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Abstract

Background and Aims

Lynch Syndrome (LS) is caused by pathogenic germline variants in one of the mismatch

repair (MMR) genes. However, up to 60% of MMR-deficient colorectal cancer cases are cat-

egorized as suspected Lynch Syndrome (sLS) because no pathogenic MMR germline vari-

ant can be identified, which leads to difficulties in clinical management. We therefore

analyzed the genomic regions of 15 CRC susceptibility genes in leukocyte DNA of 34 unre-

lated sLS patients and 11 patients withMLH1 hypermethylated tumors with a clear family

history.

Methods

Using targeted next-generation sequencing, we analyzed the entire non-repetitive genomic

sequence, including intronic and regulatory sequences, of 15 CRC susceptibility genes. In

addition, tumor DNA from 28 sLS patients was analyzed for somatic MMR variants.

Results

Of 1979 germline variants found in the leukocyte DNA of 34 sLS patients, one was a patho-

genic variant (MLH1 c.1667+1delG). Leukocyte DNA of 11 patients withMLH1 hypermethy-

lated tumors was negative for pathogenic germline variants in the tested CRC susceptibility

genes and for germlineMLH1 hypermethylation. Somatic DNA analysis of 28 sLS tumors

identified eight (29%) cases with two pathogenic somatic variants, one with a VUS predicted
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to pathogenic and LOH, and nine cases (32%) with one pathogenic somatic variant (n = 8)

or one VUS predicted to be pathogenic (n = 1).

Conclusions

This is the first study in sLS patients to include the entire genomic sequence of CRC sus-

ceptibility genes. An underlying somatic or germline MMR gene defect was identified in ten

of 34 sLS patients (29%). In the remaining sLS patients, the underlying genetic defect

explaining the MMRdeficiency in their tumors might be found outside the genomic regions

harboring the MMR and other known CRC susceptibility genes.

Introduction
Lynch Syndrome (LS) is the most common form of hereditary colorectal cancer (CRC) and is
caused by heterozygous pathogenic germline variants in one of the mismatch repair (MMR)
genes (MLH1,MSH2,MSH6, PMS2) [1]. In addition, a unique subgroup of LS patients carry
deletions in the 3’ end of EPCAM, a gene immediately upstream ofMSH2 [2, 3].

More than 95% of LS-associated CRCs display microsatellite instability (MSI), the molecu-
lar hallmark of LS [4]. Immunohistochemical analysis (IHC) of the tumor for loss of MMR
protein expression points to a possible causative gene, with the diagnosis of LS confirmed once
a pathogenic germline variant is identified. Patients suspect for LS are selected for genetic test-
ing on the basis of clinical characteristics (Amsterdam or Bethesda criteria) and/or molecular
diagnostic testing of the LS-associated tumors (LSAT) [5, 6]. Opposed to familial colorectal
cancer type X (FCCTX) families [7], who also fulfill Amsterdam criteria, the patients suspect
for LS do show MSI and loss of MMR gene expression in the tumor.

LS patients have an increased risk of developing CRC, with estimates of lifetime risk ranging
from 36% to 75% [8–11]. Women who carry pathogenic variants also face a high risk of endo-
metrial cancer [12]. Several other cancer types, including small bowel, stomach, pancreas,
ovary, renal pelvis, ureter, bladder, brain, liver, bile duct, gall bladder and skin occur frequently
[11, 13–15]. Recent studies also indicate an increased risk for prostate and breast cancer [16–
18]. To achieve adequate cancer prevention, early identification of individuals with LS is essen-
tial. Intensive surveillance by colonoscopy every 1–2 years, starting at age 20 to 25, is now rec-
ommended and is known to reduce CRC morbidity and mortality [19, 20]. Accurate and
timely identification of LS patients is therefore crucial to providing the correct treatment [21].

A recent study estimated that, using current approaches, up to 60% of MMR-deficient colo-
rectal cancer cases remain unexplained [21]. These patients are designated as ‘suspected Lynch
Syndrome’ (sLS) [21], or also known as ‘Lynch-Like Syndrome’ [22], and failure to determine
the underlying cause of disease has a major impact on the clinical management of these
patients. In addition to germline variants, biallelic somatic variants may explain disease in up
to 69% of MMR-deficient tumors that lack pathogenic germline variants orMLH1 promoter
hypermethylation [23–25].

MSI due to somatic hypermethylation of the promoter region ofMLH1 is also seen in up to
15% of sporadic CRC patients [26]. SporadicMLH1methylated tumors commonly occur at a
relatively advanced age and in absence of family history of CRC [27–29]. Patients with somatic
MLH1 promotor hypermethylated tumors rarely carry germline MMR variants, although
exceptions have been published [30–32]. These studies indicateMLH1 hypermethylation as a
‘second-hit’mechanism already present in adenoma stage and demonstrate thatMLH1
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hypermethylation does not exclude the presence of germline pathogenic MMR variants.MLH1
hypermethylated tumors in young patients with a family history of CRC can also be due to
germlineMLH1 hypermethylation. Though very rare, this phenomenon has been described
before [33–41]. Inheritance of a constitutional epimutation has been shown in at least three
unrelated families [42–44].

The aim of our study was to identify an underlying genetic basis in a cohort of 34 sLS
patients and 11 patients withMLH1 hypermethylated tumors and a clear family history for LS.
In an effort to discover previously undetected germline variants, the entire genomic sequences
of four MMR genes and eleven CRC susceptibility genes were analyzed. In addition, tumor
DNA from 28 sLS tumors was analyzed for somatic variants in the MMR genes.

Materials and Methods

Study subjects
Between 1998 and 2011, a total of 45 patients were recruited from five academic centers in The
Netherlands, including Leiden University Medical Centre (n = 20), Maastricht University Med-
ical Centre (n = 11), Erasmus Medical Centre (n = 7), University Medical Centre Utrecht
(n = 6) and VU University Medical Centre Amsterdam (n = 1). Demographic and clinical data
and informed consent were obtained during the consultation. Forty-three patients fulfilled the
revised Bethesda criteria [6].

All patients had been previously screened for germline variants in the MMR gene that
showed loss of expression (as indicated by immunohistochemical analysis) by Sanger sequenc-
ing or denaturing gradient gel electrophoresis (DGGE), without identification of a pathogenic
germline variant. Large deletions/duplications in the MMR genes were excluded by analysis
with multiplex ligation-dependent probe amplification (MLPA, MRC Holland, Amsterdam),
or in some cases, with Southern blot analysis.

Immunohistochemical analysis (IHC) and microsatellite instability testing were routinely
performed at the request of a board-certified Clinical Genetic medical specialist. Because rou-
tine testing of all four MMR proteins only became available around 2004, tumors recruited
before 2004 were not fully tested by MMR immunohistochemistry. Leukocyte and tumor
DNAs were retrieved from the archives for the current study. Immunohistochemistry data was
complete for 18 sLS patients (53%), for 10 cases only PMS2 immunohistochemistry was miss-
ing and the remaining 6 tumors had incomplete IHC results (see S1 Table). TenMLH1 hyper-
methylated tumors (8 colorectal-, 2 endometrium-) showed IHC loss of MLH1 and PMS2
(PMS2 was not tested in sLS-68—see S1 Table) and normal MSH2/MSH6 expression. The elev-
enth patient, sLS-81, showed loss of MLH1 expression (other MMR genes were not tested). All
tumors except tumor sLS-48 (MSI not tested) displayed a microsatellite instable phenotype
(high or low instability, see Table 1 and S1 Table).

Family history data showed that 82% of the sLS patients and 100% of patients in theMLH1
hypermethylated cohort had a first-degree relative with a Lynch Syndrome-associated tumor
(LSAT). Unfortunately, no DNA could be obtained from these affected family members.
Among the sLS cohort, 28 patients presented with colorectal cancer (CRC) as their first LSAT,
while 5 patients had endometrial cancer (EC) and 1 patient had a sebaceous gland cancer. In
theMLH1 hypermethylated cohort, 9 patients presented with CRC and 2 with EC. The mean
age of diagnosis of the first LSAT was 48,6 years for the sLS group and 63,2 years for theMLH1
hypermethylated group (See Table 1). Leukocyte DNA isolated from peripheral blood was
available for all patients. The study was approved by the local medical ethical committee of the
LUMC (P01-019E).
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Targeted genomic sequencing with next-generation sequencing
Targeted next-generation sequencing of leukocyte DNA was carried out using a custom
designed set of SureSelect 120-mer target enrichment RNA oligonucleotides (baits) for in-solu-
tion hybrid selection (Agilent Technologies, Santa Clara, CA). Baits were designed against 15
CRC susceptibility genes, spanning the entire non-repetitive genomic region of the genes,
including exons, introns, and UTRs, and 5 kb upstream and 3 kb downstream of the gene (see
Table 2). The average coverage was> 95% for all coding regions, and 43% for overall coverage.
Libraries were prepared according to the manufacturers’ protocols (NEBNext1 and Illu-
mina1, San Diego, California, USA). In brief, 2 μg of genomic DNA from each patient was
fragmented to lengths of 300–500 bp using the Covaris S220 single tube sonicator (Life Tech-
nologies, Carlsbad, CA). Fragment ends were repaired and an A-tail was added to the 3’ end of
the DNA fragments. Illumina1 dual-barcoded adaptors (patient-specific) were ligated, and
the adaptor-ligated DNA was then enriched by 10 cycles of PCR. PCR products derived from 4

Table 1. Clinicopathologic factors sLS- andMLH1 hypermethylated cohort.

Clinicopathologic factor no of patients (%)

sLS MLH1 hypermethylated

Number of patients 34 11

Patient characteristics

Male 17 (50) 3 (27)

Female 17 (50) 8 (73)

Age, y 48,6 63,2

Clinical characteristics

No Bethesda/Amsterdam II 1 (3) 1 (9)

Bethesda only 23 (68) 7 (64)

Amsterdam II 10 (29) 3 (27)

Tumor

CRC 28 (82) 9 (82)

EC 5 (15) 2 (18)

Other 1 (3) -

Family History

FDR 28 (82) 11 (100)

NA 3 (9) -

No 3 (9) -

MSI

MSI-High 25 (74) 9 (82)

MSI-Low 4 (12) 1 (9)

MSI-Stable 4 (12) -

Unknown 1 (3) 1 (9)

Clinicopathologic factors of the 34 sLS- and 11 MLH1 hypermethylated patients. Patients presented with colorectal cancer (CRC), endometrial cancer

(EC) or other LS-associated tumors (Other). Family history is defined as first degree relative with a LSAT (FDR), no family history of LS (No) or family

history not available (NA).

doi:10.1371/journal.pone.0157381.t001
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to 5 patients were pooled in equimolar amounts and hybridized in solution to the custom baits.
Captured targets were subsequently extracted and further enriched by 15 cycles of PCR.
Paired-end sequencing of the PCR products was performed on the Illumina HiSeq1 2000.

Data analysis
Illumina HiSeq1 2000 sequences were exported as FASTQ files and separated using the bar-
codes. The sequence data was checked for quality using the quality control tool for high
throughput sequence data, FastQC (http://www.bioinformatics.babraham.ac.uk/projects/
fastqc/). Alignment of the Illumina sequences to the human reference genome (hg19, NCBI
build GRCh37) was performed using the Burrows-Wheeler aligner (BWA) (http://bio-bwa.
sourceforge.net) and sequence duplicates were marked with Picard (http://picard.sourceforge.
net/). Variant calling on the resulting BAM files was performed by VarScan (http://varscan.
sourceforge.net/) using the following settings: minimal coverage of 8, minimal reads of 2, mini-
mal variant frequency of 0.2 and a minimal average quality of 20. Variants were functionally
annotated using ANNOVAR [45].

Variant filtering and classification
The full dataset was filtered by targeted region and variant frequency. Variants with a minor
allele frequency (MAF) of>0.05, as reported in the NCBI dbSNP database version 142 (http://
www.ncbi.nlm.nih.gov/projects/SNP/) were excluded from further analysis. Because analysis of
PMS2 variants is difficult due to interference by pseudogenes, variants located in one of the
duplicated regions were excluded from further analysis.

Splice variants. All remaining sequence variants with a MAF<0.05 were analyzed with
Alamut software version 2.0 (Interactive Biosoftware, Roven, France), a software package that
includes the splice site prediction algorithms SpliceSiteFinder, MaxEntScan (http://genes.mit.

Table 2. Custom-designed baits used for Sureselect target enrichment of 15 CRC susceptibility genes.

Chr Genbank
reference

Gene Total target
region (kb)

Chromosome Total area covered
(kb)

% of total target
area

% repeated
sequences

Start End

1 NM_001128425.1 MUTYH 19,2 45791914 45811142 10,7 56% 33%

2 NM_002354.2 EPCAM 25,9 47591286 47617165 13,4 52% 55%

2 NM_000251.2 MSH2 88,1 47625262 47713360 26,1 30% 58%

2 NM_000179.2 MSH6 31,9 48005220 48037084 14,5 45% 42%

2 NM_000534.4 PMS1 101,5 190643810 190745354 48,4 48% 41%

3 NM_000249.3 MLH1 60,5 37034840 37095335 23,2 38% 52%

5 NM_002439.4 MSH3 230,3 79945293 80175633 80,6 35% 53%

5 NM_000038.5 APC 146,7 112038217 112184935 60,6 41% 47%

7 NM_000535.5 PMS2 36,7 6012370 6049037 9,8 27% 59%

10 NM_004329.2 BMPR1a 176,5 88511395 88687944 52,7 30% 58%

10 NM_000314.4 PTEN 103,3 89628194 89731531 41,8 40% 49%

14 NM_001040108.1 MLH3 43,8 75477466 75521235 21,3 49% 41%

16 NM_003502.3 AXIN1 73 334439 407464 39,1 54% 36%

17 NM_004655.3 AXIN2 118,5 63521684 63640183 65 55% 34%

18 NM_005359.5 SMAD4 62,8 48551582 48614409 31,7 50% 39%

Baits were designed against 15 CRC susceptibility genes. Target region spans the entire genomic region, including 5 kb upstream and 3 kb downstream

of the gene. Repeated sequences are not covered by custom-designed baits.

doi:10.1371/journal.pone.0157381.t002
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edu/burgelab/maxent/Xmaxentscan_scoreseq.html), NNSPLICE (http://www.fruitfly.org/seq_
tools/splice.html) and Human Splicing Finder (http://www.umd.be/HSF/). Variants can affect
splicing by altering the canonical splice site sequence, by creation of new splice sites, activation
of cryptic splice sites or by altering splice regulatory elements (SREs) [46]. In addition, branch
point sequences and polypyrimidine tracts were investigated for possible variants. As a branch
point is usually located 18 to 50 nt upstream of the splice acceptor site, all variants within 100
nt of the splice acceptor sites ofMLH1,MSH2,MSH6 or PMS2 were visually inspected in Ala-
mut [47].

Missense prediction. All missense variants were filtered based on the predictions of in sil-
ico protein prediction software packages including Align GVGD, SIFT (http://sift.jcvi.org/),
PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2/), MutationTaster (http://www.
mutationtaster.org/) and MutationAssessor[48].

Promoter variants. Using the UCSC Genome browser, the putative promoter regions of
MLH1,MSH2,MSH6 and PMS2 (as indicated by the histone mark H3K4me3 that is generally
found near promoters) were analyzed for variants.

Variant classification. The Leiden Open Variation Database (LOVD, http://www.lovd.nl/
3.0/home) and ClinVar [49] were consulted to identify previously described and classified vari-
ants. Variants that were not described in above-mentioned databases were classified according
to the five-tiered InSiGHT scheme: benign (class 1), likely benign (class 2), variant of unknown
significance (class 3), likely pathogenic (class 4), and certainly pathogenic (class 5) [50].

Validation. All (likely) pathogenic- or splice variants were visually inspected in the Inte-
grative Genomics Viewer (IGV, https://www.broadinstitute.org/igv/home) and confirmed with
Sanger Sequencing.

Germline variants found in this study have been submitted to the appropriate LOVD data-
base, available at http://www.lovd.nl/3.0/home.

MLH1 promoter hypermethylation
Methylation of theMLH1 promoter region was analyzed using methylation specific PCR
(MSP), with previously described primers [51]. Bisulfite conversion of tumor DNA was carried
out using the EZ DNA methylation Gold kit (Zymo Research, Orange, US), following the man-
ufacturers’ standard protocol. Bisulfite-converted DNA was amplified using specific methyl-
ated and unmethylated primers in a PCR reaction, following a LUMC diagnostics protocol
[33].

Functional RNA analysis
To determine the effect on splicing of one splice site variant (MLH1 c.1667+1delG), patient
RNA was analyzed for aberrant splicing. RNA was isolated from short-term cultured periph-
eral blood lymphocytes, and analyzed with and without inhibition of nonsense-mediated decay
[46]. In addition, a minigene splicing assay was performed to confirm the splicing patterns
seen in the RNA of the patient as described by van der Klift et al [46].

Somatic variant screening
DNA from 28 sLS tumors, isolated from formalin-fixed paraffin-embedded tissue blocks, was
screened for variants in the coding regions ofMLH1,MSH2,MSH6 and PMS2 with the Ion
PGM™ (Life Technologies, Carlsbad, CA). Next-generation sequencing was carried out accord-
ing to the Ion PGM™ protocol, with supplier’s materials. Primers were obtained from Life Tech-
nologies. The complete panel consisted of 162 amplicons, covering 98%, 90%, 98% and 75% of
MLH1,MSH2,MSH6 and PMS2, respectively.
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Raw data analysis, alignments, and variant calling were carried out using the default param-
eters in Torrent Suite v4.0. The Variant Caller Parameter Setting was set on ‘Somatic–PGM–

Low Stringency’. Variants were functionally annotated using ANNOVAR [45]. Variants were
visually inspected with IGV and (likely) pathogenic variants were confirmed with Sanger
sequencing. The annotated dataset from the somatic screening was filtered in the same manner
as the germline targeted next-generation sequencing dataset. For assessment of pathogenicity,
the catalogue of somatic mutations in cancer (COSMIC, http://cancer.sanger.ac.uk/cosmic)
was used additionally. Loss of heterozygosity (LOH) was determined as previously described
[52]. Somatic data on 20 sLS tumors and 3MLH1 hypermethylated tumors (see S1 Table) has
been described previously [52]. These twenty-three patients were also tested for variants in the
POLE/POLD1 exonuclease domain (EDM). Patient sLS-07 and sLS-09 were found to carry
POLE-EDM variants, previously described to be pathogenic (respectively POLE c.2131 G>T
and POLE c.857 C>G) [52, 53].

Results

Germline targeted next-generation sequencing
Coding variants. Targeted next-generation genomic sequencing of 15 CRC susceptibility

genes was performed in leukocyte DNA of 34 unrelated sLS patients and 11 patients with
MLH1 hypermethylated tumors. The average coverage was 101x. In total, 1979 nucleotide vari-
ants were detected within the targeted region with a MAF< 0.05. All 15 genes were first ana-
lyzed for coding variants. After filtering, 52 coding variants remained, of which 16 were
synonymous, 33 were missense and 3 were small (in-frame) insertions or duplications. All in-
frame insertions/duplications occurred within a stretch of Ala-repeats in exon 1 ofMSH3 and
were present in multiple patients and were classified as variants of unknown (clinical) signifi-
cance (VUS). Eight of the 33 missense variants were found in the coding sequences ofMLH1,
MSH2,MSH6 or PMS2 and were described in the LOVD database as (likely) benign (class 1 or
2), exceptMLH1 c.277A>G, which was classified as VUS (class 3). Of the remaining 25 mis-
sense variants, 20 were predicted to be benign by at least four out of five protein prediction pro-
grams. One of the remaining five variants, EPCAM c.50C>A was predicted to be pathogenic
by two out of five prediction programs but was described to be benign [49]. The final 4 variants
were found in AXIN1, AXIN2,MSH3 andMUTYH and were classified as variants of uncertain
significance (VUS), or as pathogenic (n = 1;MUTYH c.1187G>A) (see Table 3).

Splice variants. For three variants the splice prediction algorithms predicted deviating
splicing efficiencies compared to the wildtype sequences. AnMLH1 variant, in patient sLS-117
(see Table 3), was predicted to abolish the consensus splice site sequence (c.1667+1delG).
Functional analysis of patient RNA revealed a mutant MLH1 transcript 87 nucleotides longer
than the expected wild type transcript [46]. The 87 nt sequence corresponded to the intron
sequence downstream of the splice variant, indicating activation of a cryptic donor splice site
88 nucleotides downstream of the canonical splice site. Translation of the aberrant mRNA
leads to the in-frame incorporation of 29 amino acids in the protein-interacting domain of the
MLH1 protein. The other variants predicted to affect splicing, a synonymous APC c.1959G>A
change and theMUTYH c.1187G>A variant described above, only slightly lower the splicing
efficiency according to prediction software. The APC variant is described in the LOVD data-
base as having ‘no known pathogenicity’.

In addition, branch point sequences and polypyrimidine tracts were investigated for possi-
ble variants with branch site prediction software SpliceSiteFinder. None of the variants found
were predicted to change the existing consensus sequence or to create new branch points.
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Promoter variants. Of the 22 promoter variants, 8 were known polymorphisms. The
remaining 14 variants were present in single patients of which three were actually present in
the specific MMR gene that showed loss of protein expression in the tumor:MLH1 c.-
1019A>C,MLH1 c.116+730C>T andMSH2 c.211+550G>C. These variants have not been
described before, and functional significance of these variants is unknown according to the
INSIGHT classification [50].

Germline MLH1 methylation. Leukocyte DNA of patients withMLH1 hypermethylated
tumors were also investigated for possible germline methylation. No evidence of germline
methylation was found in any of the patients

Somatic variant screening
Tumor DNA from 29 of the 34 sLS tumors was available for somatic DNA analysis. Patient
sLS-117 was excluded from somatic variant screening due to the detection of a pathogenic
germlineMLH1 variant (MLH1 c.1667+1delG). Tumor and normal DNAs from the remaining
28 patients were sequenced for somatic MMR variants.

In total, two pathogenic somatic events were detected in eight tumors (29%), including
either two variants (n = 3) or one variant together with LOH (n = 5) (see Table 4 and S1
Table). One tumor was found to carry a VUS (predicted to be pathogenic) together with LOH.
Nine tumors (32%) revealed one pathogenic somatic variant (n = 8), or VUS predicted to be
pathogenic (n = 1), while no (likely) pathogenic somatic variants were found in seven of the
tumors (25%) (see Table 4). Three tumors (11%) could not be analyzed due to poor tumor
DNA quality. Seventeen out of the twenty-two somatic MMR variants were nonsense or frame-
shift variants and were classified as pathogenic (class 5). Of the remaining five somatic variants,
two (MLH1 c.790+1 G>A andMLH1 c.2059C>T) were previously described to be pathogenic
in the LOVD database; two (MSH6 c.2876 G>A, andMSH2 c.1166G>A) were not previously
described and were predicted to have a deleterious effect on function by at least four out of five
protein prediction programs (See Table 4) and one was an in-frame deletion of three nucleo-
tides (MSH6 c.3974_3976delAGA), which was classified as having an uncertain effect on func-
tion (VUS, class 3).

Patient sLS-22 was previously found to carry a germlineMLH1 VUS (MLH1 c.277 A>G),
and analysis of the tumor DNA revealed an somaticMLH1 frameshift variant located nearby
the germline variant (MLH1 c.281delT). NGS analysis showed that both variants were located
on the same allele. Moreover, the tumor DNA displayed LOH with retention of both variants.

Table 3. Patients with germline coding VUS or germline pathogenic variants.

Patient Tumor tested IHC negative staining MSI Other tumors Gene Variant Protein Class

sLS-22 CRC54 MLH11 H - MUTYH c.1187G>A p.(G396D) 5

MLH1 c.277A>G p.(S93G) 3

sLS-44 CRC41 MSH2/MSH6 H - AXIN2 c.1168A>G p.(S390G) 3

sLS-56 CRC64 MSH2/MSH6 H CRC64 AXIN1 c.2566G>A p.(G856S) 3

sLS-72 CRC73 MSH2/MSH6 H Br60, EC68 MUTYH c.1187G>A p.(G396D) 5

sLS-88 CRC51 MLH1/PMS2 H Pr64 MSH3 c.982C>T p.(R328W) 3

sLS-117 CRC20 PMS2 NP - MLH1 c.1667+1delG p.(S556ins29) 5

1staining of MSH6 and PMS2 was not performed. Tumor tested represents tumor type, followed by the age of onset. Patients presented with colorectal-

(CRC), endometrial cancer (EC), breast cancer (Br) and/or Prostate cancer (Pr). MSI-status is defined as MSI-High (H) or not performed (NP).

Classification of class 3 (VUS) and class 5 (pathogenic) is based on in silico protein predictions, as well as the LOVD Database. All variants were found in

sLS patients.

doi:10.1371/journal.pone.0157381.t003
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Table 4. Patients screened for somatic variants.

Patient Tumor
tested

Cohort MSI Family
History

Gene Variant Amino acid
alteration

% Class Functional annotation

Two somatic variants

sLS-06 CRC47 MSH2/
MSH6

H FDR MSH2 c.1600_1601delCG p.(R534*) 19% 5 Nonsense variant

MSH2 c.2131 C>T p.(R711*) 20% 5 Nonsense variant

sLS-07 CRC39 MSH6 S FDR MSH6 c.2876G>A p.(R959H) 14% 3 VUS, 4/5 programs
predict pathogenic

MSH6 LOH

sLS-22a CRC54 MLH1/
PMS2

H FDR MLH1 c.281delT p.(S95Lfs*13) 93% 5 Frameshift variant

MLH1 LOH

sLS-38a CRC30 MSH2/
MSH6

H FDR MSH2 c.1140delA p.(L380Ffs*32) 82% 5 Frameshift variant

MSH2 LOH

sLS-79b EC57 MSH2/
MSH6

H FDR MSH2 c.1600delC p.(R534Vfs*9) 20% 5 Frameshift variant

MSH2 c.2001delT p.(T668Lfs*17) 20% 5 Frameshift variant

sLS-92 CRC45 MLH1/
PMS2

H FDR MLH1 c.790+1 G>A p.(E227_S295del) 78% 5 Pathogenic (LOVD
database)

MLH1 LOH

sLS-
102a

CRC62 MLH1/
PMS2

H FDR MLH1 c.869dupC p.(F291Ifs*16) 53% 5 Frameshift variant

MLH1 LOH

sLS-104 SB47 MSH2/
MSH6

H No MSH2 c.271delG p.(D91Ifs*83) 92% 5 Frameshift variant

MSH2 LOH

sLS-111 EC58 MSH2/
MSH6

H FDR MSH2 c.687delA p.(I229Mfs*10) 44% 5 Frameshift variant

MSH2 c.773 T>A p.(L258*) 41% 5 Nonsense variant

One somatic variant

sLS-09 CRC42 MSH6 L FDR MSH2 c.1166G>A p.(R389Q) 38% 3 VUS, 4/5 programs
predict pathogenic

MSH6 c.2539G>T p.(E847*) 36% 5 Nonsense variant

sLS-55 EC47 MSH2/
MSH6

H FDR MSH6 c.3971delAGA p.(L1325del) 24% 3 VUS, in-frame deletion

MSH2 LOH

sLS-56 CRC64 MSH2/
MSH6

H NA MSH2 c.1710T>A p.(Y570*) 19% 5 Nonsense variant

sLS-58 CRC39 MLH1/
PMS2

L FDR MLH1 c.790+1 G>A p.(E227_S295del) 28% 5 Pathogenic (LOVD
database)

sLS-64 CRC48 MLH1/
PMS2

H FDR MLH1 c.2059C>T p.(R687W) 28% 5 Pathogenic (LOVD
database)

sLS-72 CRC73 MSH2/
MSH6

H No MSH2 c.1576dupA p.(T526Nfs*3) 29% 5 Frameshift variant

sLS-77 CRC45 MSH2/
MSH6

H No MSH2 c.2470C>T p.(Q824*) 38% 5 Nonsense variant

sLS-101 EC55 H FDR PMS2 c.1687C>T p.(R563*) 30% 5 Nonsense variant

sLS-
127a

CRC45 MSH2/
MSH6

H NA MSH2 c.2527delT p.(C843Vfs*49) 37% 5 Frameshift variant

No somatic variants

sLS-17 CRC39 MSH6 S FDR - - - -

(Continued)
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MMRmosaicism
To investigate the possibility of mosaic MMR variants, all cases in which a somatic MMR vari-
ant was identified were tested for mosaicism in the corresponding leukocyte DNA. The average
coverage of the leukocyte DNA samples was more than a thousand reads per amplicon and no
mosaic variant was detected.

Discussion
In this study we carried out an extensive sequencing analysis of the genomic regions of the four
MMR and 11 other CRC susceptibility genes, includingMUTYH, EPCAM andMSH3. We
anticipated that this type of broad analysis, well beyond the boundaries of conventional muta-
tion screening, would identify variants previously missed by standard techniques or would
identify variants in genes other than the previously diagnostically tested MMR genes. As our
patient cohort consisted mainly of cases with a first-degree relative with a LS-associated tumor,
cancer susceptibility due to an underlying germline defect in these families seemed the most
plausible explanation.

The approach used, Whole Gene Capture, yielded an average sequence depth up to 5-fold
greater than whole exome sequencing, with sufficient depth to allow detection of mosaic and
de novo variants. In total, 1979 initial variants were detected. Many variants were classified as
of uncertain significance and follow-up studies might reveal novel functional effects. After fil-
tering by function and predicted pathogenicity, two likely pathogenic variants remained. An
MLH1 splice site variant, c.1667+1delG, was found in patient sLS-117, who was diagnosed
with CRC at age 20. Patient sLS-117 presented with solitary PMS2 protein deficiency in the
tumor and only PMS2 had been previously screened with conventional mutation screening.
IHC showed solitary PMS2 loss of expression, since theMLH1 frameshift variant leads to a 29

Table 4. (Continued)

Patient Tumor
tested

Cohort MSI Family
History

Gene Variant Amino acid
alteration

% Class Functional annotation

sLS-20 CRC55 MSH2/
MSH6

S FDR - - - -

sLS-43 CRC74 MSH2/
MSH6

H FDR - - - -

sLS-44 CRC41 MSH2/
MSH6

H FDR - - - -

sLS-62 CRC35 MSH2/
MSH6

L FDR - - - -

sLS-82 CRC69 MLH1/
PMS2

H FDR - - - -

sLS-120 CRC57 MLH1/
PMS2

S FDR - - - -

a Somatic screening was performed by the Erasmus MC, Rotterdam.
b Somatic screening was performed by the Radboud UMC, Nijmegen.

Patients presented with colorectal cancer (CRC), endometrium cancer (EC) or sebaceous gland cancer (SB). Tumor tested shows tumor type followed by

patients age of onset. Cohort gives an indication of IHC results. Detailed IHC results are shown in S1 Table. MSI-status is defined as MSI-High (H),

MSI-Low (L) or MSS (S). Family history is defined as first-degree relatives with LSAT (FDR), no LSAT within the family (No), or family history not available

(NA). Stopcodons are indicated with an asterisk (*). % shows the percentage of variant reads. All variants are validated with Sanger sequencing. Two

variants are predicted to be pathogenic by at least 4 out of 5 of the following programs: Align GVGD, SIFT, MutationTaster, Polyphen and

MutationAssessor.

doi:10.1371/journal.pone.0157381.t004
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amino acid insertion in the protein-protein interacting domain, resulting in an MLH1 tran-
script which is unable to bind PMS2. Analysis of family members demonstrated the variant in
the patient’s affected mother (CRC at age 44), whereas the patient’s unaffected daughter tested
negative for the variant.

The second pathogenic variant,MUTYH p.Gly396Asp, was present in a heterozygous state
in two patients (patient sLS-22 and sLS-72, see Table 3). Monoallelic variants inMUTYH are
present in 2% of the general population and are not found at increased frequencies in sLS
patients [54, 55]. The role of monoallelicMUTYH variants is still under debate, and while
some studies have indicated an increased cancer risk for carriers of a singleMUTYH variant,
the p.Gly396Asp variant alone is unlikely to be the explanation for the MSI-H and/or IHC sta-
tus of the tumors in our patients [56, 57]. Moreover, both patients were found to have (likely)
pathogenic somatic MMR variants (S1 Table) explaining the MMR-deficient phenotype.

In addition to the 34 sLS patients, eleven colorectal cancer patients with somaticMLH1
hypermethylation and a family history suspected of LS were analyzed for possible underlying
germline defects.MLH1 promoter methylation in Lynch Syndrome patients has been described
before, either co-occuring with a pathogenic germlineMSH6 variant in a patient with a urothe-
lial carcinoma at age 70 [30], in a patient with a pathogenic germlineMLH1 variant in a CRC
at the age of 59 [31] or with pathogenic germlineMSH6 variant in a patient with multiple pri-
mary cancers, from the age of 56 [32]. Another study describesMLH1 hypermethylation in
three LS-tumors, hypothesizing methylation is the second hit inactivating the wildtype allele
[58]. These studies indicate thatMLH1 hypermethylation does not always exclude a diagnosis
of LS. In our study we have not find support for above findings.

Moreover, three families with germlineMLH1 hypermethylation in multiple affected family
members have been reported [42–44], indicating epigenetic inheritance of constitutional epi-
mutations with a risk of transgenerational inheritance. All eleven patients withMLH1 hyper-
methylated tumors in our cohort were tested for germline methylation, but no germline
methylation was found.

Although this intensive study enabled the detection of variants within the intronic regions,
UTRs and regions up- and downstream of the target genes, some limitations have to be consid-
ered. While the average coverage of the coding regions is over 95%, the overall average coverage
is 43% (See Table 2). The lower overall coverage is due to the method used in which no baits
were designed for the repetitive sequences such as the Alu- and Line-repeats within the introns.
Therefore, missed intronic variants in these regions cannot be excluded. Moreover, we cannot
exclude the possibility of large genomic rearrangements within the genes tested, which is a lim-
itation of the method used in this study.

Screening of tumor DNA from 28 sLS patients for somatic variants revealed almost a third
with two somatic variants (n = 3) or a combination of a somatic variant and LOH (n = 6). The
frequency of biallelic inactivation in our cohort is lower than previously described [23–25], and
might be due to differences in patient selection in the different study cohorts. While previous
studies screened sLS patients irrespective of family history, the majority of patients in the pres-
ent cohort had first-degree relatives with LS-associated tumors (see S1 Table) and eight families
even fulfilled the Amsterdam II criteria. However, while biallelic somatic events may explain
the MMR deficiency of the tumor of the index patient, they cannot explain a family history of
CRC. Ideally, a second affected family member in these families should be tested to see whether
these patients can also be explained by somatic MMR inactivation. Unfortunately, no DNA
could be obtained from affected family members. An underlying pathogenic germline gene var-
iant outside these 15 CRC susceptibility genes cannot be excluded in these families.

Besides somatic MMR variants, two sLS patients (sLS-07 and sLS-09) were recently found
to carry somatic hotspot POLE-EDM variants (see S1 Table) [52]. As POLE/POLD1-EDM
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pathogenic variants give rise to ultramutated tumors, the somatic MMR variants apparently
represent a second hit. Screening for germline or somatic POLE/POLD1–EDM variants, but
also for variants in other genes recently described to be mutated in sLS CRCs such as BRCA1,
BRCA2, ATM and CHEK2, may explain some of these sLS patients [59, 60]

In conclusion, sequencing of the entire genomic region of 15 CRC susceptibility genes in 34
unrelated sLS patients and 11 patients withMLH1 hypermethylated tumors, together with
assessment of somatic variants, provides a broad impression of possible genetic causes of
tumor formation in MSI-H and/or MMR-deficient tumors. No likely pathogenic MMR gene
variants or germlineMLH1 hypermethylation were found that explained the familial aggrega-
tion of cancer susceptibility in any of the families withMLH1 hypermethylated tumors. With
the MMR deficiency of around one-third of the 34 sLS tumors now explained, MMR deficiency
in two-thirds of sLS tumors remains genetically unaccounted for. A logical next step is whole
exome sequencing (WES) or whole genome sequencing (WGS) to further elucidate the causa-
tive genetic defect(s) in the remaining patients.

Supporting Information
S1 Table. Overview of germline and somatic variants found in 34 sLS patients and 11
patients with anMLH1 hypermethylated tumor.
(XLSX)
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