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Abstract

Background: Interrupted time series (ITS) studies are frequently used to evaluate the effects of population-level
interventions or exposures. However, examination of the performance of statistical methods for this design has
received relatively little attention.

Methods: We simulated continuous data to compare the performance of a set of statistical methods under a range
of scenarios which included different level and slope changes, varying lengths of series and magnitudes of lag-1
autocorrelation. We also examined the performance of the Durbin-Watson (DW) test for detecting autocorrelation.

Results: All methods yielded unbiased estimates of the level and slope changes over all scenarios. The magnitude
of autocorrelation was underestimated by all methods, however, restricted maximum likelihood (REML) yielded the
least biased estimates. Underestimation of autocorrelation led to standard errors that were too small and coverage
less than the nominal 95%. All methods performed better with longer time series, except for ordinary least squares
(OLS) in the presence of autocorrelation and Newey-West for high values of autocorrelation. The DW test for the
presence of autocorrelation performed poorly except for long series and large autocorrelation.

Conclusions: From the methods evaluated, OLS was the preferred method in series with fewer than 12 points,
while in longer series, REML was preferred. The DW test should not be relied upon to detect autocorrelation, except
when the series is long. Care is needed when interpreting results from all methods, given confidence intervals will
generally be too narrow. Further research is required to develop better performing methods for ITS, especially for
short series.

Keywords: Autocorrelation, Interrupted time series, Public health, Segmented regression, Statistical methods,
Statistical simulation

Background
Interrupted time series (ITS) studies are frequently used
to evaluate the impact of interventions or exposures that
occur at a particular point in time [1–4]. Although ran-
domised trials are the gold standard study design, ran-
domisation may be infeasible in the case of policy

evaluation or interventions that are implemented at a
population level. Randomization also is not an option
for retrospective evaluation of interventions or exposures
such as natural disasters or pandemics. The use of an
ITS design may be considered in these situations, as they
are one of the strongest non-randomised experimental
designs [2, 5–9].
In an ITS study, observations are collected at regular

time points before and after an interruption, and often
analysed in aggregate using a summary statistic (e.g.
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mean, proportion) within a time interval (e.g. weekly,
monthly, or annually). A key feature of the design is that
data from the pre-interruption interval can be used to
estimate the underlying secular trend. When this trend
is modelled correctly, it can be projected into the post-
interruption interval, providing a counterfactual for what
would have occurred in the absence of the interruption.
From this counterfactual, a range of effect measures can
be constructed that characterise the impact of the inter-
ruption. Two commonly used measures include the
‘change in level’ – which represents the sustained change
immediately after the interruption, and the ‘change in
slope’ – which represents the difference in trends before
and after the interruption.
A key feature of time series data is that there is the po-

tential for non-independence of consecutive data points
(serial autocorrelation) [10]. In the presence of positive
autocorrelation, statistical methods that do not account
for this correlation will give spuriously small standard
errors (SEs) [11]. Several statistical methods are available
to account for autocorrelation, such as Prais-Winsten
generalised least squares or the Newey-West correction
to SEs, or to directly model the error, such as autore-
gressive integrated moving averages (ARIMA). Further,
several methods are available for testing for the presence
of autocorrelation, with the Durbin-Watson test for lag-
1 autocorrelation being the most commonly used [4, 6].
While the performance of some of these methods has
been examined for time series data [12, 13], their per-
formance in the context of ITS studies has received rela-
tively less attention [11, 14, 15].
In this study, we therefore aimed to examine the per-

formance of a range of statistical methods for analysing
ITS studies with a continuous outcome using segmented
linear models. We restrict our evaluation to ITS designs
where there is a single interruption, with an equal num-
ber of time points pre and post interruption, and with
first order autoregressive errors. Furthermore, we only
consider single series, excluding controlled and multi-
site ITS. The structure of the paper is as follows: In Sec-
tion 2, we begin by introducing a motivating example
for this research. In Section 3, we describe the statistical
model and estimation methods used in our simulation
study. In Sections 4 and 5, we present the methods and
results from the statistical simulation study. In Section 6,
we return to our motivating example and demonstrate
the impact of applying the methods outlined in Section
3. Finally, in Section 7 we present key findings and im-
plications for practice.

Motivating example
Healthcare-associated infections (HAIs) are a common
complication affecting patients in hospitals. C. difficile
(C difficile) infection is an example of one such infection

that can cause serious gastrointestinal disease. As such,
many countries require mandatory surveillance of C dif-
ficile infection rates in hospitals. When outbreaks of C
difficile occur, the cleaning and disinfection regimes in
hospitals are often changed in an attempt to reduce the
infection rate. The routine collection of data in this con-
text has led to many retrospective investigations of the
effects of different interventions (e.g. novel disinfectants)
to reduce C difficile infection using ITS data [16]. Hacek
et al. [17] provides an example of such a study, where
they examined the effect of terminal room cleaning with
dilute bleach (Fig. 1) on the rate of patients (per 1000
patient days) with a positive test for C difficile. Data
were aggregated at monthly intervals. The series was
relatively short – a scenario which is not atypical of
these studies – with 10 data points pre and 24 post the
intervention [16]. In the context of HAIs, there is a ten-
dency for consecutive data points to be more similar to
each other, manifesting as ‘clusters’ of data points in
time (Fig. 1). Fitting a segmented linear regression model
to the data shows an apparent immediate decrease in
the infection rate (level change), as well as a decrease in
the trend (slope change). In the following section, we
outline different statistical methods to estimate the
model parameters and return to this example in Section
6, where we apply these methods and compare the
results.

Methods
Interrupted time series (ITS): model and estimation
methods
We begin by describing the statistical model and para-
meters used in our simulation study followed by a brief
description of some common statistical estimation
methods and the Durbin-Watson test for
autocorrelation.

Statistical model
We use a segmented linear regression model with a sin-
gle interruption, which can be written using the param-
eterisation proposed by Huitema and McKean [18, 19]
as:

Y t ¼ β0 þ β1t þ β2Dt þ β3 t−TI½ �Dt þ εt ð1Þ

where Yt represents the continuous outcome at time
point t of N time points. Dt is an indicator variable that
represents the post-interruption interval (i.e. Dt = 1 (t ≥
TI) where TI represents the time of the interruption).
The model parameters, β0, β1, β2 and β3 represent the
intercept (e.g. baseline rate), slope in the pre-
interruption interval, the change in level and the change
in slope, respectively. The error term, εt, represents devi-
ations from the fitted model, which are constructed as:
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εt ¼ ρεt−1 þ wt ð2Þ

where wt represents “white noise” that is normally dis-
tributed wt~N(0, σ

2), and ρ is the lag-1 autocorrelation
of the errors which can range from −1 to + 1. A lag-1
error means that the influence of errors on the current
error is restricted to the value immediately prior. Longer
lags are possible but in this paper we confine attention
to lag-1 only (AR (1) errors).

Estimation methods
A range of statistical estimation methods are available
for estimating the model parameters. These methods ac-
count for autocorrelation in different ways and are
briefly described below. We focus on statistical methods
that have been more commonly used (Ordinary Least
Square (OLS), Generalised Least Squares (GLS), Newey-
West (NW), Autoregressive Integrated Moving Average
(ARIMA)) [2–4, 6]. In addition, we have included Re-
stricted Maximum Likelihood (REML) (with and without
the Satterthwaite adjustment), which although is not a
method in common use, is included because of its po-
tential for reduced bias in the estimation of the autocor-
relation parameter, as has been discussed for general
(non-interrupted) time series [20]. Further details and
equations can be found in Additional file 1.

Ordinary least squares Estimates of the regression pa-
rameters and their variances from model [1] can be ob-
tained from fitting a segmented linear regression model

using OLS (Additional file 1). In the presence of auto-
correlation, the OLS estimators for the regression pa-
rameters are unbiased; however, the SEs will be
incorrect [21].

Newey-West The NW estimator of the variance of the
regression parameters estimated using OLS accommo-
dates autocorrelation and heteroskedasticity of the error
terms in the regression model (1) [22] (Additional file 1).

Generalised least squares Two common GLS methods
for estimating the regression parameters and their vari-
ances are Cochrane-Orcutt (CO) and Prais-Winsten
(PW). For both methods, a regression model is first fit-
ted using OLS and an estimate of the autocorrelation is
calculated from the residuals. This estimate is then used
to transform the data and remove the autocorrelation
from the errors, upon which the regression parameters
are then estimated from the transformed data. If there is
still some residual autocorrelation these steps are iter-
ated until a criterion is met (e.g., the estimated value for
autocorrelation has converged [23]). The CO method
applies the transformation from the second observation
onwards (t = 2, 3, … n). The PW method is a modifica-
tion to the CO method in which a transformed value is
used for the first observation (Additional file 1). The PW
method is therefore likely to be more efficient in small
series since it does not discard the first observation. The
sampling properties of the estimators of the regression
parameters are likely to be adversely affected when the

Fig. 1 Rate of C. difficile infections (per 1000 patient-days) pre and post bleach disinfection intervention per month
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series length is small due to poor estimation of the
autocorrelation.

Restricted maximum likelihood It is well known that
maximum likelihood estimators of variance components
are biased in small samples due to not accounting for
the degrees of freedom (d.f.) used when estimating the
fixed effect regression parameters [24]. Restricted max-
imum likelihood is a variant of maximum likelihood esti-
mation and attempts to address the bias by separating
the log-likelihood into two terms; one that involves the
mean and variance parameters, and one which is only
dependent on the variance parameters. By maximising
the latter term first with the appropriate number of d.f.,
an estimate of the variance parameter can be obtained
which can be used when maximising the former, thus
correctly accounting for the d.f. [20, 25].
For small samples, there is greater uncertainty in the

estimation of the SE of the regression parameters. To ac-
count for this uncertainty in making inferences about
the regression parameters, the Satterthwaite adjustment
can be used to adjust the t-distribution d.f. used in hy-
pothesis testing and calculation of confidence limits [26].

ARIMA/ARMAX regression with autoregressive
errors estimated using maximum likelihood A more
flexible approach than the Prais-Winsten and Cochrane-
Orcutt generalised least squares methods is called Auto-
regressive Moving Average eXogeneous modelling
(ARMAX) [27]. Here we consider a simple case in which
the exogenous variables are the functions of time to
form a segmented regression model, and the errors are
assumed to have an AR (1) structure. Parameters in this
more general family of models are estimated by max-
imum likelihood, enabling the uncertainty in the auto-
correlation estimate to be taken into account in the
standard error of the regression coefficients, unlike PW
or CO. This approach has been variously labelled in the
literature, including use of the terminology ‘maximum
likelihood ARIMA’ [14]. We therefore use the shorthand
term “ARIMA” for consistency with previous literature,
including in our companion paper [28]. Further details
about the method can be found in Additional file 1,
Paolella [27], Nelson [29] and Box et al. [30].

Durbin-Watson test for autocorrelation
The Durbin-Watson (DW) test is commonly used for
detecting lag-1 autocorrelation in time series. Often, the
test is used as part of a two-stage analysis strategy to de-
termine whether to use a method that adjusts for auto-
correlation or use OLS (which does not adjust for
autocorrelation). The null hypothesis is that there is no
autocorrelation (H0 : ρ = 0) against the alternative that
autocorrelation is present (H1 : ρ ≠ 0). The DW-statistic

can range between zero and four, with values close to
two indicating no autocorrelation. The DW-statistic is
compared to critical values to determine whether there
is evidence of autocorrelation, no autocorrelation, or the
test is inconclusive. The critical values differ by series
length, significance level and the d.f. in the regression
model. Further details are available in Additional file 1,
Kutner et al. [21] and Durbin and Watson [31].

Simulation study methods
We undertook a numerical simulation study, examining
the performance of a set of statistical methods under a
range of scenarios which included continuous data with
different level and slope changes, varying lengths of
series and magnitudes of lag-1 autocorrelation. Design
parameter values were combined using a fully factorial
design with 10,000 data sets generated per combination.
A range of criteria were used to evaluate the perform-
ance of the statistical methods. We now describe the
methods of the simulation study using the ADEMP
(defining aims, data-generating mechanisms, estimands,
methods and performance measures) structure [32].

Data generating mechanisms
We simulated continuous data from ITS studies by ran-
domly sampling from a parametric model (Eq. 1), with a
single interruption at the midpoint, and first order auto-
regressive errors (examples shown in Supplementary

1.1). We multiplied the first error term, ε1, by
ffiffiffiffiffiffiffi

1
1−ρ2

q

so

that the variance of the error term was constant at all
time points.
We created a range of simulation scenarios including

different values of the model parameters and different
numbers of data points per series (Table 1). These values
were informed by our review of ITS studies [4], where
we reanalysed available data sets to estimate level and
slope changes (standardised by the residual standard de-
viation), and autocorrelation. We found a median stan-
dardised level change of 1.5 (inter-quartile range (IQR):
0.6 to 3.0), n = 190), median standardised slope change
of 0.13 (IQR: 0.06 to 0.27, n = 190) and median autocor-
relation 0.2 (IQR: 0 to 0.6, n = 180). We therefore con-
structed models with level changes (β2) of 0, 0.5, 1 and
2, and slope changes (β3) of 0 and 0.1. We did not exam-
ine negative level or slope changes since we did not ex-
pect this to influence the performance metrics. Lag-1
autocorrelation was varied between 0 and 0.8 in incre-
ments of 0.2 to cover the full range of autocorrelations
observed in the ITS studies included in the review. The
number of data points per series was varied from 6 to
100, equally divided before and after the interruption, in-
formed by the number of data points observed in the
ITS studies (median 48, IQR: 30 to 100, n = 230). The
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increment between the number of data points per series
varied; initially it was small (i.e. 2) so as to detect
changes in the performance metrics that were expected
to arise with smaller sample sizes and was increased to 4
and then 20.
All combinations of the factors in Table 1 were simu-

lated, leading to 800 different simulation scenarios
(Table 1, Fig. 2).

Estimands and other targets
The primary estimands of the simulation study are the
parameters of the model, β2 (level change) and β3 (slope
change) (Eq. 1). These were chosen as they are com-
monly reported effect measures [4, 6]. We also examined
the autocorrelation coefficient, ρ, and the value of the
Durbin Watson statistic.

Statistical methods to analyse ITS studies
Segmented linear regression models were fitted using
the estimation methods described in Section 2.2. We
evaluated estimation methods designed to estimate the
model parameters under lag-1 autocorrelation (see
Table 2 for details). For GLS, we restricted our

investigation to the PW method, because it was expected
to have better performance than the CO method (on
which PW is based) given the PW method utilises all
data points. For REML with the Satterthwaite adjust-
ment, we substituted d.f. of 2 when the computed d.f.
were less than 2, to avoid overly conservative confidence
limits and hypothesis tests. We also investigated the
commonly used Durbin-Watson method for detecting
autocorrelation at a significance level of 0.05 [31].
Table 2 summarises the methods and model variations

used to adjust for autocorrelation. Details of the Stata code
used for generating the simulated data and the analysis
code can be found in the online repository figshare [33].

Performance measures
The performance of the methods was evaluated by
examining bias, empirical SE, model-based SE, 95% con-
fidence interval coverage and power (see Additional file
1 for formulae). Confidence intervals were calculated
using the simsum package [34] with t-distribution crit-
ical values. For each simulation scenario, we used 10,000
repetitions in order to keep the Monte Carlo Standard
Error (MCSE) below 0.5% for all potential values of

Table 1 Simulation parameters

Parameter Symbol Parameter Values

Intercept β0 0

Pre-interruption slope β1 0

Level change β2 0, 0.5, 1, 2

Change in slope post-interruption β3 0, 0.1

Autocorrelation coefficient ρ 0, 0.2, 0.4, 0.6, 0.8

Variance of white noise error component σ2 1

Number of data points 6, 8, 10, 12, 14, 16, 18, 20
24, 28, 32, 36, 40, 44, 48, 52, 56
60, 80, 100

Fig. 2 Structure of the eight models constructed from different combinations of the model input parameters (Table 1)
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coverage and type I error rate. Model non-convergence
was recorded and tabulated.

Coding and execution
The statistical software Stata version 15 [35] was used
for the generation of the simulated data. A random seed
was set at the beginning of the process and the individ-
ual random state was recorded for each repetition of the
simulated data sets. Each dataset was independently sim-
ulated, using consecutive randomly generated numbers
from the starting seed. We used a “burn in” period be-
tween each dataset of 300 random number generations
so that any lag effects specific to the computer-
generated series had time to dissipate [11].
Prior to running the simulations, we undertook initial

checks to confirm that the data generation mechanism
was working as expected. This involved fitting series of
length 100,000 to check the estimated β parameters
matched the input parameters. A larger sample of 1000
datasets was then simulated and checked using summary
statistics and graphs. When we were satisfied that the
simulations were operating as expected, the full number
of datasets were simulated.

Analysis of the simulated datasets
Analyses were performed using Stata version 15 [35].
A range of visual displays were constructed to com-
pare the performance of the statistical methods.
Frequency distributions were plotted to visualise the
level- and slope-change estimates, autocorrelation
coefficient estimates, and the results of the Durbin-
Watson test for autocorrelation. Scatter plots were
used to display the mean values for empirical and
model-based SEs, coverage, power and autocorrelation
coefficient estimates. Line plots were used to show
confidence intervals for the level and slope change
estimates. Results and summaries of the analyses were
summarised (using the simsum package [34]) and
graphed using Stata version 15 [35].

Results of the simulation study
Bias of level and slope change estimates
All methods yielded approximately unbiased estimates of
level change and slope change across all simulation

scenarios. Figure 3 presents level change estimates spe-
cific to the scenario of a level change of 2 and a slope
change of 0.1 (Supplementary Fig. S2 shows slope
change estimates), but the other 7 combinations of level
and slope changes were virtually identical (Supplemen-
tary 1.3.1 for level change, Supplementary 1.3.2 for slope
change). Note that the Satterthwaite and NW adjust-
ments do not impact the parameter estimates of level or
slope change, hence distributions of these parameter
estimates are not shown in Figs. 3 and S2.

Standard errors of level and slope change estimates
Empirical standard errors
Figure 3 and Supplementary Fig. S2 visually indicate the
precision of the estimators in terms of the spread of the
distributions therein. To enable a direct quantitative as-
sessment, we plotted the empirical SE of the level and
slope changes for each method against selected series
lengths and autocorrelation parameter sizes for a level
change of 2 and slope change of 0.1 (Fig. 4 and Fig. 5).
The size of the empirical SE of the level change was
dependent on the underlying autocorrelation, length of
the series and statistical method (Fig. 4). Of note, the es-
timates obtained from the ARIMA and PW models yield
almost identical empirical SEs. For each magnitude of
autocorrelation, the empirical SE decreased as the length
of the time series increased, as would be expected. An
exception to this occurred for the OLS estimator (and to
a lesser extent ARIMA) which exhibited unusual behav-
iour for an autocorrelation of 0.8, with the SE initially
increasing with an increasing number of points in the
series, and then decreasing. Supplementary simulations
were undertaken to examine the behaviour of the OLS
estimator for surrounding correlations (0.7 and 0.9),
which showed a similar pattern of increasing SEs with
an increasing number of points (Supplementary 1.4).
The relationship between autocorrelation and the empir-
ical SE was modified by the length of series. For small
series (< 10 data points), the empirical SE decreased with
increasing autocorrelation, while for longer series (≥ 10
data points) this relationship was reversed, with SEs
increasing with increasing autocorrelation.
The size of the empirical SE for slope change was

dependent on the underlying autocorrelation and length

Table 2 Statistical methods and adjustments for autocorrelation

Method Autocorrelation adjustment

Ordinary Least Squares None

Newey-West SE adjustment (lag-1)

Generalised least squares Prais-Winsten

Restricted maximum likelihood Lag-1 autocorrelation

Lag-1 autocorrelation with small sample Satterthwaite approximation

Autoregressive integrated moving average Lag-1 autocorrelation (i.e. ARIMA(1,0,0))
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Fig. 3 Distributions of level change estimates calculated from four statistical methods, from top to bottom: autoregressive integrated moving
average (ARIMA) (purple), ordinary least squares regression (OLS) (blue), Prais-Winsten (PW) (green) and restricted maximum likelihood (REML)
(orange). The vertical axis shows the length of the time series. The five vertical columns display the results for different values of autocorrelation.
The vertical black line represents the true parameter value (β2). Each subset of four curves shows the distribution from a different analysis method
for a given combination of time series length and autocorrelation. The simulation combination presented is for a level change of 2 and slope
change of 0.1; however, other structures give similar results. The Satterthwaite adjustment to the REML method and the Newey-West adjustment
to the OLS method do not impact the estimate of level or slope change, hence these parameter estimates are not shown

Fig. 4 Empirical standard error (SE) of the level change. The horizontal axis shows the length of the time series, the vertical axis shows the
empirical SE. The five vertical columns display the results for different values of autocorrelation. The simulation combination presented is for a
level change of 2 and slope change of 0.1; however, other combinations give similar results. Abbreviations: ARIMA, autoregressive integrated
moving average; OLS, ordinary least squares; PW, Prais-Winsten; REML, restricted maximum likelihood
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of the series (Supplementary Fig. S2 and Fig. 5). The em-
pirical SE decreased with increasing series length, but in-
creased with increasing autocorrelation, as would be
expected. In contrast to the level change, there were no
important differences in the empirical SEs across the
statistical methods, even when the autocorrelation was
large. The observed patterns did not differ for any of the
eight level and slope change combinations (Supplemen-
tary 1.3.3 for level change, Supplementary 1.3.4 for slope
change).

Comparison between empirical and model-based standard
errors
To enable appropriate confidence interval coverage and
size of significance tests, the model-based SE needs to be
similar to the empirical SE [32]. In this section we
present the comparison between the empirical and
model-based SEs; results for the model-based SEs alone
can be found in S1.3.5 for level change and S1.3.6 for
slope change.
For the level change parameter (β2) estimated by OLS,

the ratios of model-based to empirical SEs were close to
one (indicating the empirical and model-based SEs were
similar) for all series lengths when there was no under-
lying autocorrelation (Fig. 6). However, as autocorrel-
ation increased, as expected, the OLS model-based SEs
became increasingly smaller relative to the empirical
SEs, indicating the model-based SEs are downwardly
biased. The NW method performed only slightly better
than the OLS (except when the autocorrelation was
zero); however, the NW model-based SEs were still

downwardly biased across all scenarios, were worse than
OLS for small series lengths, and only marginally better
than OLS for large series lengths. Although the empir-
ical SEs of the ARIMA and PW methods were similar,
they had quite different model-based SEs. The PW
model-based SEs were smaller than the empirical SEs for
all magnitudes of autocorrelation, though the model-
based SEs approached the empirical SEs with increasing
series length. The ARIMA model-based SEs were larger
than the empirical SEs for small series (fewer than 24
points) at small underlying values of autocorrelation
(ρ < 0.4) and also for larger series (more than 24 points)
at higher magnitudes of autocorrelation (ρ > 0.4). Aside
from these scenarios, the ARIMA model-based SEs were
approximately equal to the empirical SEs. The REML
method behaved similarly to the PW method but, rela-
tively, did not underestimate the SEs to the same extent.
For small values of underlying autocorrelation (ρ < 0.4)
and series greater than 30 points, the model-based SEs
were similar to the empirical SEs.
For the slope change parameter (β3), the ratios of

model-based to empirical SEs followed similar patterns
as for the level change parameter (β2). For any given
series length, as the magnitude of autocorrelation in-
creased, model-based SEs became increasingly smaller
compared with the empirical SEs for most statistical
methods (Supplementary 1.5). Model-based and empir-
ical SEs tended towards equivalence as series lengths in-
creased, with the exception of OLS and NW at high
values of autocorrelation (ρ > 0.6). For REML and
ARIMA, the pattern of ratios of model-based to

Fig. 5 Empirical standard error (SE) of the slope change. The horizontal axis shows the length of the time series, the vertical axis shows the
empirical SE. The five vertical columns display the results for different values of autocorrelation. The simulation combination presented is for a
level change of 2 and slope change of 0.1; however, other combinations give similar results. Abbreviations: ARIMA, autoregressive integrated
moving average; OLS, ordinary least squares; PW, Prais-Winsten; REML, restricted maximum likelihood
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empirical SEs for β3 slightly differed compared with
β2. Specifically, the REML model-based SEs were
smaller than the empirical SEs for small series, and
then increased to be slightly larger as the number of
points increased. For ARIMA, the model-based SEs
were smaller than the empirical SEs for large under-
lying values of autocorrelation (ρ ≥ 0.6 ) for small to
moderate length series. The observed patterns did not
differ for any of the eight level and slope change
combinations (S 1.3.5 for level change, S 1.3.6 for
slope change).

Confidence interval coverage
For all combinations of level change, slope change, num-
ber of time points and autocorrelation, most methods
had coverage (percentage of 95% confidence intervals in-
cluding the true parameter) that was less than the

nominal 95% level for both level and slope change (Fig. 7
for level change and Fig. 8 for slope change, both with a
level change of 2 and slope change of 0.1, Supplementary
1.3.7 for level change and Supplementary 1.3.8 for slope
change for other parameter combinations). The excep-
tions were OLS when there was no underlying autocor-
relation, and REML with the Satterthwaite adjustment
for moderate to large length series. In general, mean
values of coverage decreased with increasing auto-
correlation and increased with increasing series length.
However, coverage of the OLS method decreased with
increasing autocorrelation as well as with increasing
series length (with the exception of the zero auto-
correlation scenario). The NW method exhibited a simi-
lar pattern to OLS, but generally had better coverage
(except for small autocorrelations), although coverage
was often poor (under 90% for all but the longest series

Fig. 6 Scatter plots of the ratio of model-based standard error (SE) to the empirical SE for the level change parameter with different levels of
autocorrelation and series length. The horizontal axis represents the number of points in the time series, the vertical axis shows the ratio of
model-based to empirical SE. The five vertical columns display the results for different values of autocorrelation. The simulation combination
presented is for a level change of 2 and slope change of 0.1; however, other combinations give similar results. The first two series lengths are not
shown for the ARIMA method due to extreme values. The Satterthwaite adjustment to the REML does not impact the estimate of SE, hence
details of this method are not shown. Abbreviations: ARIMA, autoregressive integrated moving average; OLS, ordinary least squares; NW, Newey-
West; PW, Prais-Winsten; REML, restricted maximum likelihood
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with low autocorrelation, ρ < 0.4). REML with the
Satterthwaite small sample adjustment yielded coverage
greater than the nominal 95% level when the number of
data points was greater than 30 in the presence of
autocorrelation. Confidence interval coverage patterns
generally reflected those observed with the comparisons
between the model-based and empirical SE.

Power
Coverage was less than the nominal 95% level in the ma-
jority of scenarios (except for the OLS model in the ab-
sence of autocorrelation and some scenarios involving
the REML method with Satterthwaite adjustment). In
scenarios where coverage is less than 95%, examining
power is misleading. Due to there being only a very

Fig. 7 Coverage for the level change parameter. Each point is the proportion of the 10,000 simulations in which the 95% confidence interval
included the true value of the parameter. The solid black line depicts the nominal 95% coverage level. The simulation combination presented is
for a level change of 2 and slope change of 0.1; however, other combinations give similar results. Abbreviations: ARIMA, autoregressive integrated
moving average; OLS, ordinary least squares; NW, Newey-West; PW, Prais-Winsten; REML, restricted maximum likelihood; Satt, Satterthwaite

Fig. 8 Coverage for the slope change parameter. Each point is the proportion of the 10,000 simulations in which the 95% confidence interval
included the true value of the parameter. The solid black line depicts the nominal 95% coverage level. The simulation combination presented is
for a level change of 2 and slope change of 0.1; however, other combinations give similar results. Abbreviations: ARIMA, autoregressive integrated
moving average; OLS, ordinary least squares; NW, Newey-West; PW, Prais-Winsten; REML, restricted maximum likelihood; Satt, Satterthwaite
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small number of configurations in Fig. 7 and Supple-
mentary 1.6 in which 95% coverage was achieved, we
adopt a more liberal approach and consider configura-
tions in which the coverage was at least 90%. As such,
the results presented below should be viewed as approxi-
mate power only and will generally be lower than the
value observed if coverage was at least 95%.
For scenarios with a level change of two, power was

low for series with a small number of points, but pre-
dictably, increased as the number of points increased for
all methods, except the REML method with Sat-
terthwaite adjustment (Fig. 9). As the magnitude of auto-
correlation increased its power decreased, to a point
where it became lower than for other methods. This was
due to the REML method with Satterthwaite adjustment
having greater than 95% coverage in these situations and
hence substantially lower than 5% Type I error rates. For
smaller values of the level change parameter, predictably,
power decreased (Supplementary 1.6.1). Similar patterns
were observed for slope change (Supplementary 1.6.2).

Autocorrelation coefficient
Most of the statistical methods yield an estimate of the
autocorrelation coefficient. All methods underestimated
the autocorrelation for series with a small number of
points (Fig. 10 and Fig. 11 show autocorrelation coeffi-
cient estimates for a simulation with parameter values of
2 for level change and 0.1 for slope change). However,
underestimation was most pronounced for scenarios
with small series and large underlying autocorrelation.

The REML method always yielded estimated autocorre-
lations closer to the true underlying autocorrelation
compared with the other methods. The empirical SEs
for autocorrelation generally decreased as the series
length increased for all methods (except for small
series with fewer than 20 points) (Supplementary 1.7).
The observed patterns did not differ for any of the
eight level and slope change combinations (Supple-
mentary 1.3.9).

Durbin-Watson test for autocorrelation
The DW test for detecting autocorrelation performed
poorly except for long data series and large underlying
values of autocorrelation (Fig. 12). For series of moder-
ate length (i.e. 48 points), with an underlying autocorrel-
ation of 0.2, the DW test gave an “inconclusive” result in
30% of the simulations, incorrectly gave a value of no
autocorrelation in 63% of the simulations, and only cor-
rectly identified that there was autocorrelation in 7% of
the simulations. For shorter length series the percentage
of simulations in which autocorrelation was correctly
identified decreased (for a series length of 24 even at ex-
treme magnitudes of autocorrelation (i.e. 0.8) positive
autocorrelation was reported in only 26% of the simula-
tions). For very short length series (fewer than 12 data
points) the DW test gave an “inconclusive” result in over
75% of the simulations for all values of autocorrelation
and always failed to identify that autocorrelation was
present.

Fig. 9 Power for level change. Each point is the mean number of times the 95% confidence interval of the estimate did not include zero from
10,000 simulations. The simulation combination presented is for a level change of 2 and slope change of 0.1. Power for other model
combinations is available in Supplementary 1.8.1. Abbreviations: ARIMA, autoregressive integrated moving average; OLS, ordinary least squares;
NW, Newey-West; PW, Prais-Winsten; REML, restricted maximum likelihood; Satt, Satterthwaite; NW, Newey-West
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Fig. 10 Autocorrelation coefficient estimates. The horizontal axis shows the estimate of autocorrelation coefficient. The vertical axis shows the
length of the time series. The five vertical columns display the results for different values of autocorrelation ranging from 0 to 0.8 (the value of
autocorrelation is shown by a vertical red line). Each coloured curve shows the distribution of autocorrelation coefficient estimates from 10,000
simulations. Each subset of four curves shows the results from a different analysis method for a given combination of time series length and
autocorrelation. The simulation combination presented is for a level change of 2 and slope change of 0.1; however, other combinations give
similar results. From top to bottom the methods are autoregressive integrated moving average (ARIMA) (purple), Prais-Winsten (PW) (green) and
restricted maximum likelihood (REML) (orange)

Fig. 11 Autocorrelation coefficient estimates. The horizontal axis shows the length of the time series. The vertical axis shows the mean estimate
of the autocorrelation coefficient across 10,000 simulations. The five plots display the results for different values of autocorrelation ranging from 0
to 0.8 (the true value of autocorrelation is shown by a horizontal black line). Each coloured point shows the mean autocorrelation estimate for a
given combination of true autocorrelation coefficient and number of points in the data series. The simulation combination presented is for a
level change of 2 and slope change of 0.1; however, other combinations give similar results. Abbreviations: ARIMA, autoregressive integrated
moving average; OLS, ordinary least squares; PW, Prais-Winsten; REML, restricted maximum likelihood
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Convergence of estimation methods
The number of the 10,000 simulations in which the esti-
mation methods converged is presented in Supplemen-
tary 1.8. Most methods had no numerical convergence

issues. The PW model failed to converge a small number
of times (less than 7% of simulations) when there were
only three data points pre- and post-interruption. The
REML model regularly failed to converge (approximately

Fig. 12 Durbin-Watson tests for autocorrelation. For each combination of length of data series and true magnitude of autocorrelation the Durbin
Watson test results from 10,000 simulated data sets are summarised. The horizontal axis is the length of the data series, the vertical axis is the
proportion of results indicating: ρ > 0 (blue), ρ < 0, (orange) ρ = 0 (black) and an inconclusive test (grey). Each graph shows results for a different
magnitude of autocorrelation. The simulation combination presented is for a level change of 2 and slope change of 0.1; however, other
combinations give similar results
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70% convergence) for short data series (fewer than 12
data points) at all values of autocorrelation, however
convergence improved substantially as the number of
points in the series increased. In addition, convergence
issues for REML occurred more frequently for higher
values of autocorrelation, unless the series length was
large.

Analysis of motivating example
We re-analysed the ITS study (introduced in Section 2)
using each of the statistical methods evaluated in the
simulation study to estimate the effect of terminal room
cleaning with dilute bleach on C difficile rates. Estimates
of level and slope change (along with their confidence
intervals and p-values) and autocorrelation are presented
in Table 3. The point estimates for level and slope
change are similar across methods, but notably, the
width of the confidence intervals vary considerably. The
confidence intervals are narrower for OLS, NW and
PW, but wider for REML (with and without the
Satterthwaite adjustment) and ARIMA. For level change,
this led to corresponding p-values that ranged from
0.002 to 0.095; and for the slope change, p-values ran-
ging from 0.069 to 0.531. Estimates of autocorrelation
also varied, with REML yielding an estimate of 0.23,
while ARIMA and PW yielded much lower estimates of
0.07. The DW statistic was 1.86, indicating no autocor-
relation. Such differences in confidence interval width
and p-values may impact on the interpretation of the
results.

Discussion
Summary and discussion of key findings
Interrupted time series studies are commonly used to
evaluate the effects of interventions or exposures. The
results of our simulation study provide insight into how
a set of statistical methods perform under a range of sce-
narios of continuous data which included different level
and slope changes, varying lengths of series and magni-
tudes of lag-1 autocorrelation. We chose to examine

statistical methods that are commonly used in practice
for interrupted time series studies [1–4, 6], and those
performing well in the general, non-interrupted, time
series literature [13, 20].
Not surprisingly, we found that the statistical methods

all yielded unbiased estimates of both level and slope
change for all values of model shape, length of series
and autocorrelation. Confidence interval coverage, how-
ever, was generally below the nominal 95% level, except
in particular circumstances for specific methods. The
REML method with and without the Satterthwaite ad-
justment had improved confidence interval coverage
compared with the other statistical methods, particularly
for slope change. An exception to this was for very small
series (fewer than 12 points), where the OLS method
had better coverage than the other methods, even in the
presence of large underlying autocorrelation. Coverage
improved for most methods with increasing series length
(with the exception of OLS and NW in some circum-
stances). REML with the Satterthwaite adjustment to the
d.f. was the only method that yielded at least the nom-
inal level of confidence interval coverage, however it was
overly conservative in some scenarios, with a resultant
reduction in power compared with other methods.
Autocorrelation was systematically underestimated by

all statistical methods, with estimates of autocorrelation
being particularly biased (and often negative) for small
time series (fewer than 24 points). This underestimation
of autocorrelation had a detrimental impact on the esti-
mates of SE, which were too small, and in turn, this led
to confidence interval coverage that was less than the
nominal 95% level. This can be seen in Fig. 13 (level
change) and Supplementary 1.9 (slope change), where a
relationship between the magnitude of bias in the esti-
mates of autocorrelation and confidence interval cover-
age is clearly evident. Ideally the confidence interval
coverage should be at the nominal 95% level with no
bias in autocorrelation (the intersection of the dashed
lines in Fig. 13). For short time series, the severe under-
estimation of autocorrelation led to poorer confidence

Table 3 Level- and slope-change point estimates with 95% confidence intervals (CIs), p-values and estimate of magnitude of lag-1
autocorrelation (ρ̂est) from C difficile infection data using a range of statistical methods. Abbreviations: ARIMA, autoregressive
integrated moving average; OLS, ordinary least squares; NW, Newey-West; PW, Prais-Winsten; REML, restricted maximum likelihood;
Satt, Satterthwaite

Level change Slope change ρ̂est
Estimate (CI) p-value Estimate (CI) p-value

ARIMA −0.42 (−0.89,0.05) 0.079 −0.03 (− 0.11,0.06) 0.531 0.07

OLS −0.44 (− 0.76,-0.13) 0.008 − 0.03 (− 0.07,0.02) 0.201 N/A

NW −0.44 (− 0.71,-0.17) 0.002 −0.03 (− 0.06,0.00) 0.069 N/A

PW −0.42 (− 0.75,-0.09) 0.014 − 0.03 (− 0.08,0.02) 0.251 0.07

REML −0.37 (− 0.72,-0.01) 0.044 −0.02 (− 0.08,0.03) 0.390 0.23

REML-Satt −0.37 (− 0.82,0.09) 0.095 − 0.02 (− 0.10,0.05) 0.437 N/A
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interval coverage than had autocorrelation been ignored,
as is the case with OLS.
We included REML due to its potential to reduce bias

in the variance parameters compared with maximum
likelihood. Although the ARIMA model fitted in our
simulations used maximum likelihood estimation, the
model-based SEs were generally more similar to the em-
pirical SEs for the ARIMA method compared with the
REML method (where the model-based SEs were gener-
ally smaller than the empirical SEs). ARIMA confidence
interval coverage was similar to REML for level change,
though REML showed improved confidence interval
coverage for slope change. Further, the REML method
yielded less biased estimates of autocorrelation than the
other methods, even for small series lengths.
The only method to yield overly conservative confi-

dence intervals was the REML with SW adjustment to

the t-distribution d.f.. When deciding whether to use the
Satterthwaite adjustment, consideration therefore needs
to be made between the trade-off in the risk of type I
and type II errors. A further issue we identified with the
Satterthwaite adjustment was that the adjusted d.f. were
very small in some series, leading to nonsensible confi-
dence intervals. To limit this issue we set a minimum
value of 2 for the d.f., but other choices could be
adopted.
The DW test is the most commonly used test to identify

autocorrelation and is often used when series are short [4,
6]. Some authors use the test as part of a two-stage analysis
strategy where they first test for autocorrelation, and de-
pending on the result of the test, either use a method that
attempts to adjust for autocorrelation or not. This type of
two-stage approach is used in other contexts, such as test-
ing for carryover in crossover trials. The findings of our

Fig. 13 Bias in autocorrelation estimate versus coverage for level change. The horizontal axis shows the bias in the autocorrelation estimate. The
vertical axis shows the percentage coverage. The horizontal dashed line indicates 95% coverage, the vertical dashed line indicates no bias in the
estimate of autocorrelation. Each colour represents a different value of underlying autocorrelation, ranging from zero (purple) to 0.8 (red), with
each value displayed in a circle at the smallest series length (six points). The arrows point from shortest to longest series length, with the small
circles at the end of each line showing coverage at a series length of 100 data points. Each data point shows the mean value from 10,000
simulations for a given combination of autocorrelation coefficient and number of points in the series. The simulation combination presented is
for a level change of 2 and slope change of 0.1; however, other combinations give similar results. Abbreviations: ARIMA, autoregressive integrated
moving average; OLS, ordinary least squares; NW, Newey-West; PW, Prais-Winsten; REML, restricted maximum likelihood; Satt, Satterthwaite
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simulation study underscore why such two stage ap-
proaches fail and are discouraged; namely, due to their fail-
ure to detect the presence of a statistic when it exists (i.e.,
their high type II error rate). In our case, we found that for
short series (fewer than 12 data points), the DW test failed
to identify autocorrelation when it was present, and for
moderate length series (i.e. 48 points), with an underlying
autocorrelation of 0.2, autocorrelation was only detected in
7% of the simulations. Other tests for autocorrelation are
available [15, 36–39], though they are not commonly used
in practice [4, 6], and have been shown (through numerical
simulation) to have low power for short series [11, 15].

Comparisons with other studies
Our findings align with previous simulation studies
examining the performance of statistical methods for
ITS. Huitema and McKean [40] similarly found that
OLS confidence interval coverage decreased with in-
creasing series length (with six lengths ranging from 12
to 500) in the presence of autocorrelation. McKnight
et al. [14] similarly found that PW and ARIMA yielded
liberal Type I error rates for the regression model
parameters.
Other simulation studies have investigated the per-

formance of methods for general time series, and our
findings also align with these. Alpargu and Dutilleul [13]
concluded from their simulation study examining the
performance of REML, PW and OLS for lag (1) time
series data over a range of series lengths (from 10 to
200), that REML is to be preferred over OLS and PW in
estimating slope parameters. Cheang and Reinsel [20]
examined the performance of ML and REML for esti-
mating linear trends in lag (1) time series data of length
60 and 120 (both with and without seasonal compo-
nents) and concluded that the REML estimator yielded
better confidence interval coverage for the slope param-
eter, and less biased estimates of autocorrelation. Smith
and McAleer [12] examined the performance of the NW
estimator for time series of length 100 with lags of 1, 3
and 10, and found that it underestimated the SEs of the
slope parameter.

Strengths and limitations
The strengths of our study include that we have used
many combinations of parameter estimates and statis-
tical methods. Our parameter values were informed by
characteristics of real world ITS studies [4]. We planned
and reported our study using the structured approach of
Morris et al. [32] for simulation studies, and we gener-
ated a large number of data sets per combination to
minimise MCSE.
As with all simulation studies, there are limitations to

the applicability of findings. All data series were based
on a random number generator and results may change

given a different set of series, however, this is unlikely to
be problematic given our MCSE was < 0.5% for all po-
tential values of coverage and type I error rate. Our find-
ings are only applicable to the scenarios in which they
were generated, and so may not apply to ITS studies
with different characteristics, such as unequal numbers
of time points in the pre- and post-interruption
segments, non-constant variance or different lags of
autocorrelation (including seasonal effects).

Implications for practice
We found that all methods yielded unbiased estimates of
the level and slope change, however, the methods dif-
fered in their performance in terms of confidence inter-
val coverage and estimation of the autocorrelation
parameter. Confidence interval coverage was primarily
determined by the length of the time series and the
underlying magnitude of autocorrelation. In practice,
however, most analysts will only have knowledge of the
length of the time series to guide in the choice of
method. In rare cases, knowledge of the likely size of the
underlying autocorrelation may be available from a pre-
vious long time series study in a similar context, which
could help inform their choice. In our review of ITS
studies investigating public health interruptions or expo-
sures, the magnitude of autocorrelation was almost
never explicitly specified (1%, 3/230 time series) [4].
Analysis of data extracted from the ITS studies included
in this review using the REML method yielded a median
autocorrelation 0.2 (IQR: 0 to 0.6, n = 180); however, as
shown from the simulation study, the estimates of auto-
correlation (on which these summary statistics are
based) are likely to be underestimated.
From the statistical methods and scenarios we exam-

ined, we found that for small time series (approximately
12 points or under), in the absence of a method that
performs well adjusting for autocorrelation in such short
series, OLS is the recommended method. For longer
time series, REML is recommended. If the analyst has
knowledge that the underlying autocorrelation is likely
to be large, then using REML with the Satterthwaite ad-
justment may be advantageous. However, when the Sat-
terthwaite adjustment yields d.f. lower than 2, we
recommend replacing these with 2 to mitigate nonsensi-
ble confidence intervals. When REML doesn’t converge,
ARIMA provides a reasonable alternative as, with the ex-
ception of REML, it yields higher confidence interval
coverage than the other methods. Given most methods
will yield confidence intervals that are too small, with
type I error rates greater than 5%, borderline findings of
statistical significance for the regression parameters
should be cautiously interpreted; these may be due to
chance rather than as a result of the interruption.
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Estimates of autocorrelation from long series can be
useful to inform sample size calculations and analytical
decisions in future studies. We recommend reporting
the REML estimates of the autocorrelation coefficient
when possible. We only recommend using the DW test
for detecting underlying autocorrelation in long time
series (longer than 100 data points) and recommend
against its use as part of a two-stage or stepwise ap-
proach to determine whether to use a statistical method
that adjusts for autocorrelation.
In terms of study design, we recommend using 24 data

points at the very minimum. With this number of points,
confidence interval coverage close to the nominal 95%
level can be achieved using REML with the Satterthwaite
adjustment (when underlying autocorrelation is between 0
and 0.6). With fewer data points, poor confidence interval
coverage is likely, irrespective of method.

Implications for future research
Although we investigated the statistical methods most
commonly observed in reviews of ITS studies [1–4, 6],
there is scope for further research examining other statis-
tical methods, such as robust methods [41] or Bayesian
approaches where the uncertainty in the estimate of auto-
correlation could be incorporated. We investigated one
small-sample adjustment (Satterthwaite) though others,
such as Kenward-Roger [42], which adds a correction to
the SE of regression parameter estimates, could also be
examined. Further investigation of how the methods
perform for scenarios other than those we investigated
would be valuable. For example, when there are unequal
numbers of points pre- and post-interruption, lags greater
than 1, and where the autocorrelation and error variance
differ between the pre and post interruption periods.

Conclusion
We undertook a simulation study to examine the per-
formance of a set of statistical methods to analyse con-
tinuous ITS data under a range of scenarios that
included different level and slope changes, varying
lengths of series and magnitudes of lag-1 autocorrel-
ation. We found that all methods yielded unbiased esti-
mates of the level and slope change, however, the
magnitude of autocorrelation was underestimated by all
methods. This generally led to SEs that were too small
and confidence interval coverage that was less than the
nominal level. The DW test for the presence of autocor-
relation performed poorly except for long series and
large underlying autocorrelation. Care is needed when
interpreting results from all methods, given the confi-
dence intervals will generally be too narrow. Further
research is required to determine and develop methods
that perform well in the presence of autocorrelation,
especially for short series.
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