and imaging along with a computational pipeline of image
processing and analysis scripts for extracting and analyzing the resulting large-scale molecular
datasets. The MMMP procedure was compatible with FFPE tissue samples, enabling us to
simultaneously analyze over 100 distinct samples in a human tissue microarray. The modular-
ity and flexibility of the overall MMMP approach we employed for this study should enable
this analytical strategy to be applied to other contexts as new reagents and technologies avail-
able for in situmolecular profiling continue to improve and become available. Although the
slow cycling times involved in MMMP (limited to 1 cycle per day due to overnight antibody
incubations) compare unfavorably to other multiplex imaging technologies [6, 10, 13–15], the
ability to implement MMMP without the requirement for specialized equipment or instrumen-
tation may represent an advantage of this approach.

Because our MMMP analysis included histochemical staining of the examined tissue sec-
tions, we were able to readily integrate manual annotation of key histological features with our
high-dimensional molecular analyses. By doing so, we identified specific molecular profiles
associated with annotated features of interest, and we developed automated classification algo-
rithms for recognizing different features based on their underlying molecular attributes. The
results obtained from the automated histology classifications were notable, with an overall
average per-pixel accuracy of 74% per feature, especially considering that these predictions
were based on models that did not explicitly incorporate contextual information related to the
morphology or spatial relationships of different features. Thus, we anticipate that predictive
models incorporating additional features that are explicitly focused on morphological and spa-
tial context should prove even more successful for automated histology based on high-dimen-
sional profiling data [2, 19]. We expect that further development of computational techniques
for automatic feature identification based on multi-parameter molecular imaging data will
remain an important area of ongoing investigation, and the results we present may provide a
useful framework and resource for advancing future studies. Altogether, these findings contrib-
ute to a growing body of evidence that incorporating additional layers of molecular imaging
information combined with traditional histochemical images can dramatically enhance the
ability to automatically identify histological features with subcellular resolution [10, 14, 15].
The results reported here constitute a step toward development of automated diagnostic sys-
tems based on automatic parsing of relevant histological and cellular features from molecular
imaging data of arbitrary human tissue samples.
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Materials and Methods

Immunofluorescence and histochemical staining of TMA slides
Tissue microarrays were derived from anonymized pre-existing samples in the Stanford
Pathology Department, and did not involve collection of new tissues for this study. Primary
antibodies were obtained from R&D Systems for Lyve-1 (AF2089), CTGF (AF660), SPARC/
Osteonectin (AF941), Fzd7 (AFMAB1981), Dkk3 (AF1118), ACE (AF929), Beta-catenin/
CTNNB1 (MAB13291), CD105/Endoglin (AF1097), Desmin (AF3844), SMA (MAB1420),
from Abcam for CD44 (AB6124) and Collagen I (AB34710), from Bioworld Technology for
MMP11 (BS1230) and Col4a2 (BS2399), and from Abnova for CD34 (MAB3835). Purified pri-
mary antibodies were directly labeled with Cy5 NHS-ester (Amersham PA3500 or PA35001)
following the manufacturer’s instructions. TMA slides with sections of 4 μm thickness were de-
paraffinized through three changes of xylene and hydrated to water in 100%, 95%, and 70%
ethanol and two changes of de-ionized water. For heat induced epitope retrieval, slides were
pre-treated with 1 mM EDTA pH 8.0 at 116°F for 3 minutes using a de-cloaking chamber, then
cooled to room temperature (RT). Slides were then blocked with donkey serum at 1:20 dilution
in phosphate buffered saline (PBS) for 30 minutes at RT.

The cycle of antibody stain / scan / bleach / scan, was done for each antibody stained on the
slide. The slides were incubated overnight for 12–16 hours at 4°C with Cy5 labeled primary
antibody. The slides were then washed in PBS and counter-stained with DAPI (ProLong Anti-
fade reagent with DAPI, Invitrogen). Slides were imaged at 20X with a resolution of 0.321 μm
per pixel using the Ariol Imaging system v3.2 (Genetix). Slides were then bleached by flushing
ozone (Ozone generator A2Z Ozone Inc.) into buffer containing 0.1M citric acid and 0.2M
Na2HPO4 at pH 8 for two hours, then incubated in 10% hydrogen peroxide (Electron Micros-
copy Sciences) for one hour, and finally incubated in Lugol’s Iodine solution (Electron Micros-
copy Sciences) for 1 hour. Slides were then washed with de-ionized water and 95% ethanol to
remove the Iodine. Following bleaching, the slides were hydrated and then counterstained with
DAPI. Slides were imaged to check for any residual Cy5 signal. After all IF antibody stains,
slides were stained with a series of histochemical stains (American Master Tech Pentachrome
Kit) in the following order: Eosin, Hematoxylin-alcoholic-mayers, Eosin, Alcian Blue, PAS and
Verhoeff's Elastic Stain. Slides were imaged and then de-stained after each histochemical stain
as follows. Eosin was de-stained with 95% Ethanol for 2–4 minutes; Hematoxylin and Eosin
was de-stained with 1% HCl for 10 minutes followed by water for 10 minutes; Periodic acid
(which starts the PAS stain) was used to de-stain Alcian blue; and Verhoeff’s elastic stain was
applied following PAS without an additional de-staining step.

Image processing and stitching
Unassembled raw images that tile across each sample were exported directly from the Ariol
microscope system. Image metadata was extracted from the associated XML files to relate each
set of tiling images to its original sample within the TMA, using a customized PERL script
<File-S1-parse-Ariol-XML.pl>. All brightfield images were mathematically negated to ensure
compatibility with subsequent image stitching and registration algorithms. For each imaging
cycle, the tiling images spanning each tissue sample were then automatically assembled
together using a FIJI macro for image stitching [23] [22]. Image stitching was performed inde-
pendently three times using different values for the preferred degree of overlap (Input parame-
ter “overlap” = 5, 8, or 10), and the parameter setting which agreed best with the consensus
(based on Euclidian distance of the inferred x and y offset values for each tile) was then used to
generate the final single stitched image for each tissue section. The resulting stitched images for
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each cycle were then cropped to a region with dimensions 2300 by 2300 pixels. In order to cor-
rectly track the stitched image files between cycles, centroids of the (x,y) coordinates associated
with each core on the TMA were computed for every cycle, and the centroids of all samples on
the TMA were globally aligned across cycles using the custom R script<File-S2-grid-Align.
R>.

Registration of images in the MMMP series
Full image alignments for each tissue section were generated according to a multi-step proce-
dure. First, grayscale images containing normalized intensities derived only from the DAPI-
channel (blue) from each immunofluorescence (IF) cycle were sequentially registered with
each other based on rigid transformations using the FIJI “Register Virtual Stack Slices”macro
[23]. The transformation parameters underlying the multiple alignment of IF images based on
their DAPI signals were saved and then applied to the original (non-grayscale) IF images.
Then, bright-field images from all histochemical staining cycles were negated and registered
with each other using all color channels (red, green, and blue) and the same FIJI macro. Next,
each of the IF images were aligned to the first IF image from the series based on their DAPI
intensities using a FIJI registration algorithm allowing elastic transformations [21]. Finally, the
first brightfield image from H&E staining was rigidly aligned to the last IF image using the FIJI
“Register Virtual Stack Slices”macro, and the saved transformations were then appropriately
applied to all of the images in the MMMP series to produce the final sequence of registered
images. For these steps, version 1.46j of Fiji / ImageJ and Java 1.6.0_65 (64-bit) were used on
the Mac operating system version 10.

MMMP data extraction and unsupervised analysis
Signal intensities were extracted by converting each registered image from the MMMP series
into text format using ImageMagick software and parsing out the values associated with every
pixel for each relevant image channel. Further analysis was restricted to “foreground” regions
that were identified as being present in all aligned images from the MMMP series. For each
sample, a MMMP data matrix of molecular profiles was constructed with each row corre-
sponding to a foreground pixel within the tissue section, and 29 columns corresponding to the
different image channels extracted from the MMMP series (2 DAPI channels from the first
and last IF images, 15 Cy5 channels from each of the IF images, and 12 columns derived from
the red, green, and blue channels from each of the 4 histochemical images). Principal compo-
nents analysis (PCA) was performed on the scaled MMMP data using the R statistical analysis
software (version 1.40) (www.r-project.org). Clustering analysis was also carried out in R using
the “kmeans” function with the following parameter settings: centers = 100, nstart = 1, iter.
max = 20, algorithm = “H”. Similarity-based color coding of the k-means clusters was per-
formed by multi-dimensional scaling of the cluster centroids into three-dimensional space and
transformation of the resulting (x,y,z) coordinates into RGB color values. Full details are avail-
able in the attached R script<File-S3-MMMP-analyze.R>.

Analysis of annotated histological features in tissue sections
Relevant cellular and histological features of interest within select tissue sections were manually
annotated using the registered H&E image from the respective MMMP series as a reference.
The coordinates of image pixels annotated as belonging to each category of features were
extracted, and each labeled feature was designated an arbitrary color code for visualization pur-
poses. Molecular profiles associated with each annotated feature were identified by performing
k-means clustering as before (k = 100) separately on the MMMP data vectors derived from
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each histological category. The pairwise Euclidian distances were then calculated for all of the
resulting cluster centroids associated with all histological features, and clusters were deter-
mined to be feature-specific if their nearest neighbor belonged to the same annotated feature as
they did. Full details are available in script<File-S4-MMMP-classify.R>.

Automated classification of histological features
Each annotated image was conceptually partitioned into two discrete regions (Region 1 and
Region 2) based on a “checkerboard” pattern consisting of an alternating grid of square seg-
ments. The grid size (i.e. the edge length for alternating squares) was set as the maximum value
of 100, 50, or 20 pixels for which both partitions included one or more pixels belonging to
every annotated category. The MMMP data vectors associated with Region 1 were used as a
“training set” to build a multi-label classifier based on linear discriminant analysis (LDA),
which was then applied to data from Region 2 as an independent “test set” to generate auto-
matically predicted feature annotations based on the underlying molecular profiles. Then, the
reciprocal analysis and classification was performed using Region 2 as the “training set” and
Region 1 as the “test set”. The automated classifications resulting from both analyses were then
merged to create a color-coded output image representing the de novo prediction of annotated
features within the tissue section. Classification accuracy of the automated prediction was
assessed by calculating the percentage of manually annotated pixels from each feature that
were correctly predicted to belong to that category. Full details are available in script<File-
S4-MMMP-classify.R>.

Supporting Information
S1 Fig. Example of Image Stitching Artifact Correction. Image stitching results for the first
MMMP cycle of Lyve1-antibody staining of human colon tissue sample (#1.6.7) are shown as
an example. Images were generated using either the original default software provided with the
Ariol microscope (a,c) or using the computational image processing pipeline we developed (b,
d). Close-up views of the same corresponding tissue region indicated by black squares in the
full-size images are shown at 6X magnification for the original (c) and corrected (d) versions of
the stitched image.
(TIF)

S2 Fig. Comparison of MMMP Results and Replicate Antibody Staining for Ace. (A)
MMMP images showing staining for Angiotensin I converting enzyme (Ace) using Cy5-labeled
primary antibody (red) during the fourth cycle of the MMMP series are shown for samples of
normal human endometrium (#1.6.6), fallopian tube (#1.9.6) and kidney (#2.7.9) tissue sec-
tions. (B) Replicate staining for Ace was performed independently on separate tissue sections
obtained from the same samples. All of the sections were co-stained with DAPI to visualize
nuclei (blue).
(TIF)

S3 Fig. k-means Analyses of MMMP Data with Varying Cluster Size Parameters. (a) Molec-
ular profiling data from a human small bowel terminal ileum tissue section (#1.10.7) was clus-
tered using a k-means algorithm with different values for the cluster size parameter k set to
either k = 10 (A), 100 (B), or 1000 (C). The centroid vectors obtained from each of the cluster-
ing results were compiled together and used to generate a single similarity-based color-map-
ping transformation based on multi-dimensional scaling. Visualization of the cluster
membership for each pixel was performed as in Fig 3, and the centroid vectors from each
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analysis were themselves clustered and displayed in the heatmaps below each visualization.
(TIF)

S4 Fig. Automated Feature Prediction Applied to Independent Tissue Samples.Original
feature prediction results based on internal partitioning and classification of annotated tissue
sections are shown for normal human breast (#1.3.1), liver (#1.8.10) and kidney (#2.7.9) sam-
ples (top row). Computational models for histological feature classification from each of these
samples were then applied to generate automated predictions for independent breast (#1.6.1),
liver (#.1.7.10) and kidney (#2.5.8) samples of the corresponding type, which are visualized
using the same color-coding scheme as for the original annotations.
(TIF)

S5 Fig. Comparison of Nuclei Identification from Image Segmentation and Annotation-
Based Feature Classification. Nuclei were identified fromMMMP images for 15 tissue sec-
tions using two independent methods. Conventional image segmentation of nuclei objects
based on DAPI signal intensity was performed. Separately, annotation-based nuclei identifica-
tion was performed by merging all nuclei-associated classifications generated by the histologi-
cal feature predictions. For each sample, the pixels identified as belonging to nuclei according
to both methods are shown in blue, with those identified exclusively using one approach are
shown in magenta for segmentation-based identification and in cyan for annotation-based
identification.
(TIF)

S1 File. Archive of Supporting Information Files. Includes: (File A) PERL Script for Process-
ing Image Coordinates, (File B) R Script for Tracking Image Location Coordinates Between
Cycles, (File C) R Script for Unsupervised Analysis of MMMP Data, (File D) R Script for Anal-
ysis & Classification of Annotated Histological Features, (File E) CellProfiler Pipeline for
Nuclei Segmentation.
(ZIP)

S1 Table. Description of Tissue Samples Contained on TMA.
(XLS)

S2 Table. Principal Component Analysis Summary Data for All Samples.
(XLS)

S3 Table. K-means Cluster Analysis Summary Data for All Samples.
(XLS)

S4 Table. Summary Data for Feature-Specific Molecular Profiles.
(XLS)

S5 Table. K-means Centroids Identified with Different Cluster Size Parameters.
(XLS)
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