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Sialic acids, a group of acidic sugars abundantly expressed in the tissues of

deuterostome animals but rarely found in microbes, serve as a “signature of self” for these

animals. Cognate sensors for sialic acids include Siglecs, a family of transmembrane

lectins of vertebrate immune systems that recognize glycans containing sialic acids.

A type of sialic acid called N-glycolylneuraminic acid (Neu5Gc) is abundant in many

mammalian lineages including great apes, the closest extant relatives of modern human,

but was lost in the lineage leading to modern human via the pseudogenization of the

CMAH gene encoding the enzyme that converts N-acetylneuraminic acid (Neu5Ac) to

Neu5Gc. Loss of Neu5Gc appears to have influenced the evolution of human Siglecs,

such as the adjustment of sialic acid binding preferences and the inactivation of at least

one Siglec. In addition, various mechanistic studies using model systems and genetic

association studies have revealed that some human Siglecs interact with pathogens and

influence the outcome of infections, and these pathogens in turn likely influence the

evolution of these Siglecs. By understanding the evolutionary forces affecting Siglecs,

we shall achieve a better appreciation of Siglec functions, and by understanding Siglec

functions, we can obtain deeper insight into the evolutionary processes driving Siglec

evolution.
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INTRODUCTION

The role of immunity is to distinguish self vs. non-self (or what is not dangerous vs. dangerous)
and to eliminate or contain the latter. Various biomolecules (nucleotides, peptides, lipids,
polysaccharides, and their combinations) can be a signature of non-self (i.e., pathogen-associated
molecular patterns; PAMPs), as exemplified by the diversity of ligands for Toll-like receptors,
C-type lectin-like receptors, RIG-I-like receptors, and NOD-like receptors, all of which work
as “pattern-recognition receptors” (1–4). Meanwhile, the signature of self (i.e., self-associated
molecular patterns; SAMPs) is less well-understood, but some glycoconjugates would qualify as
such (5, 6). Sialic acids are commonly synthesized by deuterostome animals and displayed on
the cell surface in abundance but are rare in microbes (7), making them an ideal SAMP for
distinguishing self- vs. non-self (5, 6).
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For a chemical entity to be a molecular signature of
self or non-self for the immune system, there must be a
sensor that recognizes it. For sialic acids, Siglecs appear to
be the primary pattern-recognition receptors (8–11). Siglec is
a composite word from “sialic acid,” “immunoglobulin (Ig)
superfamily,” and “lectins” (12). The Siglec family appears to
be present only in vertebrates (13, 14). Siglecs are type 1
transmembrane proteins, with an extracellular domain consisting
of multiple Ig-like domains (of which the N-terminal Ig-
like domain is primarily responsible for the recognition of
sialoglycans), followed by a single-pass transmembrane domain
and cytoplasmic tail (Figure 1). Most of the known mammalian
Siglecs are expressed on leukocytes and have an intracellular
sequence motif called the immunoreceptor tyrosine-based
inhibitory motif (ITIM) that recruits tyrosine phosphatase
SHP-1 and thus transduces inhibitory signals. Thus, they are
considered to function as sensors for sialic acids as a molecular
signature of self. [However, there are some examples that imply
this generalization may be somewhat too simplistic (17, 18).].
Although rodents are essential model animals for mechanistic
studies in immunology, differences in primate and rodent
CD33-related Siglecs (15) impose a significant challenge in the
extrapolation of findings in rodents to human immunology. This
situation parallels that of other immunoglobulin-like receptor
families, leukocyte immunoglobulin-like receptors (LILR) and
killer cell immunoglobulin-like receptors (KIR), that are encoded
in a gene cluster on the same human chromosomal region as
CD33-related Siglecs (chromosome 19q13.4) and are involved
in self-recognition through interaction with MHC class I (19–
21).

“Sialic acids” is a collective term for various naturally
occurring acidic sugars with a common nine-carbon backbone
(22). N-acetylneuraminic acid (Neu5Ac) is the most common
type of sialic acid, and its C5-hydroxylated derivative N-
glycolylneuraminic acid (Neu5Gc), along with the derivatives
of Neu5Ac and Neu5Gc (mostly modified at C4 and/or C7-
C9 hydroxyl groups), are generally present in mammalian
tissues (22). Neu5Gc is abundant in many mammalian species,
whereas humans have lost Neu5Gc, owing to the mutation
(exon deletion) of the CMAH gene encoding CMP-Neu5Ac
hydroxylase that is solely responsible for the de novo biosynthesis
of Neu5Gc from Neu5Ac (23–26). Although some bacteria have
developed ways to synthesize Neu5Ac, so far no study has
demonstrated the presence of Neu5Gc on microbes (27) [A
recent genomic survey (28) reported the presence of CMAH-
like sequences in several microbial genomes, including those
of several Helicobacter species that may express sialic acids.
However, their enzymatic function has not yet been investigated].
Thus, Neu5Gc appears to be a quintessential signature of self,
which is only present on deuterostome cells and missing on
microbes. Indeed, some rodent Siglecs show a strong preference
toward glycans containingNeu5Gc (29–32), whereas some others
show a strong preference toward Neu5Ac (29, 33, 34). This
imposes a conundrum: if one loses the best signature of self, the
immune system may become more prone to attack its own cells
(i.e., autoimmunity). How did the immune system of the human
ancestor cope with the consequences of the dramatic change in

the sialic acid landscape (i.e., shift of “sialome” from Neu5Gc to
Neu5Ac) on the cell surface?

One possible consequence of Neu5Gc loss in human (and a
possible response to the consequential autoimmune-prone state,
in the evolutionary time scale) was a series of changes involving
Neu5Gc-specific Siglecs, such as re-adjustment of binding
specificity to Neu5Ac and “forced retirement,” as explained in the
following section.

POSSIBLE INFLUENCES OF NEU5GC
LOSS ON HUMAN SIGLECS: ALTERED
BINDING SPECIFICITIES

To understand the consequences of a species-specific event,
it is natural to compare the phenotypes between the closest
relatives that have undergone the event or have not. For
human, the obvious choice is great apes including chimpanzee,
which is the closest extant relative of modern human. Several
earlier studies have shown that at least some great ape Siglecs
preferentially recognize Neu5Gc (35–37). More recent data using
the sialoglycan microarray also showed that primate CD33-
related Siglecs generally tend to prefer Neu5Gc (38). Reported
preferences of human and chimpanzee Siglecs toward Neu5Ac
and Neu5Gc are summarized in Table 1. Thus, the loss of
Neu5Gc likely meant attenuation of the interactions between
Siglecs and self-associated ligands in the human ancestor.

One Siglec that may have been substantially affected by
the loss of Neu5Gc in the human ancestor is Siglec-12 (36).
Chimpanzee Siglec-12 and human Siglec-XII are expressed on
macrophages and lumenal epithelia (36, 46). Human Siglec-XII
has a universal mutation (R122C) that makes the protein unable
to recognize sialic acids (36). [Roman numerals are used for
primate Siglecs that have a mutation at the essential arginine
residue required for sialic acid recognition and thus cannot
recognize sialic acid (15)]. Arginine-restored human Siglec-XII,
as well as chimpanzee Siglec-12, strongly prefers Neu5Gc over
Neu5Ac (36). In addition, some human SIGLEC12 alleles have
acquired additional mutations (stop codon, rs16982743, and
frame-shift, rs66949844) that cause premature termination of
Siglec-XII protein synthesis (36, 46). These “null” mutations are
common in the modern human populations (global frequency
of “null” alleles: 0.19 for rs16982743, 0.59 for rs66949844).
These results imply a scenario in which a Siglec that lost an
endogenous ligand was forced to “retire” and then is further
getting eliminated. Given that the R122C mutation is fixed
in modern human populations, it is tempting to speculate
that the presence of functional “Neu5Gc-recognizing” Siglec-
12 may have caused a disadvantage in ancestral humans. For
example, zoonotic infection of some Neu5Gc-coated envelope
virus from othermammalian species may represent such selective
pressure. A possible scenario for the further elimination of
“signal transduction-competent but sialic acid recognition-
incompetent” Siglec-XII may be that the recruitment of SHP-2 by
Siglec-XII (47) on epithelial cells may assist the transformation of
the epithelial cell by an oncogenic driver (e.g., receptor tyrosine
kinase or RAS mutation/amplification) through activation of
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FIGURE 1 | Illustrative representation of ape Siglecs. Mammalian Siglecs can be classified as relatively conserved members (Sialoadhesin/Siglec-1, CD22/Siglec-2,

MAG/Siglec-4, and Siglec-15) and less conserved members (CD33-related Siglecs). CD33-related Siglecs are encoded in the gene cluster (15). Siglecs can be also

classified based on the partner molecule involved in downstream signal transduction (i.e., those that have ITIM and interact with tyrosine phosphatase SHP-1, and

those that have positively charged amino acid residue in the transmembrane domain and interact with adapter molecule DAP12, which has the “immunoreceptor

tyrosine-based activating motif“ (ITAM) and recruits tyrosine kinase Syk). Siglec-13 is missing in humans but present in apes and old-world monkeys (15). Modified

from (16). Closed circle, open circle, and diamond with + mark in the figure represent ITIM, ITIM-like motif, and positively charged amino acid residue in the

transmembrane domain (that is required for the interaction with DAP12), respectively.

MAPK pathway (48–52), which may have been disadvantageous
for the overall fitness of the carriers of the functional allele.
However, at present there is no solid experimental evidence to
support these speculations.

Primate Siglec-9 (from chimpanzee, gorilla, and baboon)
also prefers Neu5Gc, whereas human Siglec-9 appears to have
acquired affinity toward Neu5Ac (37, 38). Human CD33/Siglec-
3 and Siglec-5 also show a similar acquired affinity to Neu5Ac
compared with their counterparts in baboon, which show a
strong preference for Neu5Gc (38). Given that Siglec-9 has an
ortholog in rodents (Siglec-E), it may play an important role
in regulating innate immunity and be indispensable (although
expression patterns and functions of primate Siglec-9 and rodent
Siglec-E may not completely overlap (53–55)). Human Siglec-9
may have had to undergo rapid evolution to catch up with the
change in the human sialome, to resume its original functionality.
It is of note that the N-terminal Ig-like domain (Ig1) of great ape
Siglec-9 shows much greater inter-species sequence differences
than does the adjacent C2-set Ig-like domain (Ig2) (37), which is
consistent with the idea that human Siglec-9 had to evolve rapidly
to respond to the loss of Neu5Gc.

In fact, the CD33-related Siglec gene cluster is among
the most rapidly diversifying gene families between human
and chimpanzee (56), and the N-terminal Ig-like domain of

CD33-related ape Siglecs is evolving faster than the other parts
of the molecule (15, 37, 57). It is of interest whether the loss
of Neu5Gc contributed to the accelerated evolution of human
Siglecs. Assuming this is the case, we would expect that more
amino acid changes have accumulated in the first Ig-like domain
(Ig1) of human Siglecs than in Ig1 of chimpanzee Siglecs.
In reality, the data (Table 1) do not appear to support this
prediction. Although it is true that Ig1 is undergoing faster
evolution than Ig2 (total human-specific changes in Ig1 and Ig2:
33.5 and 15, respectively; total chimpanzee-specific changes in
Ig1 and Ig2: 40.5 and 14, respectively; average amino acid length
of Ig1 and Ig2: 126 and 96, respectively), the Ig1 of Siglecs in the
lineage leading to human has accumulated less sequence changes
than that leading to chimpanzee. Some of the sequence changes
in human Siglecs probably represent a genuine sign of selection
due to the loss of Neu5Gc, whereas the majority of them may
not be. Ig1 of primate Siglecs (and likely those in other species)
is evolving rapidly under selective pressure that may include, but
not be limited to, the changes in the landscape of endogenous
sialoglycans (38).

It is of note that, in contrast to the adaptation of some
human Siglecs to Neu5Ac-dominant sialome, many Siglecs still
appear to prefer Neu5Gc (Table 1). Possible explanations for
this fact may include: (1) the adaptation of human Siglecs
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TABLE 1 | Binding preferences (Neu5Ac vs. Neu5Gc) and lineage-specific mutations in human and chimpanzee Siglecs.

Siglec Human preference Chimpanzee

preference

Human-specific changes

in Ig1 and Ig2*

Chimpanzee-specific

changes in Ig1 and Ig2*

References**

Sialoadhesin/Siglec-1 Ac >> Gc ND 1, 1 1, 0 (39)

CD22/Siglec-2 Ac ≈ Gc Ac ≈ Gc 2, 0 2, 0 (35, 39)

CD33/Siglec-3 Ac < Gc (weak

preference)

Ac < Gc (weak

preference)

2.5, 2 5.5, 0 (35, 38, 39)

MAG/Siglec-4 ND ND 0, 1 0, 0 [for the glycan preference of

rodent MAG, see

(33, 34, 40, 41)]

Siglec-5 Ac < Gc (weak

preference)

X (Arg mut) 7.5, 2 5.5, 1 (35, 38)

Siglec-6 Ac < Gc ND 0, 1 3, 0 (35)

Siglec-7 Ac ≈ Gc Ac < Gc 1.5, 0 3.5, 0 (37)

Siglec-8 ND ND 0.5, 2 1.5, 3 [for the glycan preference of

human Siglec-8, see (42)]

Siglec-9 Ac > Gc (weak

preference)

Ac < Gc (weak

preference)

4, 0 3, 1 (37, 38)

Siglec-10 Ac < Gc ND 0, 1 2, 1 (Consortium for Functional

Glycomics data)

Siglec-11 Ac < Gc Ac < Gc 2.5, 1 2.5, 0 (43, 44)

Siglec-12 X (Arg mut) Ac << Gc 2, 2 1, 3 (36)

Siglec-13 X (absent) Ac ≈ Gc (Cannot be determined) (Cannot be determined) (45)

Siglec-14 ND (likely Ac < Gc,

from Siglec-5 data)

X (Arg mut) 6.5, 1 4.5, 1 (38)

Siglec-15 Ac > Gc ND (Ac > Gc) 2, 1 0, 1 Unpublished

Siglec-16 Ac > Gc Ac < Gc 1.5, 0 5.5, 3 (43, 44)

ND, not determined; X, cannot be determined (either the protein is absent in the species or is present but does not recognize sialic acid owing to the mutation of essential Arg residue);

>> or <<, strong preference; > or <, preference; ≈, no preference; Arg mut: mutation of arginine residue that is essential for sialic acid recognition. Sialic acid (Ac, Neu5Ac; Gc,

Neu5Gc) preferentially recognized by each Siglec is highlighted with underline and bold typeface.

*The numbers of human- and chimpanzee-specific amino acid changes were deduced by aligning the amino acid sequences of Siglec orthologs from human, chimpanzee, and

orangutan. In case the lineage specificity of the amino acid change cannot be unambiguously determined (i.e., when the amino acid at one position was different in all three species),

”0.5 difference“ was assigned to both human and chimpanzee. For Siglec-12 with two V-set domains, amino acid changes in the N-terminal V-set domain (Ig1) were counted as those

in ”Ig1,“ and those in the first C2-set domain (Ig3) were counted as those in ”Ig2.“ Note that the ”species-specific changes“ were counted based on a reference sequence of human

Siglecs and ”best hit" putative protein sequences in chimpanzee and orangutan by BLASTP search, without considering the polymorphisms in each species.

**The majority of the references in this table are reports that directly compare human and chimpanzee Siglec binding preferences. Note that different methods for analyzing Siglec–glycan

interactions, such as glycan microarray vs. polymer-based probe binding, or even between different formats of glycan microarrays, may yield results that are not fully consistent in some

cases.

to Neu5Ac-dominant sialome is still incomplete, and over the
time (in the scale of millions of years) most human Siglecs
will eventually acquire Neu5Ac preference; (2) some Siglecs
did not have strong preference toward Neu5Gc over Neu5Ac
prior to the loss of Neu5Gc in human ancestor, or have already
accumulated mutations to make them sufficiently suitable for
Neu5Ac recognition, thus it is not necessary for them to adapt
further to Neu5Ac-dominant sialome; (3) the interaction of
Siglecs with exogenous ligands (e.g., bacterial nonulosonic acids)
prevent complete switch from Neu5Gc to Neu5Ac preference.
Although these explanations are purely speculative, some of
these scenarios may be tested experimentally. For example, an
independent event has eliminated Neu5Gc in the lineage leading
to NewWorld monkeys approximately 30 million years ago (58).
In contrast, the timing of Neu5Gc loss in human is far more
recent, which is estimated to be 3 million years ago (26). It would
be interesting to see whether the Siglecs in New World monkeys
prefer Neu5Ac, or some of them still prefer Neu5Gc, to test the
validity of the explanation (1) above.

POSSIBLE INFLUENCES OF NEU5GC
LOSS ON HUMAN SIGLECS: ALTERED
EXPRESSION PATTERNS

It is of interest to know whether there is any change in the
expression patterns of Siglecs between human and chimpanzee,
which might also represent a consequence of Neu5Gc loss
in human. Antibody-based comparative analyses of Siglec
expression patterns in human and chimpanzee (and gorilla) have
revealed several examples of altered expression of Siglecs in
human, as summarized in Table 2. Naturally, it is more difficult
to establish the influence of the loss of Neu5Gc on the expression
patterns of Siglecs than its effect on the binding preferences of
Siglecs, as it is indirect. Nevertheless, it appears to be implied in
some cases.

The first reported example of altered expression of Siglec in
human compared with chimpanzee was the wider distribution
of Sialoadhesin/Siglec-1+ macrophages in chimpanzee spleen
as compared with those in human spleen (39). Although
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TABLE 2 | Expression patterns of human and chimpanzee Siglecs.

Siglec Human Chimpanzee References

Sialoadhesin/Siglec-1 Mac Mac (broader) (39)

CD22/Siglec-2 B B (mRNA) (39)

CD33/Siglec-3 Mono, Mac (broader), Microglia Mono, Mac, Microglia (38)

MAG/Siglec-4 Schwann cells, Oligodendroglia (Myelin) (59, 60)

Siglec-5 Neutro, Mac (broader), B (low), amniotic epithelium Neutro, Mac, T, B (38, 61–63)

Siglec-6 B, DC subset, placenta B (64)

Siglec-7 NK, Mono, Mast, Neutro, Baso, Platelets, T (subset) ND (65–70)

Siglec-8 Eosino, Baso, Mast ND (71, 72)

Siglec-9 Neutro, Mono, Mac (broader) Neutro, Mono, Mac (38)

Siglec-10 B, Mono, DC ND (73, 74)

Siglec-11 Mac, Microglia, ovarian fibroblasts Mac, ovarian fibroblasts (43, 75–77)

Siglec-12 Mac, lumenal epithelia Mac, lumenal epithelia (36, 46)

Siglec-13 X (absent) Mono (45)

Siglec-14 Neutro, Mono, amniotic epithelium Neutro (& Mono?) (62, 63)

Siglec-15 OC, Mac subset ND (78–81)

Siglec-16 Mac, Microglia Mac (43, 75, 82)

Mac, macrophage; Mono, monocytes; B, B cells; T, T cells; NK, natural killer cells; Mast, mast cells; Neutro, neutrophils; Eosino, eosinophils; Baso, basophils; DC, dendritic cells; OC,

osteoclasts; ND, not determined.

*Tissue/cell type that showed clear difference in Siglec expression between human and chimpanzee are highlighted with underline and bold typeface. Reports that directly compared

human and chimpanzee Siglec expression patterns are primarily cited in this table. For human Siglecs, expression in the cell types not listed in the table are also reported, such as:

CD22/Siglec-2 on basophils (83); CD33/Siglec-3 on mast cells (84), basophils and neutrophils (low) (85); Siglec-6 on mast cells (86); Siglec-9 on T cell subset (68) and NK cell subset

(55). Note that the expression of Siglec-6 on human B cells is restricted to CD27+ memory B cells (87). Tumor-infiltrating T cells express several human Siglecs, including CD33/Siglec-3,

Sigec-5, Siglec-7, Siglec-9, and Siglec-10 (88).

the binding specificity of chimpanzee Sialoadhesin/Siglec-1
has not been analyzed, given that both human and mouse
Sialoadhesin/Siglec-1 preferentially recognize Neu5Ac (39)
and the sequence differences between human and chimpanzee
Sialoadhesin/Siglec-1 are small (Table 1), it is likely that
chimpanzee Sialoadhesin/Siglec-1 prefers Neu5Ac. Thus,
the altered distribution of human Sialoadhesin/Siglec-1+

macrophages may be a consequence of the loss of Neu5Gc
in humans (39). It is possible that the altered distribution of
Sialoadhesin/Siglec-1+ macrophages may be more relevant to
the increased density of Neu5Ac in human tissues that may
influence the migration of macrophages, rather than a change
in cell types that express Sialoadhesin/Siglec-1. In this regard,
it would be interesting to know whether the distribution of
Sialoadhesin/Siglec-1+ macrophages in Cmah knockout mice is
different from that in wild-type mice.

One of the most striking changes in Siglec expression patterns
in the human immune system is the near-complete absence of
Siglec-5 on human T cells, in contrast to its prominent expression
on chimpanzee and gorilla T cells (61, 62). The loss of Siglec-
5 from human T cells appears to be correlated with the relative
hyper-activation of human T cells in response to various stimuli
compared with those from other great apes. [Although Siglec-
5 and Siglec-14 show extremely high sequence similarity at the
extracellular domain, one study (62) used a combination of
antibodies that distinguish Siglec-5 and Siglec-14 to demonstrate
that Siglec-5 is expressed on chimpanzee T cells]. However, it
is not clear whether the loss of Siglec-5 on human T cells has
a causative relationship with the loss of Neu5Gc, as human

Siglec-5 does not show strong preference for either Neu5Ac or
Neu5Gc (38), and its great ape counterparts have a mutation at
the essential arginine residue and lack the ability to recognize
sialic acids (15, 89). It is also worth mentioning that a recent
work demonstrated that Siglec-5 is inducibly expressed by the
activation of human T cells (88).

Siglec-11 and Siglec-16 also have undergone unique changes
in their expression patterns in humans. Whereas, human Siglec-
11 and Siglec-16 are expressed on brain microglia and tissue
macrophages, chimpanzee Siglec-11 and Siglec-16 appear to be
absent onmicroglia (but present on tissue macrophages) (43, 75).
The change in expression patterns appears to be a consequence
of a partial gene conversion of SIGLEC11 by SIGLEC16. Of
note, SIGLEC16 in humans has functional and non-functional
alleles (82), and the non-functional allele appears to be the one
that converted SIGLEC11 (90). SIGLEC11 and SIGLEC16 have
undergone a complex series of concerted evolution through gene
conversions in human lineage (90) and also in other lineages of
apes (44). Both human and chimpanzee Siglec-11 and Siglec-
16 appear to prefer Neu5Gc over Neu5Ac (43, 44), and thus
it is tempting to speculate that the loss of Neu5Gc may have
had some influence on the altered expression patterns of these
Siglecs. Although it is known that the Neu5Gc level is extremely
low in mammalian brains (91), Siglec-11 and Siglec-16 also
preferentially recognize α2-8–linked Neu5Ac dimers, which are
abundant in the brain and serve as ligands for these Siglecs on
human microglia.

Siglec-6 was also reported to show different expression
patterns between human and chimpanzee. Both human and
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chimpanzee Siglec-6 are expressed on B cells, whereas its
expression on placental trophoblasts is observed only in humans
(64). This altered expression is thought to be associated with the
sequence change in the promoter region and transcription factor
binding (64).

There are some reports of the presence of Siglec ligands in
human tissues that are absent in chimpanzee tissues (64, 76).
Although the exact nature of these ligands has not been identified,
these findings imply that the difference in Siglec ligand expression
patterns beyond the absence/presence of Neu5Gc may exist
between human and chimpanzee and may also contribute to the
rapid evolution of the Siglec family (particularly at Ig1) and/or
their altered expression patterns.

AN ALTERNATIVE DRIVING FORCE
BEHIND SIGLEC EVOLUTION:
INTERACTION WITH MICROBES

Given that Ig1 of Siglecs (particularly that of CD33-related
Siglecs) is undergoing rapid evolution (57), and not all of thismay
be attributed to the changing endogenous ligand landscape, there
is likely an alternative driving force behind their rapid evolution.
Obviously, one such force could be microbial pathogens that
engage Siglecs. Indeed, recent studies have provided evidence
that many Siglecs are involved in the interaction with various
pathogenic microbes [for recent reviews, see (92, 93)]. These
microbes include viruses, bacteria, and eukaryotic pathogens
(Table 3). Many of them cover themselves with sialic acids (either
by de novo biosynthesis or by “salvage” from the human body
by various mechanisms), which may be considered examples of
“molecular mimicry” by microbes.

The majority of the microbes reported to interact with
Siglecs so far are bacteria (Table 3). This makes sense,
as sialic acids (and sialic acid-like nonulosonic acids) are
occasionally found in bacterial extracellular components,
such as lipopolysaccharides/lipooligosaccharides (LPS/LOS),
capsular polysaccharides (CPS), and flagella. For example,
group B streptococcus (GBS) type III interacts with Siglec-9
through sialylated CPS and dampens inflammatory responses
by neutrophils (98), whereas GBS type Ia engages Siglec-5 by β-
protein and also suppresses inflammatory responses of myeloid
cells (100). It should be noted that the latter case does not involve
sialic acids. Similarly, non-typeable Haemophilus influenzae, an
opportunistic airway pathogen, engages Siglec-5 and attenuates
pro-inflammatory cytokine production by myeloid cells (102),
and Escherichia coli K1 strain, a neurotropic pathogen, engages
Siglec-11 and escape killing (75). Siglecs are likely under pressure
to escape the exploitation by these pathogens, which may
partially explain the driving force behind their rapid evolution.

It appears that Siglecs were not just escaping from these
pathogens; they appear to have developed “counter-traps” against
these pathogens. Some Siglecs (i.e., Siglec-5 and Siglec-14;
Siglec-11 and Siglec-16) are found to be “paired receptors,”
which are two Siglecs with highly homologous extracellular
domains recognizing similar ligands, combined with intracellular
signaling modules transducing opposing signals (i.e., one of the

pair interacts with SHP-1 and transduces the inhibitory signal,
whereas the other interacts with adapter protein DAP12 and
tyrosine kinase Syk and transduces the activating signal). In
fact, whereas the engagement of inhibitory Siglec by pathogenic
bacteria suppresses anti-bacterial responses, the engagement of
activating Siglec counteracts this effect (63, 75, 102). It is of
note that these “paired” Siglecs appear to show more sequence
differences between human and chimpanzee than other “stand-
alone” Siglecs (Table 1), possibly implying that these Siglecs
are under higher selective pressure to diversify than are other
Siglecs. These paired Siglecs are undergoing concerted evolution
through repeated gene conversions (43, 44, 89, 90), which
is likely necessary to maintain the effectiveness of activating-
type Siglec as “counter-traps.” It is also intriguing that, in
humans, null alleles for these activating-type Siglecs (Siglec-
14 and Siglec-16) are found at very high frequencies (82,
113).

Evidence supporting the relevance of these interactions
between Siglecs and bacterial pathogens in infectious diseases
is emerging from genetic association studies (Table 4). Small-
scale case–control studies investigating the possible correlations
between the polymorphisms of SIGLEC genes and infectious
disease susceptibility have revealed some correlations, such as
SIGLEC14 null polymorphism and COPD exacerbation (102),
pre-term delivery in the presence of GBS (63), Mycobacterium
tuberculosis meningitis (138), and SIGLEC9 polymorphism and
COPD exacerbation (133). In addition, large-scale genome-
wide association studies (GWAS) have also revealed possible
associations between SIGLEC polymorphisms and infectious
diseases, such as SIGLEC5 polymorphism and leprosy (129)
and severe periodontitis (128), although these GWAS did
not demonstrate a direct interaction between the etiological
agents and Siglec protein. Some SIGLEC genetic polymorphisms
appear to influence the leukocyte counts (142); thus it is
possible that the influence of SIGLEC genetic polymorphisms
on antibacterial defense may be indirect. Regardless, the
application of GWAS to infectious diseasesmay further reveal the
relevance of Siglecs for immunological defense against bacterial
pathogens.

With regard to viral pathogens, recent studies have revealed
that Sialoadhesin/Siglec-1 (also known as CD169) may play a
major role in retrovirus infection (103). For example, several
groups have reported that human immunodeficiency virus (HIV)
exploits Sialoadhesin/Siglec-1 to enhance infection of CD4+ T
cells (the primary target cells) by trans-infection (i.e., the virus
particle is captured by macrophages with Sialoadhesin/Siglec-
1, which transfers the virus to CD4+ T cells and facilitates
the infection) (104–107). Although a rare “null” mutation in
the SIGLEC1 gene was found not to protect carriers from
HIV infection (144), the low frequency of this mutation (allele
frequency: ∼1.3% in Europeans) may preclude us from making
a definitive conclusion (145). Given that Sialoadhesin/Siglec-1
appears to be involved in retroviral infection in both mouse and
human (103), one may expect that it should evolve rapidly to
avoid viral infections; however, Sialoadhesin/Siglec-1 does not
appear to be evolving rapidly (Table 1). This may be because
enveloped viruses are coated with a host-derived membrane (a
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TABLE 3 | Direct interaction of human Siglecs and microbes.

Microbe Microbial molecule involved Human siglec involved Outcome References

BACTERIA

Neisseria meningitidis Sialic acids on LPS Sialoadhesin/Siglec-1

Siglec-5

Enhanced binding and

phagocytosis

(94)

Campylobacter jejuni Sialic acids on LPS Sialoadhesin/Siglec-1

Siglec-7

Modulation of factors

affecting helper T-cell

differentiation

(95–97)

Pseudaminic acid on flagellin Siglec-10 Promote anti-inflammatory

response

(74)

Group B Streptococcus type III Sialic acids on CPS Siglec-9 Attenuated immune

responses

(98, 99)

Group B Streptococcus type Ia β protein (Sia-independent) Siglec-5

Siglec-14

Siglec-5: Attenuated

responses

Siglec-14: Enhanced

responses

(63, 100)

Siglec-13 (chimpanzee) Attenuated response (45)

Pseudomonas aeruginosa Sialic acids on glycoproteins,

adsorbed from human body fluid

Siglec-9 Attenuated immune

responses

(101)

Non-typeable Haemophilus influenzae Sialic acids on LOS +

Sia-independent interaction

Siglec-5

Siglec-14

Siglec-5: Attenuated

responses

Siglec-14: Enhanced

responses

(102)

Escherichia coli K1 strain CPS (polysialic acids) Siglec-11

Siglec-16

Siglec-11: Attenuated

responses

Siglec-16: Enhanced

responses

(75)

VIRUSES

Human immunodeficiency virus (HIV) Sialic acids on gp120 envelope

glycoprotein; host-derived

gangliosides on envelope

Sialoadhesin/Siglec-1

Siglec-7

Enhanced infection (103–108)

Varicella zoster virus (VZV), herpes

simplex virus (HSV)

Glycoprotein B (sialic acids required) MAG/Siglec-4 Enhanced infection (109, 110)

EUKARYOTES

Candida albicans zymosan (?) Siglec-7 Enhanced immune

responses

(111)

Leishmania donovani Surface sialic acids Sialoadhesin/Siglec-1

Siglec-5

Enhanced infection (112)

Updated from Angata and Varki (93).

part of “self ”), and thus there is no way Sialoadhesin/Siglec-
1 can evolve to completely evade such an interaction (unless
the virus develops a protein that binds Sialoadhesin/Siglec-1 in
sialic acid-independent manner). It is worth noting that myelin-
associated glycoprotein (MAG)/Siglec-4, the other Siglec known
to interact with another enveloped virus (109, 110), is also
highly conserved among mammals, and in both cases sialic acids
are required for the interaction between the virus and Siglecs
(Table 3).

CONCLUSION AND PERSPECTIVES

Cmah null mouse is a valuable tool for the investigation of the
physiological roles of Neu5Gc and the short-term consequences
of its loss, although it may not be a perfect model of
modern human. Using this mouse model, it was shown that
the expression of Neu5Gc itself makes T cells less responsive

to stimulus, without any change in Siglec expression (146).
Likewise, Neu5Gc appears to have a general suppressive effect
on mouse monocyte/macrophage activities, without the apparent
involvement of Siglecs (147). In line with these findings, the loss
of Neu5Gc has had major influences on human biology that
reach far beyond Siglecs (148), explaining some of the differences
between human and our close relatives (e.g., chimpanzee) in
pathophysiological phenotypes (149). Although Neu5Gc from
dietary sources (in the form of meat or milk from the animals
that express Neu5Gc) can be incorporated into human tissue
glycoproteins and glycolipids (150), the level of Neu5Gc in
human tissues tends to be low, accounting for <1% of total sialic
acids (151). Given that the current set of human Siglecs lack
a strong preference toward Neu5Gc, and the affinity between
Siglecs and sialic acids tends to be low (Kd in ∼mM range),
this level of Neu5Gc in human tissues may not influence human
physiology by way of Siglecs. The trace amount of Neu5Gc

Frontiers in Immunology | www.frontiersin.org 7 December 2018 | Volume 9 | Article 2885

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Angata Ligand-Driven Evolution of Human Siglecs

TABLE 4 | Polymorphisms in human SIGLEC genes and association with disease/phenotype.

Gene Polymorphism Associated phenotype References

SIGLEC1 rs656635, rs609203, rs3859664, rs4813636 (SNPs in intron or

3’UTR)

Lung function (114)

SIGLEC1 rs6037651 (nonsynonymous SNP) Serum IgM level (115)

CD22 rs34826052 (synonymous SNP) Limited cutaneous systemic sclerosis (116)

CD22 rs4805119 etc. (intronic SNP) B-precursor leukemia (117, 118)

CD33 rs3865444 (promoter SNP)

rs12459419 (nonsynonymous SNP, influencing splicing)

Late-onset Alzheimer’s disease (119–122)

CD33 rs35112940, rs12459419 (nonsynonymous SNPs) Efficiency of antibody therapy in pediatric acute myeloid

leukemia

(123, 124)

MAG rs720309 (intronic SNP)

rs7249617 (intronic SNP)

Schizophrenia (125, 126) (127)

SIGLEC5 rs4284742 (intronic SNP) Periodontitis (128)

SIGLEC5 rs10414149 (intronic SNP) Leprosy (129)

SIGLEC6 rs2305772 (non-synonymous SNP, influencing splicing) Systemic lupus erythematosus (130)

SIGLEC8 rs36498 (promoter SNP)

rs10409962 (nonsynonymous SNP)

Allergic asthma (131)

SIGLEC9 rs16988910 (nonsynonymous SNP) Short-term survival of lung cancer patients; Emphysema (132)

SIGLEC9 rs2075803, rs2258983 (nonsynonymous SNP) COPD exacerbation (133)

SIGLEC11 rs12165127 (intronic SNP) Lung cancer in never-smokers (134)

SIGLEC12 rs16982743 (stop codon generated) Cardiovascular outcomes in patients with hypertension on

antihypertensive therapy

(135)

SIGLEC12 rs3752135 (nonsynonymous SNP) Stress fracture (136)

SIGLEC14 rs10412972, rs11084102 (upstream SNPs) Plasma plasminogen level (137)

SIGLEC14 SIGLEC14-SIGLEC5 fusion (SIGLEC14 deletion) COPD exacerbation (102)

SIGLEC14 SIGLEC14-SIGLEC5 fusion (SIGLEC14 deletion) Pre-term delivery in the presence of GBS infection (63)

SIGLEC14 SIGLEC14-SIGLEC5 fusion (SIGLEC14 deletion) Mycobacterium tuberculosis meningitis (138)

Various Various Plasma protein levels (139, 140)

Various Various Cerebrospinal fluid protein levels (141)

Various Various Blood cell counts (142)

Updated from Angata (16) and Angata (143).

Some of the studies listed above are small-scale case–control studies, whereas some others are large-scale genome-wide association studies (GWAS). Some of the associations listed

are not prominently featured in the references cited but found in the GWAS catalog (https://www.ebi.ac.uk/gwas/).

incorporated into human tissues may be more relevant to the
bacterial toxins that specifically recognize Neu5Gc (152) and
xeno-autoantibodies that recognize Neu5Gc (as discussed in
other articles of this series). Regardless, the loss of Neu5Gc
appears to have left some footprint on the evolution of human
Siglecs, as discussed above.

The evolution of human Siglecs was also likely influenced
by the interaction with microbes. A recent population genetics-
based study implied that some Siglecs may have been subjected

to population-specific hard selective sweeps, as judged by

the presence of long-range linkage disequilibrium (153).
These SIGLEC genes include SIGLEC8 and SIGLEC10 among

Africans, SIGLEC5, SIGLEC6, SIGLEC12, and SIGLEC14

among Europeans, and CD22 and MAG among Asians.

Although it remains speculative, the population-specific
difference in the signatures of selection imply that the

evolution of the Siglec family in the human population
is an ongoing process, and different pathogen pressures
are present in different geographical locations (or through
different agricultural constraints, e.g., use of different

domestic animals, which may carry different kinds of
bacteria/viruses).

Many questions remain with regard to the function and
evolution of Siglecs. For example, do viruses really target only
conserved Siglecs and are they not relevant to the rapid evolution
of Siglecs? What was or is the selective force behind the spread
of “null” alleles of SIGLEC14 and SIGLEC16 (and perhaps
others, such as SIGLEC1) in modern human populations? Do
the bacteria that express sialic acid-like nonulosonic acids (154)
generally engage Siglecs to modulate immune responses and thus
play a role in the evolution of Siglecs? Does the interaction
between Siglecs and commensal bacteria (e.g., normal gut
microbiota) play any role in the modulation of immunity and the
evolution of Siglecs? Some of these questions can be addressed
experimentally and will deepen our understanding of the biology
of Siglecs and sialic acids.
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