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Advances in nucleic acid sequencing technology have enabled expansion of our ability to profile microbial
diversity. These large datasets of taxonomic and functional diversity are key to better understanding
microbial ecology. Machine learning has proven to be a useful approach for analyzing microbial commu-
nity data and making predictions about outcomes including human and environmental health. Machine
learning applied to microbial community profiles has been used to predict disease states in human
health, environmental quality and presence of contamination in the environment, and as trace evidence
in forensics. Machine learning has appeal as a powerful tool that can provide deep insights into microbial
communities and identify patterns in microbial community data. However, often machine learning mod-
els can be used as black boxes to predict a specific outcome, with little understanding of how the models
arrived at predictions. Complex machine learning algorithms often may value higher accuracy and per-
formance at the sacrifice of interpretability. In order to leverage machine learning into more translational
research related to the microbiome and strengthen our ability to extract meaningful biological informa-
tion, it is important for models to be interpretable. Here we review current trends in machine learning
applications in microbial ecology as well as some of the important challenges and opportunities for more
broad application of machine learning to understanding microbial communities.
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1. Introduction

Environmental microbial communities are extremely diverse
and play a role in driving many biogeochemical cycles and regulat-
ing human health. These environmental communities also have
various applications in biotechnology. The ability to probe micro-
bial diversity has been enabled through the increasing availability
of high throughput sequencing (HTS) technologies. The microbial
diversity of the human microbiome as well as soil and ocean
microbial communities has been expanded through large-scale
collaborative sequencing efforts such as the Human Microbiome
Project [1] and the Earth Microbiome Project [2] as well as the
TARA OCEANS project [3]. These large-scale efforts have provided
baseline data for the microbial communities found in diverse set-
tings. The low cost of sequencing now allows for large scale studies
of systems and the generation of microbial community profiles for
hundreds and thousands of samples. This scale of data necessitates
methods capable of extracting meaningful information from these
large datasets. Natural microbial communities have the potential
to provide key insights into environmental phenomena and may
be useful in predicting environmental phenomena. Machine learn-
ing (ML) has been employed to find patterns in data that can be
predictive of various phenomena. In recent years machine learning
has been applied to microbial community data to classify samples
and predict various outcomes [4–6]. There is potential for expan-
sion of the use of ML for microbial ecology studies. In this review,
we seek to provide an overview of ML applications in microbial
ecology and present some challenges and opportunities for the
expansion of ML applications in the study of microbial
communities.

2. Next generation sequencing methods in microbial ecology

Molecular methods have been used in microbial ecology for
decades employing sequencing of ribosomal RNA genes to profile
microbial diversity in settings ranging from soil and aquatic envi-
Fig. 1. Illustrative pipeline for the investigation of
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ronments to hydrothermal vents and the built environment [7–
9]. With the expansion of high throughput sequencing, the ability
to generate thousands of sequences from hundreds of samples in
a single sequencing run is possible [10,11]. The application of next
generation sequencing in microbial systems follows a pipeline that
includes both wet lab and computational methods (Fig. 1). A goal
of molecular profiling of microbial communities is to obtain a com-
prehensive assessment of the taxonomic and functional diversity
of a community. In order to obtain this assessment, there are a
number of important considerations that must be addressed dur-
ing the analysis pipeline. The pipeline starts with wet lab methods
for molecular profiling of microbial communities, which involves
sample collection, extraction of nucleic acids from the environ-
ment or host and library preparation for sequencing Fig. 1. There
are a number of biases that can be introduced with the wet lab por-
tion of the methods [12]. In particular, extraction of DNA with dif-
ferent methods can result in differential extraction efficiencies for
different taxa and the thus has the potential to skew diversity
assessments. Often sequencing of DNA for microbial community
profiling can take the form of marker gene surveys which profile
the diversity of either taxa (small subunit rRNA such as the 16S
rRNA for bacteria and archaea and 18S rRNA for eukaryotes) or of
a particular functional gene. The choice of sequencing primers for
marker gene surveys can also introduce bias as degenerate primers
are not truly universal and may miss key microbial groups. These
biases are important to consider in planning study design. Alterna-
tively, shotgun metagenomic methods can be employed to profile
the complement of genes that are present in a sample.

Sequencing depth is another key consideration in the process of
profiling microbial communities. Sequencing is a sampling-based
approach. Therefore, with increased sequencing depth, the diver-
sity of reads is more completely sampled and thus diversity esti-
mates are more reflective of the natural system. After
sequencing, the primary analyses are computational. While the
computational portion of the pipeline greatly depends on the goals
of the study, often this portion is divided into sequence processing
microbial communities using metagenomics.
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to generate a table of samples and taxonomic features in each sam-
ple followed by analysis methods to assess and link microbial
diversity with various outcomes. A lot of work has been done
related to processing of sequencing reads into meaningful data
tables. This has included methods for binning marker genes into
operational taxonomic units (OTUs). These OTUs are features that
are representative of some biologically meaningful categories.
Methods such as UCLUST [13] (often implemented in QIIME1
[14]) and mother [15] bin 16S rRNA reads based on percent iden-
tity to other reads in the dataset into OTUs. More recent methods
have sought to cluster sequences into identical groups rather than
cluster by some fixed percent identity. These approaches such as
DADA2 [16] have employed denoising algorithms to correct
sequencing errors and then dereplicate sequences into bins of
identical sequences known as Amplicon Sequencing Variants
(ASVs) or Exact Sequence Variants (ESVs). Each of these methods
has advantages and limitations. They are all similar in that they
are approaches for grouping marker gene sequences into biologi-
cally meaningful bins that result in feature tables for downstream
analysis.

Much of the downstream analyses of feature tables generated
from microbial community data has focused on the application of
commonly used ecological measures for processing microbial com-
munity data. Methods such as alpha diversity assessments as well
as beta diversity and multivariate statistics have been commonly
used. A number of issues have been identified related to the appli-
cation of methods designed for datasets with tens of features to
highly dimensional datasets with thousands of features [17]. For
example, specific diversity metrics have been shown to be highly
impacted by the dimensionality and scale of the data, while others
are less prone to errors resulting from highly dimensional data.
Additional metrics, such as UniFrac distances, were developed that
allowed researchers to more fully extract meaningful information
from these marker gene surveys [18]. However, many of these
methods seek to understand the data through decreasing dimen-
sionality of the data and often can lose some of the important
information that is contained within the rich datasets of microbial
community profiles. For example, principal coordinate analysis
(PCoA) is commonly used to assess overall differences in diversity.
PCoA analysis is performed using distance or dissimilarity matrices
of the microbial community profiles using metrics such as UniFrac
distance or Bray-Curtis dissimilarity. While useful, these methods
collapse the highly dimensional datasets and assess overall simi-
larity or dissimilarity. This process can often lose important infor-
mation and bias observations to highly abundant or highly
prevalent features.

OTU-level analyses have also been important for analyzing the
relationship between particular features in microbial data and
specific outcomes. Indicator Species Analysis has been important
for environmental monitoring. In Indicator Species Analysis, the
prevalence of a species or OTU is linked to particular treatments
or environmental states. Each OTU is given an indicator value
(IndVal) which details how indicative that species is of the partic-
ular outcome. Additionally, differential abundance analysis has
often been used to better understand differences between samples,
categories, or particular outcomes on the level of particular fea-
tures. Methods such as DESeq2 [19] and metagenomeSeq [20] have
been used to identify which features are differentially abundant
between different categories. DESeq in particular was originally
developed to understand differentially expressed genes in RNASeq
datasets. One advantage of the use of these methods for differential
abundance analysis is that these approaches have been designed to
work well with sequencing datasets and use normalization
approaches tailored specifically to sequencing data. One of the lim-
itations of differential abundance analysis is the ability to under-
stand the importance of multiple features or the interaction of
1094
features in a particular outcome. Differential abundance analyses
treat features as independent and it can be difficult to glean how
increased or decreased abundance of groups of features may be a
hallmark of a particular sample type or treatment category.

In addition to the methods described above, advanced compu-
tational methods are being employed to assist in analyzing the
increasing amounts of data. In particular ML is being used with
increasing frequency to use microbial communities to predict dif-
ferent outcomes. ML has advantages in that it is able to more fully
appreciate the depth of data generated in microbiome studies as
well as build predictive models for outcomes based on microbial
community data. In the following sections we will provide an over-
view of commonly used ML methods, discuss key steps to be con-
sidered in the ML process and provide examples of how ML can be
used in microbiome studies in the human microbiome, environ-
mental monitoring, and forensics.
3. Machine learning and microbial community data analysis

In the context of microbial ecology, applied machine learning
involves creating and evaluating models that use algorithms cap-
able of recognizing, classifying and predicting specific outcomes
from data. ML approaches take various forms including unsuper-
vised, semi-supervised, reinforced, or supervised learning [21].
For example, often the goal of supervised machine learning (SML)
applied to microbial community data is to construct a decision rule
(i.e. a model) from a set of collected observations (i.e. samples) to
predict the condition (i.e. response label (Y); such as an assigned
category or value to each observation that have meaning to the
model-operator) of an unlabeled sample using a set of measure-
ments from next generation sequencing instruments. In micro-
biome studies this input data takes the form of a frequency
count matrix of the observed microbial taxa from a sample (i.e., in-
put variables (X) and their assigned values). Input variables are
often referred to as features and samples as observations and will
be used interchangeably throughout this review.

While there are other forms of learning that have been used on
microbial community data, this manuscript discusses unsuper-
vised techniques and supervised machine learning methods com-
monly applied to microbial datasets. The principal distinction
between unsupervised (USML) and supervised machine learning
(SML) is that in USML samples are segregated using features with-
out any reference to response labels and the prediction is to which
cluster a response may belong to, whereas the SML finds a best fit
decision boundary between features and response labels [22]
(Fig. 2A). A more precise overview of these methods is introduced
below.
3.1. Unsupervised multivariate analysis common to marker-gene
analysis

Unsupervised techniques are often employed for initial explora-
tory analysis of high-dimensional metagenomic data and for gen-
erating hypotheses for subsequent analysis as they aid in
visualization and can search for structure in data that do not have
predefined response labels assigned to observations. These meth-
ods operate with the goal of identifying homogenous subgroups
by clustering data (hierarchical or centroid) or to detect anomalies
by finding patterns through dimensionality reduction (DR) tech-
niques. An example of DR by some unsupervised techniques (Prin-
cipal Coordinate Analysis: PCoA and t-Distributed Stochastic
Neighbor Embedding: t-SNE) is to take data points from a high-
dimensional feature set and project them in low-dimensions to
encapsulate the largest amount of statistical variance in a set of
observations while preserving structure and minimizing



Fig. 2. Schematic representation of unsupervised and supervised forms of learning and several ML methods predicting three conditional response labels (blue/red/yellow).
(A) Depicts a common microbial frequency matrix containing observations or samples (N), features (X1, . . ., X23) and multiple class labels (Y). Input data are algorithmized
and processed to either predict which cluster Y belongs to (unsupervised) or to find a best fit decision boundary between X and Y (supervised). (B) Linear SVM classifier
demonstrating separation between class labels where the hyperplane maximizes the distance (margin) between the nearest data training points. Support vectors refer to the
three position vectors drawn from the origin of the sample positions (dashed circle) with the goal of maximizing the distance between the optimal hyperplane and the
support vectors (max-margin) so that a decision boundary can be drawn. (C) A decision tree constructed for the classification of samples into Y based on input feature values.
Trees start from a root node (t0) and are grown to various leaf nodes (closed circle) to end at a terminal node (dashed circle) so that bootstrap aggregated predictions across
terminal nodes are averaged across k-trees for best predictions of Ŷ. (D) A neural network displaying the structure of successive layers. Input values of X are transmitted to the
proceeding hidden layer which passes weighted connections to the output layer for predictions of Ŷ. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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information loss [23]. In USML, input data is either continuous data
of features for each observation or a distance matrix of similarities
between community composition. Observations that cluster
together in USML represent microbial communities from samples
that are more similar in composition.

3.1.1. K-means clustering (centroid)
The objective of K-means [24] is to cluster samples into a spec-

ified number of (k) non-overlapping subgroups (clusters) using dis-
tances calculated between features so each data point belongs to
only one group. This technique assigns data points to a cluster such
that the sum of squared distance between data points and the cen-
troid (average of all data points represented by the geometric cen-
ter of the cluster) is minimized. By reducing intra-cluster variation,
data points are arranged to construct a cluster that assumes a
spherical shape surrounding the centroid and allows different sub-
groups of data to remain as far apart as possible. A drawback of K-
means is that it cannot construct clusters well on data points that
are distanced to a more complex geometric shape. An additional
constraint is that a pre-defined number of clusters is required,
which necessitates assumptions to be placed on the structure of
data prior to analysis.

3.1.2. Principal coordinate analysis (PCoA)
In PCoA analysis, data are decomposed into components to

maximize the linear correlation between data points in a dissimi-
larity matrix, such as microbial taxa as input features [25]. Through
1095
a ‘‘coordinate transform”, x number of data points are replaced to
newly derived y coordinates, thus reducing the dimensionality of
a dataset by discarding the coordinates that may not capture a
threshold of variance in the microbial community data. This tech-
nique preserves the global structure of the data while projecting it
to low dimension. By mapping nearby points to each other and far-
away points to each other, linear variance in the global relation-
ships of the data are maximized to retain a faithful
representation of the actual distances between original data points
[23]. This method works from distance matrices calculated from
biologically meaningful metrics such as UniFrac and is commonly
employed in microbial analysis [26].

3.1.3. t-Distributed stochastic neighbor embedding (t-SNE)
In t-SNE analysis, data points are transformed and assigned a

probability based on similarity to define relationships in high-
dimension, guided by a Students t-distribution to help reduce
crowding of data points during visual projection [27]. As the name
entails, this method tries to identify close neighbors (samples with
similar measurements) and tries to arrange these points in a low-
dimension projection such that the close neighbors remain close
and distant points remain distant. In contrast to PCoA that tends
to preserve long distances for global retention of the original data,
t-SNE tries to represent local relationships in the data, thus captur-
ing non-linear variance and is not as faithful to the original state of
the data [23]. Certain fields that use high-dimensional data cur-
rently benefit from the local non-linear structure of this method,
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such as single cell RNA-seq [28]. T-SNE is not commonly employed
for metagenomic data despite its utility as a promising exploratory
technique for the analysis of microbial communities [29,30].
3.2. Supervised machine learning methods common to microbiome
study

Supervised machine learning (SML) is a more elaborate form of
exploring marker-gene datasets since unlike unsupervised meth-
ods, response labels (Y) are assigned to each sample in the dataset,
grouping them into meaningful categories. A more targeted inves-
tigation of data can be achieved since the model is being trained to
learn the structure of features (X) (training set) to create rules
where they can serve as predictors of phenomena or outcome. In
other words, which feature (X)maps to the response label (Y). Once
trained, this model can intake new unlabeled samples with similar
features (testing set) and predict their output (Y) based on what it
has learned from the training set. SML can be used with continuous
numerical outputs (regression: Y = R.; continuous traits such age,
blood pressure, concentration of contaminant) or categorical out-
puts (classification: X? Y; binary or symbolize grouped conditions
such as ‘diseased’ or ‘healthy’). The following section seeks to pro-
vide an overview of some of the most common SML algorithms for
microbiome-based prediction tasks (outlined as implemented
methods in Table 1). We have focused our overview to primarily
classification approaches, although this collection of methods
could apply to regression as well.
3.2.1. Random forests (RF)
Random forests [31] have been extensively deployed to solve a

variety of problems in microbiota analysis. This method constructs
multiple forests composed of decision trees by using the informa-
tion contained in input features (abundance of microbial taxa, for
example) to successively split samples based on their assigned
(Y) values. The forests are guided by bootstrapping (drawing a ran-
dom subset of samples with replacement, to be drawn multiple
times) and a node splitting criterion that uses the information con-
tained in a random subset of features to decide how to split each
node in each tree (Fig. 2C), where the best split is selected based
on a node impurity estimate (the likelihood of misclassifying
new samples as a classifier) or the prediction squared error (as a
regressor) [32]. The fact that hundreds or thousands of decision
trees are being constructed in each forest using a subset of both
samples and features allows an aggregate average of the predic-
tions made at each terminal node (Fig. 2C). The combination of
bootstrapping and then aggregating is jointly known as bagging
(bootstrap aggregating) and frames RF as an ensemble learning
method, where multiple forests are leveraged to obtain better per-
formance than any single decision tree alone [33]. By this effect, RF
are an ideal framework for consistently identifying ‘‘true effects” in
complex and heterogenous data (multiple feature types; numerical
or categorical). Additional factors that make RF appealing in prac-
tice is that they are an off the shelf, computationally tractable and
top performing classifier that are robust to outliers, inherently
noisy and non-linear data (such as metagenomic), and errors in
manually curated response labels [4,34]. Using SML with highly
dimensional data with limited numbers of observations, such as
microbial community data, can lead to overfitting. The RF method
is less prone to overfitting than other SML methods, which con-
tributes to its appeal in microbial community analysis [35]. Lastly,
decision tree models in general are considered interpretable in
their evaluation as they aid in extracting meaningful information
from RF models [36] (Fig. 3).
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3.2.2. Gradient boosting (GB)
Gradient boosting [37], when used for decision trees, is an

ensemble method that uses a process called boosting to combine
individual learning algorithms (decision trees) successively to
arrive at a strong learner. Gradient boosted trees contrast RF as
an ensemble learner in that each decision tree is constructed in
series in attempt to reduce the errors of the preceding tree, rather
than in parallel. In addition, each tree built in GB is a fixed size and
is fit on the original data, instead of bootstrapping samples as done
in RF. Similar to RF, both numerical and categorical features can be
used, but may be harder in practice to find optimal tuning param-
eters for a good model fit, such as the number of tree estimators.
This method in particular is sensitive to outliers but efficient for
both classification and regression, with reports of achieving similar
or better accuracy to RF [38].

3.2.3. Support vector machines (SVM)
The goal of an SVM [39] is to find the best generalized line sep-

aration of response labels (Y) through a hyper-plane that maxi-
mizes the margin between different values of Y (or each class) in
the label data. A decision boundary is drawn such that each class
is separated while keeping maximum distance from the closest
samples as possible (called support vectors that dictate this deci-
sion boundary) (Fig. 2B). SVMs are in the category of linear dis-
criminant SML techniques. Although, if a hyperplane cannot
justify the separation between classes with a clear margin of sep-
aration (in the case of non-linear metagenomic data), a so called
‘‘kernel trick” for a nonparametric form of SVM can be introduced
to transform the data and satisfy a non-linear separation [40]. Sev-
eral factors contribute to the success of SVM in microbial commu-
nity analysis in that it is effective in the high-dimensional nature of
the data, where X > N (or the number of members of a microbial
community as features is larger than the sample set) and that it
is also computationally tractable since the decision function only
uses a subset of the data. These models can handle various feature
types but can be inherently hard to interpret as they do not directly
provide probability estimates in their evaluation.

3.2.4. L2 regularized logistic regression
Regularization is a technique used to reduce overfitting. For

example, if a model is parameterized to learn every small bit of
information in the structure of the microbial community composi-
tion under a given set of labels in training, it may not generalize
well to make predictions on samples collected and processed out-
side of the training set and is considered overfit. Ridge (L2) regres-
sion [41] satisfies a model that reduces variance without increasing
bias and is achieved by placing restrictions on the complexity of
parameters (i.e. where to ultimately draw the decision boundary
to separate response labels). This technique adds information to
features used in training the model and by adding a penalty term
to a loss function (estimation of how wrong the relationship is
between X and Y), enables a constraint on parameter complexity
so as to not capture every specific detail of the training data. Ridge
regression can be used for both classification and regression but
can be computationally expensive in the case of large input feature
space.

3.2.5. Neural networks
Neural networks [42] use a hierarchical model building archi-

tecture where multiple structured networks of interconnected
nodes (neurons) are constructed with weights attached at each
edge of the network to facilitate mapping inputs of X to responses
Y (weights being parameters to define strength of connection, for
example) (Fig. 2D). Networks are interconnected through a feed-
forward propagation mechanism, where each neuron receives
input from preceding neurons. The network starts from input



Table 1
Summary of ML techniques used for microbiome-based prediction tasks. This table briefly summarizes each technique, provides the source of the software, noteworthy ML
implementations and interpretation of its result with reference to either the source study or specific studies that have applied these techniques for microbiome profiling. This
table is not exhaustive but mentions current and commonly employed ML and ML related pipelines tailored to the characteristics of microbiome data or that are domain agnostic
but relevant to research questions relating to the microbiome.

Software name Summary Source Example
implementation

Remarks URL

SIAMCAT (*) Statistical Inference of
Associations between
Microbial Communities And
host phenoTypes

R package ‘SIAMCAT’
https://siamcat.embl.
de/

FS, ML, INTERP,
VIS

Confounder analysis
Enables cross-study comparison
Advances visualization

https://www.biorxiv.
org/content/10.1101/
2020.02.06.931808v2

DeepMicro (*) Deep representation learning
for disease prediction based
on microbiome data

Python: https://

github.com/

minoh0201/

DeepMicro

DR, ML Deep representation learning using
autoencoders to handle high-
dimensional data
Accelerates model training and
hyperparameter optimization

https://www.nature.com/
articles/s41598-020–
63159-5

MetAML (*) Metagenomic
prediction Analysis based
on Machine Learning

Python: https://
github.com/segatalab/
metaml

FS, ML, INTERP,
VIS

Enables cross study comparison of
models on single cohorts, across
stages of same the same study and
across different studies

https://journals.plos.
org/ploscompbiol/article?
id=https://doi.org//10.
1371/journal.pcbi.
1004977

mAML (*) An automated machine
learning pipeline with a
microbiome repository for
human disease classification

Python: https://

github.com/

yangfenglong/mAML1.

0Web
: http://lab.malab.
cn/soft/mAML/

FS, ML, INTERP,
VIS

Automates optimized,
interpretable and reproducible
models
Deployed on a user-friendly web-
based platform
Advanced visuals

https://pubmed.ncbi.nlm.
nih.gov/32588040/

BiomMiner (*) An advanced exploratory
microbiome analysis and
visualization pipeline

Docker: https://mbac.

gmu.edu/mbac_wp/

biomminer-readme/

FS, DR, ML,
INTERP, VIS

Automatically tunes optimal
hyper-parameters
Tailored to clinical datasets
Generates web-enabled visuals

https://journals.plos.
org/plosone/article?id=
https://doi.org//10.1371/
journal.pone.0234860

MIPMLP (*) Microbiome Preprocessing
Machine Learning Pipeline

Python: https://

github.com/

louzounlab/

microbiome/

tree/master/

PreprocessWeb

: http://mip-mlp.math.

biu.ac.il/Home

FS, DR, ML,
INTERP, VIS

Approaches for standardized ML
preprocessing
Consensus methods for optimal
performance

https://www.biorxiv.
org/content/10.1101/
2020.11.24.
397174v1.full#ref-12

MicrobiomeAnalystR
(*)

Comprehensive statistical,
functional, and meta-analysis
of microbiome data

R package
‘MicrobiomeAnalystR’
Web: https://www.
microbiomeanalyst.ca/

FS, DR, ML,
INTERP, VIS

Comprehensive analysis reporting
Real time feedback and
recommendations
Visual comparison with a public
dataset

https://www.nature.com/
articles/s41596-019–
0264-1

Meta-Signer (*) Metagenomic Signature
Identifier based on Rank
Aggregation of Features

Python: https://
github.com/YDaiLab/
Meta-Signer/
tree/master/src

FS, ML, INTERP Ensemble learning for feature
ranking
Identifies a robust set of highly
informative taxa

https://www.biorxiv.
org/content/10.1101/
2020.05.09.085993v1

QIIME2 (*) Quantitative Insights Into
Microbial Ecology

https://qiime2.org/ FS, DR, ML,
INTERP, VIS

Automatic tracking of data
provenance
Multiple user interfaces
Plugin support

https://www.nature.com/
articles/s41587-019–
0209-9

mothur (*) Microbial community analysis
pipeline

http://mothur.org/ FS, DR, ML,
INTERP, VIS

Can handle data from multiple
sequencing platforms
Encapsulates large elements of the
pipeline in single command

https://aem.asm.
org/content/75/23/7537

scikit-learn Simple and efficient tools for
predictive data analysis

Python: https://scikit-
learn.org/stable/

FS, DR, ML,
INTERP, VIS

Robust machine learning library
and support system
Supports end-to-end projects with
extensive documentation

https://arxiv.org/abs/
1201.0490

Keras Simple deep learning API R package ‘keras’
Python: https://pypi.
org/project/Keras/

FS, DR, ML,
INTERP, VIS

High-level learning API that limits
the number of user actions
Multiple deployment capabilities
Provides clear and actionable error
messages

https://link.springer.com/
chapter/10.1007/978–1-
4842–2766-4_7

caret Classification And REgression
Training

R package ‘caret’ FS, DR, ML,
INTERP, VIS

Streamlines complex predictive
tasks
Large library of available models

https://www.jstatsoft.org/
article/view/v028i05

mlr Machine learning in R R package ‘mlr30

https://mlr3.mlr-
org.com/

FS, DR, ML,
INTERP, VIS

Modern and extensible ML
framework for developers and
practitioners
Provides a unified interface to
many learners

https://joss.theoj.
org/papers/10.21105/joss.
01903

(continued on next page)
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Table 1 (continued)

Software name Summary Source Example
implementation

Remarks URL

H2O.ai Fast scalable ML API R package ‘h2o’
Python: http://h2o-
release.s3.
amazonaws.com/h2o/
rel-zermelo/3/index.
html

FS, ML, DR,
INTERP, VIS

End-to-end engine specialized for
big data
Parallel distributed ML algorithms
Automatic ML interface

https://journals.plos.
org/plosone/article?id=
https://doi.org//10.1371/
journal.pone.0238648

iml Interpretable machine
learning

R package ‘iml’ FS, ML, INTERP,
VIS

Feature effects on the influence of
predictions

https://joss.theoj.
org/papers/10.21105/joss.
00786

LIME Local interpretable model-
agnostic explanations

R package ‘lime’
Python: https://
github.com/marcotcr/
lime

FS, ML, INTERP,
VIS

Explains individual predictions of a
black box ML model
Model-agnostic

https://arxiv.org/abs/
1602.04938

inTrees Interpretable tree ensembles R package ‘inTrees’ FS, ML, INTERP Extracts, measures, prunes, selects
and summarizes rules from a tree
ensemble
Specific to decision trees

https://link.springer.com/
article/10.1007/s41060-
018–0144-8

dtreeviz Decision Tree Visualization Python: https://
github.com/parrt/
dtreeviz

FS, ML, INTERP Advanced visualizations
Provides user-friendly
interpretations of prediction paths
Specific to decision trees

https://explained.ai/
decision-tree-viz/index.
html

ranger RANdom forest GEneRator R package ‘ranger’ FS, ML, INTERP Fast implementations of random
forests optimized for high-
dimensional data
Has advanced and convenient
functions for decision trees

https://arxiv.org/abs/
1508.04409

partykit A toolkit for recursive
partitioning

R package ‘partykit’ FS, ML, INTERP Can coerce tree models from
different sources into a unified
infrastructure
Contains a variety of novel decision
tree implementations
Parameterization requires
expertise

https://dl.acm.org/doi/10.
5555/2789272.2912120

FS, Feature Selection; DR, Dimensionality Reduction; ML, Machine Learning; INTERP, Interpretation Measures; VIS, Visualization Outputs. (*) Denotes whether the software Is
microbiome-specific (as opposed to domain agnostic).
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layers (microbial taxa feature set; X1, X2, . . ., Xi), that are linked to
each neuron in the one or many hidden layers that use a backprop-
agation algorithm to maximize the weights placed at each neuron
to improve predictive power. This process is iterative, where the
last hidden layer is met by an output layer to produce a predicted
response output (Y) (Fig. 2 D). Neural networks are very dynamic in
their ability to identify intricate structure in very high-dimensional
and complex datasets, making them a tractable technique to inves-
tigate the role of microbes in complex settings [43]. Neural nets are
often referred to as ‘‘black box” methods as it can be difficult to
interpret how decisions are made.

3.2.6. Deep vs. shallow learning
Deep learning is a family of both unsupervised and supervised

techniques that belong to the class of neural networks (Fig. 2D).
Despite shallow networks (dependent on number of layers), all
non-deep learning methods such as those summarized above can
be qualified as shallow learners. Whereas deep learning methods
automatically alter raw input features by successively extracting
abstractions of the data to be used as more discriminative features
to the learning process, shallow learners are more of a manual pro-
cess that depend on domain knowledge for a reduced selection of
features that would serve as good inputs for a model to make accu-
rate predictions with (i.e., which microbial taxa are differentially
abundant between response labels).

Shallow learners can also benefit from feature engineering,
where new features are handcrafted as composites, or abstract rep-
resentations of multiple raw features using heuristics of the
domain problem (i.e., agglomerating multiple high-resolution tax-
onomic features (ASVs) into a single lower resolution feature
(Phyla)).
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Although deep learning has shown to create models that are
more accurate compared with shallow learning methods for
microbiome-based prediction tasks [44], the models often sacrifice
interpretability or understanding of the inner logic behind the pre-
dictions, which, for microbial-based applications can be rewarding
in addition to predictive accuracy. An example of learning
performance-interpretability trade-off is displayed in Fig. 3A.

4. Advantages of machine learning vs. classical statistics for
microbial community data

Microbial ecology has for long relied on traditional statistical
analyses to summarize data, test hypotheses, and to interpret
interactions between features and responses on microbial datasets
[45]. However, researchers and developers are starting to realize
the enormous potential for machine learning in the microbial
realm. ML methods have some advantages over standard statistical
methods. A principal distinction between statistical models andML
is that the goal of the former is to describe and infer the relation-
ships between variables, whereas the latter is designed to optimize
the ability to predict an outcome on an external dataset. For exam-
ple, typically SML will use a training set (supplied labels) to learn
patterns associated with an outcome and a test set (hidden labels)
to determine the performance of the model. On the other hand, sta-
tistical models are primarily interested in determining the rela-
tionship of the values to the outcome and unlike many studies
that use ML, most do not require partitioning the data to measure
performance.

Classical statistical analysis presents microbial ecologists with a
two major issues: (1) the assumption that features of metagenomic
data are independent and identically distributed is often harmed
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Fig. 3. Depiction of performance-interpretability trade-off and random forests interpretation. Note that these figures are fictional and are not based on experimental
quantification (the axes in this figure lack meaning). (A) Performance-interpretability tradeoff of commonly deployed algorithms in microbiome research. However, in
practice, the models characterized here tend to varying degrees of accuracy and interpretability based on experimental procedure. Had a plot been generated from
experiment, model choice and complexity could vary such that inconsistent illustrations could arise. By way of example: tuning models to become more accurate could result
in the belief that more accurate models are less interpretable and may not respect whether the model infrastructure supports inherently easier interpretation. (B)
Hypothetical extraction of ‘association’ rules that measure frequent microbial community member interactions from fictional decision tree ensembles (tree1, . . ., tree k) for
low error predictions of Ŷ. Additionally diagramed is a feature ‘importance’ schematic that scores each feature on its relative importance in making predictions of Ŷ
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through molecular methods of sample processing and sequencing;
and (2) that data with NGS imposed characteristics [46] such as
being high-dimensional (number of data points is large), sparse
(contain a lot of zeros), and compositional (feature set of microbial
taxa may be co-abundant and are a part of a unit sum) often cannot
be met by specific assumptions in classical statistics [47]. Many
machine learning methods, such as the ones summarized above,
can accommodate these dynamics of marker-gene data for a robust
interrogation of the complex association patterns in microbial
communities.

Some of the benefits ML has over classical statistics is that it is
particularly effective in identifying subtle variation in microbial
community structure and can identify specific bacterial taxa that
underlie prediction of a conditional outcome. Another strength of
ML is its ability to model a non-linear combination of bacterial
count data and environmental parameters (a feature space resem-
bling the real-world system) that do not need to assume complex
transformations or preprocessing, which are challenging to molec-
ular data.

However, since ML can operate without explicit user-
instruction, is highly configurable, and requires a considerable
amount of data, the tendency of these methods to overfit data
are often overlooked. ML interpretation is also model-specific,
meaning that some ML algorithms have easily understandable
metrics that can be used to evaluate how the model arrived at
the prediction (random forests), while some only provide vague
accuracy statistics (neural networks). A consequence of these less
interpretable ‘black box’ machine learning methods is that they
may leave the user without the utility to uncover associations that
underlie predictions, or to access probability thresholds of why
certain observations were grouped to a particular response output.

We urge that there is no best use scenario when it comes to ML,
and that individual researchers should select methodologies that
are consistent with the specific domain problem, the questions
being asked, and based on available data. If the goal of the research
is to build a predictive understanding of an outcome based on
microbial community data, SML has appeal since these algorithms
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are tailored to optimize predictive accuracy. However, if the goal is
to relate specific microbial groups to particular outcome, classical
statistical models have utility as well. Statistical models have
strengths in microbial community analysis, but SML can provide
a research strategy that can be based on less a priori assumptions
of the data (such as formulating decisions based on predefined sig-
nificance level) and more emphasis can be placed on ML to identify
intricate associations and confounding variables that may be hard
to detect but are often responsible for cause-effect.

In practice, ML can perform surprisingly well on datasets that
are sampled from and represent messy real-world systems, such
as the human body, soil, and water [48–50] and demonstrates
superiority over traditional multivariate statistics in analyzing
metagenomic data. In addition to these benchmarks, there is an
increase in the development of microbiome-specific ’pipelines’ that
have user-friendly ML implementation and can be accessed
through web-interfaces, the statistical compute language R [51],
or Python [52]. A collection of methodologies is described in Table 1
and although not exhaustive, mentions microbiome-specific or
domain-agnostic procedural extensions of predictive data analysis,
such as interpreting and visualizing model outputs, as will be
described moving forward.
5. Optimizing model construction and evaluation

In most domains, input features can be challenging and eco-
nomically expensive to obtain. In the case of marker-gene analysis
there is often an overabundance of features as a result of how high-
throughput sequencing platforms capture genetic diversity within
samples. It is therefore the goal of those using machine learning on
microbiome data to consider feature selection methods to identify
and remove non-informative, noisy or redundant features. As
opposed to using every available feature in training a model, care-
fully selecting features may lower the cost of computation, reduce
the complexity of the model for easier interpretation, and in some
cases improve generalized predictive performance of the model.
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In most cases, it then becomes tractable to understand micro-
bial community data at a deeper and more targeted level, since fea-
ture selection allows for easier evaluation of the relationship
between each input feature (i.e., as a microbial taxa) to a response
label, or whether any features are used together to drive predic-
tions. In addition to its predictive capabilities, ML can be used as
a powerful data mining tool and to access a translational compo-
nent of data, such as assessing whether feature-response label
linkages in a model correspond to similar conditions in the real-
world system after which the model is constructed. A noteworthy
caveat of using SML in translational research is that it would
require subsequent testing and hypothesis validation independent
of the modeling procedure to conclude such relationship, since this
initial interpretation is at the level of the model only.

The use of ML in microbiome research is motivated by a range
of research questions and expected outcomes of modeling. This
makes ML a very dynamic approach to predictive and exploratory
modeling with many user defined parameters to be considered for
each objective. Many of the ‘pipelines’ described in Table 1 enforce
optimal parameter tuning of ML and associated post-hoc analysis
that enables more of an understanding of microbiome-specific
research questions; however, it should be noted that the more
informed a researcher is of how parameterization benefits their
domain problem and research questions, the better. Likewise, as
‘pipelines’ offer more customization to allow more user-defined
decision making, there calls for an increase in knowledge of the
broadly applicable methodologies for predictive data analysis.

Accessibility of evaluation metrics that aid this interpretation
may depend on which learning method is used. It is integral to con-
sider this at the point of model selection in order to optimize ML
for microbial community analysis. The remainder of this section
will describe various techniques for feature selection, preferred
model evaluation metrics and post-hoc model interpretations, with
consideration of why particular methods may be better for certain
problems.

5.1. Exploring feature selection methods

It is often the case that features in microbiome data greatly
exceed the number of samples, which can lead to a model overfit-
ting, provides overoptimistic model evaluations, and may limit
cross-study comparison [53]. Feature selection methods generally
dictate how well a model generalizes to novel input data by allow-
ing for fewer and more discriminative features that maximize per-
formance. This section discusses three main categories of feature
selection: filter methods, wrapper methods, and embedded
methods.

Filter methods are typically a pre-processing step performed
outside of the modeling procedure that statistically measure and
score correlations (i.e., univariate or multivariate: Spearman’s rank
correlation [54], MANOVA [55]) between input features so that
only those passing some relevant criteria can be considered for
downstream modeling. Although filter methods are advantageous
in that they are easy to parameterize, computationally inexpensive
and scalable, they can be challenging for the following reasons: (1)
choosing a specific method assumes prior assumptions about the
relationships in the input feature space (2) filter methods become
challenging when trying to satisfy a specific research question and
account for potential feature heterogeneity or the multicollinearity
and complex covariance structure of microbial community data
and (3) since filter methods are done prior to modeling, they place
no consideration on whether a specific ML model would maximize
performance using the reduced set of features.

Wrapper methods repeatedly construct models (e.g., classifiers)
by iteratively adding (forward selection), removing (backwards
elimination) and ranking (recursive elimination) features to search
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for an optimized combination that improves or marginalizes per-
formance of preceding models. Since wrapper methods are a
repeated learning process that can exhaust through features, it is
not as ideal as filter methods because it becomes computationally
expensive with the high-dimensional structure of metagenomic
data.

Embedded methods are a more computationally tractable
approach to feature selection by relying on the algorithm itself to
inform a ‘useful’ feature. As discussed earlier, decision tree algo-
rithms GB and RF satisfy the objective of modeling a problem
and inherently have a built-in feature selection method that oper-
ates during model training. Importantly, this provides embedded
methods the ability to search the full feature space, that is, if the
algorithm infrastructure is in place to handle such high-
dimensional data. To this extent, many feature-response associa-
tions have the potential to be discovered that would otherwise
have been disregarded had data been pre-processed with restric-
tive assumptions prior to modeling with a filter method, or if cer-
tain potentially important features were left out of a resulting
wrapper method if not considered a part of the ‘optimal feature
subset’. For these reasons, and on the basis of computational
tractability, embedded methods are an ideal practical feature
selection method for optimizing microbial-based ML models.

Despite not being as extensively reported in studies that profile
the microbiome, new feature selection regimes that are more bio-
logically motivated, such as taxonomy-aware hierarchical feature
engineering (HFE) [53] are starting to gain traction and may be
ideal for when embedded methods struggle with using the full
search space when using very high-dimensional datasets.

5.2. Evaluating and interpreting estimator performance

For binary classification tasks (assigning samples to one of two
response labels), receiver operating characteristic (ROC) [56]
curves can be used to assess performance of the model at various
decision thresholds by plotting TPR (true positive rate – sensitivity)
as a function of the FPR (false positive rate – 1-specificity). By
extension, computing the area under the ROC curve (AUC) [57]
can provide a measure of how well the model could discriminate
Ŷ. AUC can range from 0.5 (separation of Ŷ was no better than ran-
dom chance) to 1.0 (perfect separation of Ŷ), assumes that the cost
of misclassifying each response label is equal and is sensitive to
when response labels are skewed.

For multiclass classification (assigning samples to more than
two responses), we advocate that logistic loss (logloss), also known
as cross-entropy loss be used, as it measures the quality of predic-
tions using the probabilistic confidence of sample separation into
respective Y labels and penalizes incorrect or uncertain predictions
[58]. A low logloss is preferred and reflects the distribution of the
certainty of predictions and like AUC, is also sensitive to when
response labels are skewed.

When predicting continuous labels in regression, mean squared
error (MSE) is a preferred metric that averages the squared differ-
ence of the known continuous Y value and the predicted value of Ŷ.
This metric is desired because it is differentiable, which can be
optimized better. A lower MSE is favorable as it measures how
close a fitted line is to the data points.

Often in practice, these metrics are computed for predictions on
a single cross-validated model rather than on separate models
from splitting the same dataset into a training and testing set.
Cross-validation is a method that holds out samples which are later
used to validate prediction accuracy during the learning process
and generally leads to models that are less biased and not as
overoptimistic as compared to train/test splitting [36].

While accuracy measures as described above are useful, they
cannot be used to explain why a model made a certain prediction.
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Typically, many algorithms have ad-hoc implementations for
model interpretation, such as measuring the ‘importance’ of each
feature or multiple features to response labels. In RF, for instance,
this is usually done by permuting, or re-arranging the values of
input features during the learning process, such that, if a feature
is ‘important’, changing its values will lead to increased error rates
in aggregated predictions. This process, also called variable impor-
tance, is often guided by model-specific information, such as the
correlation structure between predictors, and usually scales fea-
tures to have a maximum value of 100 to indicate the relative
importance (Fig. 3B).

5.3. A use case summary of current software implementations

Table 1 describes recently developed and commonly employed
toolkits designed to assist researchers through the steep learning
curves of predictive data analysis. For instance, SIAMCAT [59]
and BiomMiner [60] are comprehensive ML ‘pipelines’ tailored to
clinical microbiome datasets. These pipelines include the ability
to perform cross-study comparison, automatic tuning of optimal
parameters for dimensionality reduction, feature selection and
predictive modeling, provide post-hoc interpretable measures of
feature ‘importance’, and can demonstrate the influence of differ-
ent parameter choices on resulting classification accuracy.

Another variety includes web-based tools such as Micro-
biomeAnalystR [61], which is an ML-toolkit deployed through a
web-interface to assist users who may lack computational exper-
tise or resources. MicrobiomeAnalystR provides real-time compre-
hensive analysis reporting, recommendations, and visual
comparisons of an implemented model to public datasets. More-
over, commonly used analysis pipelines such as QIIME2 [62] and
mother [15] include implementations of SML algorithms such as
RF and SVMs.

Another implementation of ML is DeepMicro[ref], which has
been shown to perform well when using the microbiome to predict
various diseases through deep representation learning. This
method uses autoencoders to transform high-dimensional micro-
biome data into low-dimensional representations, then applies
classification algorithms on the various learned representations.
This method accelerates model training and parameter tuning by
significantly reducing dimensionality of the microbiome profiles.

Many re-implementations of the original RF, namely cforest
[63] and ranger [64], include novel resampling schemes for more
unbiased estimates of prediction accuracy, measures of feature
importance, and for computational efficiency on high-
dimensional data. By extension, tools like inTrees [65] and dtreeviz
can be used for ad-hoc knowledge discovery, such as to interpret
predictions of black box models. These systems are designed for
extracting, measuring and summarizing rules that govern splitting
criteria in decision tree ensembles. A brief schematic illustration of
this process is displayed in Fig. 3B.

Other software such as LIME [66] and iml [67] seek to offer
robust, model-agnostic explanations. These include measuring fea-
ture effects on the influence of predictions, and in the case of deci-
sion tree algorithms, approximating black box predictions by
constructing less complex ’surrogate’ trees that provide accessible
interpolations.

As comprehensive as some of the ML-toolkits described above
may seem, they are still limited in their customization and cross-
platform implementation. Given these constraints, more advanced
users may consider domain agnostic end-to-endML platforms with
parallelized implementations for predictive data analysis, such as
scikit-learn [68], keras [69], caret [70], and H2O.ai [71]. These
‘pipelines’ enable more customization for parameter tuning and
parameter choices, allow multiple models to be built from scratch
and ensembled using the same re-sampling parameters and pro-
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vide more access to raw model contents (i.e., indexed predicted
probabilities during cross-validation, as opposed to just an accu-
racy metric). Although less intuitive, these methods allow more
in-depth analysis than the more automated, user-friendly
microbiome-specific platforms that are built for execution effi-
ciency on smaller ML workloads, rather than for scale.

Nevertheless, the domain specific tools described in Table 1 are
useful for putting into context the biological relevance of the
domain problem, allow fast and easy exploration, and serve as a
good starting point for microbiome-based predictive data analysis.
These ‘pipelines’ are also beneficial for those with a more advanced
understanding of ML. While often the choice of pipeline comes
down to optimization and comfortability as well as if visual out-
puts are necessary for data reporting, it is best practice to choose
methodologies handle the characteristics of microbiome data and
are interpretable, especially if the goal is to translate the research
into diagnostics.

Aside from software implementations, it is worth mentioning
that there are a few public repositories for curated microbiome
datasets and related metadata from some of the most cited studies
in the field of microbial ecology: GMRepo [72], MLrepo [73],
curatedMetagenomicsData [74] and MicrobiomeHD. These public
repositories can be used to practice ML, benchmark new
approaches, and for cross-study comparison.

5.4. Machine learning for classification of human disease from
microbiome data

Microbiome data has been used to link microbial community
composition and disease state [75]. Diseases such as Inflammatory
Bowel Disease, metabolic syndrome, obesity, hypertension, cancer,
neurological diseases, among others have been linked to the
human microbiome [76]. Many studies have sought to statistically
link diversity metrics such as alpha diversity or abundance of par-
ticular taxonomic groupings with disease states [77]. However, as
sample numbers have increased, these broad level relationships
often do not hold up. For example, in studying obesity, it had been
proposed that some taxonomic markers (Firmicutes and Bacteri-
odetes) [78] as well as decreased alpha diversity [79] were indica-
tors of obesity. Reanalysis of this data, aggregating data across
studies, demonstrated that some of these coarse measures for the
microbiome did not adequately predict obesity across larger data-
sets [80]. The complexity and interpersonal variation within the
microbiome of humans has complicated the use of the broad level
metrics.

SML has been proposed as an alternative to other methods for
associating microbiome with an outcome as SML may be a more
robust analysis tool for predicting disease state based on microbial
community profiles. Table 2 summarizes key studies employing
SML to link microbial community data to a specific outcome to
illustrate how SML has been previously used and highlight some
considerations in employing SML to study microbial communities.
One recent study used fecal microbial community profiles to pre-
dict the presence of colonic neoplasia [76]. The use of SML allows
for models optimized for prediction of disease to be trained and
validated on out of training set data that will enable more robust
determination of the link between microbial communities and
health states. This study explored multiple SML methods for this
classification problem including L2 Regularized Linear Regression,
RF, and SVM. This study found that many methods resulted in
highly performing models, with RF performing the best (AUROC
curve 0.695). Other models such as L2-regularized logistic regres-
sion, XGBoost, L2-regularized SVM with linear and radial basis
function kernel all performed similarly with AUROC between
0.668 and 0.680. Interestingly, they found that while RF performed
the best out of the tested models, some more interpretable



Table 2
Studies using Machine learning in microbial ecology and microbiome studies.

System Classification Input data Number of samples Method Training and Validation Reference

Human Colonic screen
relevant
neoplasias

16S rRNA 172 patients with
normal
colonoscopies, 198
with adenomas, and
120 with carcinomas

L2-regularized logistic regression,
L1- and L2-regularized SVM with
linear and radial basis function
kernels, a decision tree, RF, and
gradient boosted trees

80% Training, 20%
Validation, 20% Test, Five-
fold cross validation

Topçuoğlu
et al 2020
[76]

Human Personalized
postprandial
glycemic
response

16S rRNA 900 samples, 800 in
training100 in
validation

Gradient boosted trees 800 samples used and
validated with a leave one
out cross validation
scheme, 100 sample
validation cohort

Zeevi et al
2015 [82]

Environmental Crop
Productivity

Shotgun metagenomic 12 samples RF 10 samples as training set,
2 samples as validation set
(all combinations of the 12
samples)

Chang et al
2017 [89]

Environmental DOC level 16S rRNA 302 samples feed-forward neural network
regression and RF

257 samples as training set
and 51 as test set

Thompson
et al 2019
[90]

Environmental Environmental
quality status
associated with
salmon farms

SSU RNA (bacteria and
ciliates)

152 across seven
salmon farms

RF and SVM Models trained on six of the
salmon farms and tested
with the seventh

Cordier
et al 2018
[91]

Environmental Environmental
impacts of
marine
aquaculture

SSU RNA (five marker
genes – one bacterial,
one foraminiferal, and
three universal
eukaryote)

144 Sediment
samples

RF Models trained on four of
the salmon farms and
tested with the other farm

Frühe et al
2020 [92]

Environmental Environmental
quality status
associated with
salmon farms

Bacterial 16S rRNA 12 sediment
samples collected
from six sites

RF 12 samples validated with
a leave one out cross
validation scheme

Dully et al
2020 [93]

Environmental Contamination
state (uranium,
nitrate, oil)

16S rRNA 93 samples for
ground water
contamination, 42
samples for oil
contamination

RF Performance metrics were
determiened from a
confusion matrix based on
out-of-bag predictions

Smith et al
2015 [87]

Environmental Glyphosate
presence

16S rRNA 32 16S rRNA gene
samples and 32 16S
rRNA samples

ANN and RF 32 samples used and
validated with a leave one
out cross validation scheme

Janßen
et al 2019
[86]

Forensic Postmortem
Interval

16S rRNA 144 sample swabs
were taken from a
total of 21 cadavers

SVR, K-neighbor Regression, Ridge
Regression, Lasso Regression, Elastic
Net Regression, RF regression,
Baysiean Ridge Regression

80% of samples for training
set and 20% of samples for
validation set

Johnson
et al 2016
[100]

Forensic Postmortem
Interval

16S rRNA 176 samples RF, SVM, ANN 70% for training and 30% for
testing. Accuracy
determined by mean
absolute error and
goodness of fit of 15 models

Liu et al
2020 [101]

Forensic geospatial
location (port
of origin)

16S rRNA 1,218 samples RF repeated k-fold cross
validation (k 10 with 3
repeats)

Ghannam
et al 2020
[50]
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approaches, such as L2-regularized logistic regression, had simi-
larly high accuracies. These authors proposed that while more
complicated models such as RF may result in higher accuracies,
interpretability is an important factor in considering study design
and the application of SML.

The use of the microbiome to personalize treatment was further
investigated in another study examining the interpersonal varia-
tion in the changes in blood glucose observed following meals
(postprandial glycemic response (PPGR)). Previous studies have
shown high interpersonal variability in PPGR in response to the
same food [81]. This suggests that some foods might result in a
high PPGR in some patients and low PPGR response in others. This
finding coupled with the high interpersonal difference in micro-
biomes, led Zeevi et al (2015) to develop a classifier that could
relate foods with the microbiome and other physiological data to
accurately predict the PPGR of patients [82]. The authors used GB
for regression to relate patient data, information about the meal,
and the patient’s microbiome to predict the PPGR. This study
revealed that the SML models that incorporated microbiome data
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were able to more accurately predict PPGR than meal carbohy-
drates or meal calories alone. The combined microbiome and
patient data model’s prediction of PPGR was correlated with the
measured PPGR with a Pearson correlation of 0.68. The model
was trained using a cohort of 800 individuals and validated on a
different 100 individuals. This type of analysis using ML with
patient and microbiome information allows for a more tailored
treatment that accounts for the high interpersonal variation that
is often observed with human disease [83].

5.5. Machine learning for classification in environmental monitoring

In addition to prediction or disease state in the human system,
coupling SML and microbial community profiling of microbial
communities in the environment shows promise for the purpose
of environmental monitoring [84]. Just like in the human environ-
ment, microbes in soil, water, or air can rapidly respond to changes
in their environment. These changes in microbial community com-
position can often occur in a predictable manner. SML has been
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used in both natural and industrial settings to use microbial infor-
mation to aid in predicting environmental quality [85], contamina-
tion state [86,87] as well as rates of various processes including
copper bioleaching [88], Previous studies have used microbial
biomarkers as indicators of particular environmental processes or
outcomes. Indicator species analysis has been used to identify taxa
that are related to particular phenomena or treatments that could
be used as biomarkers for that phenomena. However, like differen-
tial abundance analysis, indicator species is performed by analyz-
ing the prevalence and abundance of individual features in
different categories and is not able to identify complex interactions
between microbes in the dataset and the possibility that large
groups of microbes may respond to the treatment.

ML is gaining popularity in predicting environmental phenom-
ena from environmental microbial community data to develop and
predict environmental health indices. One such study used SML to
relate the microbial community present in agricultural soil with
crop productivity [89]. In this study the authors coupled SML with
metagenome wide association studies to identify potential differ-
ences in the microbial communities that were related to crop pro-
ductivity. RF models built from metagenomic data were able to
predict the crop productivity with an accuracy of 0.79. Another
study sought to relate dissolved organic carbon (DOC) with micro-
bial community composition [90]. RF and artificial neural networks
(ANN) were used to construct models to predict the DOC concen-
trations of leaf litter based on microbial community composition.
The models from this study were reasonably accurate with the
ability to predict DOC correlating with observed DOC with a Pear-
son correlation coefficient of 0.636 and 0.676 for the feed-forward
ANN and the RF models respectively. Interestingly, these research-
ers compared the important features identified through SML with
indicator species identified in indicator species analysis. While
they found some overlap in the features identified in both meth-
ods, only about 30% of the features were shared between indicator
species analysis and RF. This suggests that ML often uses distinct
features for classification than what would be identified through
differential abundance or indicator species analysis and may be
able to more sensitively identify groups of features that are related
to an outcome.

Biotic indices have been used to assess environmental health as
biotic organisms are impacted by the overall ecological quality sta-
tus of an environment and may be more sensitive than measure-
ment of abiotic factors. Therefore, various organisms have been
proposed as indicators of environmental health. SML can be used
to associate environmental genomic profiles with environmental
quality status, which is commonly used by regulators to guide
decision making in restoration and environmental monitoring
[85]. A number of studies have provided a framework for the use
of SML to identify patterns in microbial eukaryote and bacterial
communities to predict biotic indices and environmental quality
status using salmon farming as a test case. Cordier et al. (2018)
[91] used various marker genes targeting the small subunit rRNA
for bacteria, ciliates, and universal eukaryotes to compare the per-
formance of SML to predict the environmental quality status and
biotic indices compared to using environmental DNA to measure
known indicator taxa. They found that SML outperformed the use
of metazoan-assigned OTUs. The predictions obtained from
metazoan-assigned OTUs had kappa values between 0.211 and
0.569, whereas the SML models had kappa values raging from
0.755 to 0.881. Following on from this study, Frühe et al (2020)
[92] compared the performance of SML with standard IndVal
approach for prediction of environmental status. The indicator spe-
cies approach directly from OTUs/ASVs has appeal due to there not
being a need to assign taxonomy to the OTUs/ASVs like in the
metazoan-assigned OTUs approach. This study found that SML out-
performed the IndVal approach for prediction of environmental
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status. Furthermore, bacterial communities were better able to
predict environmental quality status salmon farming compared
to ciliates. These studies illustrated the utility of SML for environ-
mental biomonitoring. However, these studies used training and
validation data generated from the same lab. In order for this type
of ML-coupled to molecular analysis approach to be used for envi-
ronmental monitoring, there needs to be high replicability and
generalization of the models. Therefore, Dully et al 2020 [93] per-
formed an inter-lab validation study for the prediction of biological
indices. In this study two series of samples were collected and split
into technical replicates. From each site, biological replicates were
also sampled. The authors of this study found that there was
greater variability in diversity between biological replicates com-
pared to technical replicates processed in each lab, which suggests
that molecular methods can be standardized and have good repli-
cability. Furthermore, SML models constructed from the two labs
produced highly correlated data. These studies combine to demon-
strate the promise, generalizability, and robustness of linking SML
with environmental genomic data to assess environmental health
status, which can guide decisions related to environmental health.

The prediction of environmental contamination is another
growing area of interest in the application of SML and microbial
ecology. Often contamination is identified in the environment
through direct measurement of the contaminant of interest. While
measuring of the contaminant is the gold standard for contaminant
detection, often the contaminant may be present transiently. In
these cases, the contaminant may not be detectable at the time
of sampling. Smith et al (2015) demonstrated that RF could be used
to predict the presence of uranium and nitrate contamination in
groundwater [87]. This study demonstrates that a single set of
microbial community profiles can be used to predict any number
of response variables. Further, RF models were able to predict the
presence of oil in the ocean with near perfect accuracy (F1 score
of 0.98). Notably, RF could classify samples into no-oil, oil, and past
oil contamination based on the microbial community alone. The
past oil category contained samples that at one point in time had
detectable levels of oil, but at the time of sampling, there was no
detectable oil. This finding indicates that ML methods can identify
patterns in the microbial community that are indicative of current
and past contamination. The ability of the RF models to identify
past contamination could be indicative of ecological resiliency
and stability that allows microbial communities to maintain the
signature of oil after the oil was no longer present.

The ability to predict contamination in the environment has
been expanded to other systems including prediction of the herbi-
cide glyphosate in the Baltic Sea [86]. In the Janßen et al (2019)
study, the authors employed artificial neural networks and RF to
predict the presence of glyphosate. Expanding on the previous
work showing the ability of SML to predict contamination, Janßen
et al (2019) identified important features through constructing a
series of models leaving out individual features and monitoring
the changes in accuracy of the models. This type of approach can
be used to interrogate some of the more complex and less trans-
parent approaches such as Artificial Neural Networks (ANNs).
Another novel aspect of the work of Janßen et al (2019) is the
use of a random forests proximity matrix as the dissimilarity mea-
sure in PCoA. This approach resulted in clearer separation of sam-
ples on the PCoA analysis compared to using a Bray Curtis
dissimilarity matrix.

While these studies demonstrate the ability of ML to predict the
presence of a specific contaminant in an environmental sample,
other work has been used to predict more general properties such
as environmental impacts of hydraulic fracturing as well as loca-
tion and residence time of ballast water [94–96]. In both of these
cases the specific relationship between the features and the output
variable may not be clear. In other words, when predicting the
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presence of a specific contaminant, a single feature may increase or
decrease in abundance in direct response to the contaminant due
to the toxicity of the contaminant or ability of the contaminant
to stimulate growth of the microorganism. These more generic
phenomena may result in indirect impacts on the microbial com-
munity that are detectable using ML. These studies demonstrate
that it is possible to detect and classify contamination both specif-
ically and more generically using ML. Interrogation of the impor-
tant features used in these classifiers may provide insights into
specific biomarkers of contamination that could be used as tools
for environmental monitoring.

In addition to the applied outcomes described above, SML has
potential to be used to better understand the ecology of microor-
ganism in the environment. Smith et al 2015 [87] demonstrated
that microbial community composition as determined by 16S rRNA
can be used to predict a diverse set of geochemical factors includ-
ing pH, manganese and aluminum. Alneberg et al (2020) [97] also
highlight the application of SML to predict the ecological niche of
microbial groups with a focus on microbial communities from
the Baltic Sea. The authors of this study use metagenomic binning
to obtain 1962 metagenome assembled genomes (MAGs) repre-
senting the majority of prokaryotic diversity in in the Baltic Sea.
These prokaryotic clusters demonstrated distinct ecological prefer-
ences along the various environmental gradients observed. Ridge
Regression, RF, and GB were used to predict the niche gradient of
the prokaryotic cluster based on the functional profile of genes
found in each cluster. The authors of this study found that the pre-
dicted niche gradient agreed with the observed niche gradient with
a Spearman’s rank correlation of 0.70 – 0.81. These studies high-
light the fact that SML can be useful in identifying patterns in nat-
ural microbial communities and predicting the niche of an
organism.

5.6. Microbial communities and machine learning for forensics

Microbes have been used for forensic applications for a long
time. Normally microbial forensics is used to identify the source
of particular organisms related to bioterrorism, disease, or contam-
ination. However, it is possible to use microbial community com-
position as a tool for trace evidence [98,99]. Previous work has
shown the utility of microbial community composition in deter-
mining postmortem intervals (PMI). Various studies have exam-
ined the ability of the soil and skin microbiome to serve as a
molecular clock for postmortem intervals. Other studies have used
ML models constructed from skin microbiota to assess the PMI
[100,101]. Soil evidence has also been used as forensic information.
In the same way that pollen can be used to identify the source of a
particular soil sample, the microbial community in a soil sample
may provide information about where that soil was derived.
Metagenomic information from soils has been used to differentiate
soil from different locations [102,103]. These studies demonstrated
that information contained within the microbial community from
the soil sample could be used to identify the source of the soil.
These studies used hierarchical clustering and non-metric multidi-
mensional scaling (NMDS) to differentiate groups. More recently,
SML has been applied to determining the geographic source of an
ocean water sample based on the microbial community [50].
Ghannam et al (2020) [50] demonstrated that RF could be used
to accurately differentiate the location of sampling of water from
20 different locations. This study is important in that it shows that
SML can be used to identify important trace signals in the micro-
bial community of water that can accurately distinguish between
20 diverse locations from around the world as well as specifically
identify the location of collection within locations close in proxim-
ity to each other.
1104
6. Summary and outlook

This review has sought to provide an overview of how ML has
progressed the field of microbial ecology. Despite the unprece-
dented sophistication and promise of ML algorithms, there exist
several outstanding issues that should be considered when apply-
ing ML to marker-gene datasets. Although ML models can be con-
sistently constructed to produce high accuracy metrics on complex
data, the underpinning decision support systems can often be lar-
gely black box methods of investigation where the rational and
logic behind predictions are hidden behind layers that are chal-
lenging to interpret [104].

The large majority of studies using ML to investigate micro-
biome datasets gauge and validate hypotheses and report findings
through performance and may apply post-hoc procedures to iden-
tify important biological taxa using variable importance metrics.
However, due to the complexity of some modeling methods, infer-
ring biological importance from feature importance could be prob-
lematic. Therefore, there is a need for increased interpretability in
ML models used in microbial ecology studies. Often the learning
algorithms applied to marker-gene datasets are developed and
implemented for improved performance, rather than for model
interpretation [104,105]. In order to glean biologically meaningful
data from these ML methods, it may be important to consider the
choice of model with preference toward more interpretable algo-
rithms as well as novel methods for interpreting models such as
permutational approaches. Microbial ecology studies that demon-
strate model transparency are limited to reporting single feature to
response interaction or are overburdened by investigating feature
contributions to each observation for accumulated local explana-
tions of modeling procedures [48,76,106,107].

There have been major improvements for model specific and
model agnostic approaches for model interpretation [66,108–
111], some were described in this review. However, these methods
often cannot account for hidden heterogenous effects of the full
feature space, which can reduce model fidelity and mislead
researchers depending on algorithm selection.

Here, we argue that while methods for inferencing how single
microbial community members influence single predictions are
beneficial (local interpretations), appreciating the inner workings
of multiple microbial community members and how they generally
discern a group of the same response label is more robust and gen-
eralizable (global interpretation). In the context of microbial ecol-
ogy, the lack of global interpretation techniques makes it
challenging to inference on the basis of the full feature space and
to identify all potential features that are interacting to most fre-
quently to predict response labels with the least error. Often a con-
dition is not attributable to a single feature, but multiple features.
One of the strengths of ML is the ability to appreciate these groups
of features in making a prediction. However, in interpreting a
model, a focus on the importance of a single feature may limit the
applicability to the real-world system that is being modeled (i.e.,
appreciating the full microbial community rather than subsets).

In high-risk domains like human health and biology, the ability
to interpret and generalize a model has many downstream bene-
fits, such as identifying biological relevance that support hypothe-
ses of the system being investigated and the ability to extract
actionable insights about the community of study. Many of the
implementations described in this review seek to extract actional
information from microbiome datasets that can be used in the
clinic, environmental monitoring applications, and forensics. It is
important that in implementing the use of ML-identified biomark-
ers in diagnostic application that there is a need for common
acceptance and trust of the algorithms employed which lead to
critical decisions relating to the microbiome [112–116].



R.B. Ghannam and S.M. Techtmann Computational and Structural Biotechnology Journal 19 (2021) 1092–1107
While other disciplines of biology such as single-cell RNA seq,
drug discovery and development, and neuroscience have attempted
to bring interpretation to black box ML models [117–121], investi-
gation intomicrobial ecology applyingML onmarker-gene datasets
is lagging behind. This is surprising since there has been a rapid
expansion of microbiome related research that will continue to
expand. With a lack of interpretation of ML in this field, fundamen-
tal dynamics of a microbial system will be left unreported.

It is notable to mention that as a result of the structure of
marker-gene datasets from HTS platforms, Classification and
Regression Trees (CART) algorithms continue to dominate the field
of microbial ecology. However, deep learning is a promising
approach to revolutionize how we investigate microbial communi-
ties. Considerations should be placed on whether deep learning is
necessary to investigate metagenomic datasets, since, although
the inner workings of neural networks are the focus of ongoing
research [122,123], they are some of the most notorious black
box methods that lack interpretability. In some cases, it may be
better to choose a model that can be more easily interpreted over
a more complex model that has a higher performance metric.

There are still a number of open questions and considerations
that need to be taken into account when considering the use of
employing SML for monitoring and diagnostics. One of the first
considerations is the need for sufficient replication in experimental
design. Human microbiome studies have paved the way with high
replication with hundreds of samples used in training algorithms.
However, for environmental monitoring, sample collection is often
costly, which can limit replication. In cases where sample replica-
tion is limited, some test and validation approaches may be more
useful. For example, a leave-on-out validation strategy could be
useful when replication is low and the splitting of samples into a
training and test set would result in even less replication. Another
consideration is sampling depth. As was discussed earlier, diversity
estimates from sequencing data highly depends on sequencing
depth. Therefore, it is important to ensure the diversity of the sam-
ples have been sufficient covered in constructing models to be used
in SML. This is an example of how an understanding of ecological
diversity measures and coverage estimates (e.g. Good’s coverage)
may be an important first step in determining if the obtained data
is sufficient for development of SML models. Another important
question that must be addressed is the level of accuracy that a
model must obtain to be useful for its purpose. This question is a
little more difficult to answer and depends highly on the domain
problem. In certain domains higher accuracy may be required for
a model to be of use. While 100% accuracy may not be achievable
in noisy real-life environments, it is important to consider the level
of accuracy that is needed. This may vary between medical diag-
nostics, forensics, and environmental monitoring applications.

If we are to move toward a translational framework for micro-
biome analysis where features extracted from ML models are used
to inform development of particular treatments or monitoring
approaches, it is important to have a thorough understanding of
the interpretability of the models. It is also important to ensure
that ML is used to complement other approaches for profiling
microbial communities that confirm the choice of selected
biomarkers. Overall, it is important to consider how ML models
are interpreted and reported in situations where actionable insight
can be extracted from modeling procedures and used to construct
downstream molecular applications such as in health and environ-
mental diagnostics.
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