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Defining intracellular protein concentration is critical in
molecular systems biology. Although strategies for deter-
mining relative protein changes are available, defining
robust absolute values in copies per cell has proven sig-
nificantly more challenging. Here we present a reference
data set quantifying over 1800 Saccharomyces cerevisiae
proteins by direct means using protein-specific stable-
isotope labeled internal standards and selected reaction
monitoring (SRM) mass spectrometry, far exceeding any
previous study. This was achieved by careful design of
over 100 QconCAT recombinant proteins as standards,
defining 1167 proteins in terms of copies per cell and
upper limits on a further 668, with robust CVs routinely
less than 20%. The selected reaction monitoring-derived
proteome is compared with existing quantitative data
sets, highlighting the disparities between methodologies.
Coupled with a quantification of the transcriptome by
RNA-seq taken from the same cells, these data support
revised estimates of several fundamental molecular pa-
rameters: a total protein count of �100 million molecules-
per-cell, a median of �1000 proteins-per-transcript, and a
linear model of protein translation explaining 70% of the
variance in translation rate. This work contributes a “gold-
standard” reference yeast proteome (including 532 values
based on high quality, dual peptide quantification) that
can be widely used in systems models and for other com-
parative studies. Molecular & Cellular Proteomics 15:
10.1074/mcp.M115.054288, 1309–1322, 2016.

Reliable and accurate quantification of the proteins present
in a cell or tissue remains a major challenge for post-genome
scientists. Proteins are the primary functional molecules in
biological systems and knowledge of their abundance and
dynamics is an important prerequisite to a complete under-
standing of natural physiological processes, or dysfunction in
disease. Accordingly, much effort has been spent in the de-
velopment of reliable, accurate and sensitive techniques to
quantify the cellular proteome, the complement of proteins
expressed at a given time under defined conditions (1). More-
over, the ability to model a biological system and thus char-
acterize it in kinetic terms, requires that protein concentra-
tions be defined in absolute numbers (2, 3).

Given the high demand for accurate quantitative proteome
data sets, there has been a continual drive to develop meth-
odology to accomplish this, typically using mass spectrome-
try (MS) as the analytical platform. Many recent studies have
highlighted the capabilities of MS to provide good coverage of
the proteome at high sensitivity often using yeast as a dem-
onstrator system (4–10), suggesting that quantitative pro-
teomics has now “come of age” (1). However, given that MS
is not inherently quantitative, most of the approaches produce
relative quantitation and do not typically measure the absolute
concentrations of individual molecular species by direct
means.

For the yeast proteome, epitope tagging studies using
green fluorescent protein or tandem affinity purification tags
provides an alternative to MS. Here, collections of modified
strains are generated that incorporate a detectable, and
therefore quantifiable, tag that supports immunoblotting or
fluorescence techniques (11, 12). However, such strategies
for copies per cell (cpc) quantification rely on genetic manip-
ulation of the host organism and hence do not quantify en-
dogenous, unmodified protein. Similarly, the tagging can alter
protein levels - in some instances hindering protein expres-
sion completely (11). Even so, epitope tagging methods have
been of value to the community, yielding high coverage
quantitative data sets for the majority of the yeast proteome
(11, 12).
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MS-based methods do not rely on such nonendogenous
labels, and can reach genome-wide levels of coverage. Ac-
curate estimation of absolute concentrations i.e. protein copy
number per cell, also usually necessitates the use of (one or
more) external or internal standards from which to derive
absolute abundance (4). Examples include a comprehensive
quantification of the Leptospira interrogans proteome that
used a 19 protein subset quantified using selected reaction
monitoring (SRM)1 to calibrate their label-free data (8, 13). It is
worth noting that epitope tagging methods, although also
absolute, rely on a very limited set of standards for the quan-
titative western blots and necessitate incorporation of a suit-
able immunogenic tag (11). Other recent, innovative ap-
proaches exploiting total ion signal and internal scaling to
estimate protein cellular abundance (10, 14), avoid the use of
internal standards, though they do rely on targeted proteomic
data to validate their approach.

The use of targeted SRM strategies to derive proteomic
calibration standards highlights its advantages in comparison
to label-free in terms of accuracy, precision, dynamic range
and limit of detection and has gained currency for its reliability
and sensitivity (3, 15–17). Indeed, SRM is often referred to as
the “gold standard proteomic quantification method,” being
particularly well-suited when the proteins to be quantified are
known, when appropriate surrogate peptides for protein
quantification can be selected a priori, and matched with
stable isotope-labeled (SIL) standards (18–20). In combina-
tion with SIL peptide standards that can be generated through
a variety of means (3, 15), SRM can be used to quantify low
copy number proteins, reaching down to �50 cpc in yeast (5).
However, although SRM methodology has been used exten-
sively for S. cerevisiae protein quantification by us and others
(19, 21, 22), it has not been used for large protein cohorts
because of the requirement to generate the large numbers of
attendant SIL peptide standards; the largest published data
set is only for a few tens of proteins.

It remains a challenge therefore to robustly quantify an
entire eukaryotic proteome in absolute terms by direct means
using targeted MS and this is the focus of our present study,
the Census Of the Proteome of Yeast (CoPY). We present
here direct and absolute quantification of nearly 2000 endog-
enous proteins from S. cerevisiae grown in steady state in a
chemostat culture, using the SRM-based QconCAT ap-
proach. Although arguably not quantification of the entire
proteome, this represents an accurate and rigorous collection

of direct yeast protein quantifications, providing a gold-stand-
ard data set of endogenous protein levels for future reference
and comparative studies. The highly reproducible SIL-SRM
MS data, with robust CVs typically less than 20%, is com-
pared with other extant data sets that were obtained via
alternative analytical strategies. We also report a matched
high quality transcriptome from the same cells using RNA-
seq, which supports additional calculations including a re-
fined estimate of the total protein content in yeast cells, and a
simple linear model of translation explaining 70% of the vari-
ance between RNA and protein levels in yeast chemostat
cultures. These analyses confirm the validity of our data and
approach, which we believe represents a state-of-the-art ab-
solute quantification compendium of a significant proportion
of a model eukaryotic proteome.

EXPERIMENTAL PROCEDURES

Yeast Growth and Sample Preparation—Saccharomyces cerevisiae
(EUROSCARF accession number Y11335 BY4742; Mat ALPHA;
his3�1; leu2�0; lys2�0; ura3�0; YJL088w::kanMX4) was grown in
defined minimal C-limiting (F1) medium (23) using 10 g/l of glucose as
the sole carbon source. The F1 medium was additionally supple-
mented with 0.5 mM arginine and 1 mM lysine to meet the added
auxotrophic requirements of the strain. For biological replication, four
cultures were grown in chemostat mode at a dilution rate of 0.1/h and
aliquots (15 ml) of the culture were centrifuged (4000 rpm; 4 °C; 10
min). The supernatant was discarded, the pellet flash frozen in liquid
nitrogen and stored at �80 °C for subsequent protein extraction. Cell
counts were performed using an automated cell counter (Cellometer
AUTOM10 by Nexcelom, Lawrence, MA, http://www.nexcelom.com).
Proteins were extracted by resuspending the biomass pellets in 250
�l of 50 mM ammonium bicarbonate (filter sterilized) containing 1
tablet of Roche complete-mini protease inhibitors (� EDTA) (Roche
Diagnostics Ltd, West Sussex, UK) per 10 ml of ammonium bicar-
bonate. Acid washed glass beads (200 �l) were added. The pellet was
subjected to repeated bead-beating for 15 bursts of 30 s with a 1 min
cool down in between each cycle. The biomass was centrifuged for
10 min at 13,000 rpm at 4 °C; the supernatant was removed and
stored in low bind tubes on ice. Fresh ammonium bicarbonate (250 �l)
with protease inhibitors was added and the pellet was resuspended
by vortex mixing. The bottom of the extraction vial was pierced with
a hot needle, the vial placed on a fresh low bind microcentrifuge tube
and quickly centrifuged (5 min at 4000 rpm at 4 °C). The flow-through
and the supernatant fraction were combined, the exact volume meas-
ured and the amount of protein determined by standard Bradford
assay (Bio-Rad Laboratories Ltd, Hertfordshire, UK). Protein extracts
were aliquoted and stored at �80 °C prior to subsequent digestion.

QconCAT Design and Sample Preparation—QconCATs were de-
signed as described previously (2, 19), containing on average 42
Q-peptides acting as surrogate markers for protein quantification.
This process included careful selection and ordering of Q-peptides to
avoid, where possible, the likelihood of incomplete cleavage in the
QconCATs and selection of peptides with poor endogenous cleavage
contexts, as estimated by our prediction algorithm McPred (24). A
complete list of all 109 QconCATs designed and synthesized along
with their Q-peptides and parent proteins is provided in the supple-
mental Data S1. Proteins targeted for quantification were assembled
into the QconCATs, as far as was feasible, by functional groups.

To improve the rigor of quantification and to address the differ-
ences in abundance of the native parent proteins within the Qcon-
CATs, multiple analytical runs were performed at different loadings of

1 The abbreviations used are: SRM, selected reaction monitoring;
CoPY, Census of the Proteome of Yeast; cpc, copies per cell; FDR,
false discovery rate; FPKM, fragments per kilobase of transcript per
million mapped reads; PTMs, post-translational modifications; Q-
peptides, quantotypic peptides; QconCAT, quantification con-
catamer; rCV: robust coefficient of variation; SGD, Saccharomyces
genome database; SIL, stable-isotope labeled; SWATH, sequential
window acquisition of all theoretical mass spectra; TAP, tandem
affinity purification.
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QconCAT in an attempt to constrain analyte/standard ratios between
10:1 and 1:10. To achieve this, three separate yeast digests were
performed for each bioreplicate, one of which was spiked with Qcon-
CAT to enable codigestion. Yeast lysate representing protein from
21.5 � 106 cells was dispensed into low bind microcentrifuge tubes
and made up to 150 �l by addition of 25 mM ammonium bicarbonate,
and, in the case of the QconCAT co-digests, 21.6 pmol of QconCAT
solution was added. The proteins were denatured by addition of 10 �l
of 1% (w/v) RapiGest™ (Waters, Elstree, UK) in 25 mM ammonium
bicarbonate and followed by incubation at 80 °C for 10 min. The
sample was then reduced (addition of 10 �l of 60 mM DTT and
incubation at 60 °C for 10 min) and alkylated (addition of 10 �l of 180
mM iodoacetamide and incubation at room temperature for 30 min in
the dark). To allow quantification of the QconCAT, a matched 10 �l of
2.15 pmol/�l glu-fibrinopeptide (Waters) was added to each digest.
Trypsin (Sigma, Poole, UK, proteomics grade) was reconstituted in 50
mM acetic acid to a concentration of 0.2 �g/�l and 10 �l added to the
sample followed by incubation at 37 °C. After 4.5 h an additional 10 �l
of trypsin was added and the digestion left to proceed overnight. The
digestion was terminated and RapiGest™ removed by acidification (3
�l of trifluroacetic acid and incubation at 37 °C for 45 min) and
centrifugation (15,000 � g for 15 min). To check for complete diges-
tion and to quantify the QconCAT, each digest was analyzed by
LC-MS using a nanoAcquity UPLC™ system (Waters) coupled to a
Synapt™ G2 mass spectrometer (Waters) in MSE mode and searched
against a sequence database (See supplementary Methods). The
QconCAT was quantified by integrating the peaks generated from the
extracted ion chromatogram (XIC) of m/z 785.8 (internal standard
glu-fibrinopeptide) and m/z 788.8 (isotopically labeled glu-fibrinopep-
tide from QconCAT digestion).

SRM Assay Design and Mass Spectrometry—Transitions were se-
lected through the analysis of tryptic digests of the purified Qcon-
CATs. Approximately 50–100 fmol of digested QconCAT was loaded
onto a nanoAcquity UPLC™ system coupled to a Synapt™ G2 mass
spectrometer and product ion spectra acquired in MSE mode. The
acquired data was supplemented with extant spectral libraries down-
loaded from PeptideAtlas (http://www.peptideatlas.org/speclib/) and
six transitions per peptide selected. Primarily, transition selection was
based on signal intensity, although preference was given to y-ions
with m/z values greater than the precursor ion.

SRM analysis was performed using a nanoAcquity UPLC™ system
coupled to a XevoTM TQMS tandem quadrupole mass spectrometer
(Waters). Both quadrupole mass analysers were set to operate at unit
mass resolution. To enable time-scheduled acquisition of data, 20
fmol of QconCAT tryptic peptides in a background of 1 �g of yeast
tryptic peptides were analyzed on a 60 min LC gradient (3–40% 0.1%
formic acid in acetonitrile) to empirically determine the retention times
of the Q-peptides. The data was also used to select the three optimal
transitions in respect of signal-to-background ratio. From the reten-
tion time determination data, time-scheduled methods were con-
structed using 3 min windows. The methods stipulated the acquisition
of 12 data points over a 15 s chromatographic peak width, and each
transition had a minimum dwell time of 40 ms typically obtained from
two injections. For the final quantification experiment, samples con-
taining the protein equivalent of 200,000 cells and a spike of Qcon-
CAT at low (100–250 amol), medium (1–2 fmol) and high (10–20 fmol)
concentrations were analyzed. The samples were prepared by serial
dilution of the yeast-QconCAT co-digest using a 1:1 mix of the two
unspiked yeast digests.

Data Processing and FDR Analysis—The mProphet package (25)
was used to calculate peptide quantification values from the acquired
SRM data, using decoy transitions in order to estimate false discovery
rates (FDRs). The decoy transitions were generated using the mGen
step of the mProphet pipeline (using the SPIKE_IN workflow option)

based on the transitions for the target peptides. The Waters .raw files
were converted into mzXML format using the conversion program
wolf-MRM (available at: http://tools.proteomecenter.org/software/
wolf-mrm/wolf-mrm.zip). Converted mzXML files were then submitted
to the mMap step by setting the –mach parameter to TSQ and
providing the output csv file from mGen. The resulting xml files were
then submitted to the mQuest program for peak picking using an
optimized parameter file (supporting information). The mQuest xml
output was submitted to mProphet to generate the target/reference
peptide ratios and associated FDR estimates. Final peptide quantifi-
cation values, in terms of cpc, were then calculated using the target:
reference ratio, known concentration of spike-in heavy QconCAT
reference, and the yeast cell count loaded onto the column. In addi-
tion, peptide quantification values were only reported when at least
three out of four biological replicates passed at a 1% FDR threshold
and all had a signal/noise ratio greater than five.

Peptide cpc variance was assessed via the robust CV,
calculated as 1.4826 times the median absolute deviation:
MAD � median��Xi � medianj�Xj���. Protein rCVs were taken
directly from peptide rCVs when inferred from a single peptide
value, or recalculated using all the peptide values in AA proteins.

RNA Extraction, Library Preparation, and Sequencing—RNA ex-
traction using one 15 ml aliquot of the frozen yeast biomass was
carried out following previous methods (26). All solutions used were
prepared with DEPC (diethylpyrocarbonate 0.1% v/v) treated water.
Frozen sample aliquots were ground to a fine powder under liquid
nitrogen (26). Pestle and mortar were soaked in 10% bleach to
destroy residual RNase activity and washed with diethylpyrocarbon-
ate (DEPC) treated water. RNA was extracted using TriZol® reagent
according to the methods of Hayes et al.(23) and the final concentra-
tion was measured prior to RNA sequencing using a NanoDrop sys-
tem. Sequencing libraries were generated using the whole Transcrip-
tome Library Preparation protocol provided with the SOLiD® Total
RNA-Seq Kit (Life Technologies, Carlsbad, CA). Briefly, rRNA de-
pleted samples were fragmented using RNase III, and subsequently
cleaned up using the RiboMinus™ Concentration Modules (Life tech-
nologies, Carlsbad, CA). Fragmentation was assessed on a 2100
Bioanalyzer (Agilent Technologies, Palo Alto, CA) using the RNA
picochip. Fragmented RNAs were reverse transcribed and size se-
lected on a denaturing polyacrylamide gel selecting for 150–250nt
cDNA. cDNA was then amplified and barcoded with SOLiD™ RNA
barcoding Kit. Samples were then purified using PureLink™ PCR
Micro Kit (Life Technologies) and assessed on a 2100 Bioanalyzer
(Agilent Technologies) using the High Sensitivity DNA chip. Samples
were deposited on slides, and sequenced using the SOLiD v4 se-
quencing system (Life Technologies), to an average depth exceeding
4 million reads per library, across four biological replicates.

Reads were mapped to a reference genome of S. cerevisiae, down-
loaded from the Saccharomyces Genome Database (SGD), using
Bowtie version 1 (27). Mapped sequences were then assembled into
transcripts and quantified using Cufflinks version 2.0 (28) using the
SGD reference genome GTF file. Counts were aggregated over the
four replicates to generate estimates of transcript abundance ex-
pressed as FPKM values for 6581 mRNAs. All data is available from
the Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/)
with accession GSE73898, and the FPKM values reproduced in sup-
plemental Data S1.

RESULTS

Our aim was to define the absolute concentration of the
Saccharomyces cerevisiae proteome by direct means, in cop-
ies per cell, for cells growing in chemostat culture. Analysis
was performed using targeted MS, specifically stable-isotope
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dilution (SID) SRM-MS, using SIL peptides generated via the
QconCAT strategy (18, 20). An overview of the workflow is
shown conceptually in Fig. 1.

Protein Quantification by QconCAT—Proteins were quanti-
fied from the integrated chromatographic peaks described by
the SRM-MS data of selected transitions from the predeter-
mined surrogate peptides. These peak areas were calibrated
against known spiked-in quantities of heavy isotope-labeled,
matched Q-peptides generated from the designed Qcon-
CATs, according to the classical isotope dilution MS method-
ology. This permitted direct absolute quantification of the
proteins of interest in cpc, across four biological replicates.
Two peptides were nominated to serve as surrogates to quan-
tify each protein, with peptide selection being based on de-
sign principles and predictive tools that were developed ex-

pressly for this purpose (2, 19, 24, 29). We describe these
peptides as “quantotypic,” because they must be both fre-
quently observed under standard experimental conditions (i.e.
“proteotypic”) and truly quantitative; they should not lose
signal because of suboptimal (incomplete) proteolysis, they
should not be (or predicted to be) post-translationally modi-
fied, and should not be subject to chemical modification, such
as oxidation. All of these issues could potentially result in
signal splitting leading to sub-stoichiometric amounts com-
pared with their parent protein. These are important consid-
erations when the endogenous protein and labeled standard
usually have different proteolytic cleavage contexts. Digestion
conditions have been shown to influence subsequent quan-
titation (30) and some studies have used “spacer” peptides
between the Q-peptides that better emulate the native pr-

FIG. 1. Schematic overview of QconCAT-based quantification of the yeast proteome using SIL-SRM methodology. The experimental
workflow is depicted in schematic form, showing how chemostat grown yeast samples are extracted, using four biological replicates, for
analysis. These samples were combined with designer QconCAT proteins, containing surrogate quantotypic peptides, expressed in a
stable-isotope labeled media. SRM assays, designed using a digest of the expressed QconCATs to generate Q-peptides, were then used to
quantify the parent proteins. Mixtures of purified QconCAT and yeast proteins were mixed at four concentrations (one of which contained yeast
but no QconCAT) and analyzed by SRM-MS to yield SRM chromatogram peak groups for both light (endogenous yeast) and heavy (Q-)
peptides. Subsequent quality control by signal:noise cutoffs and mProphet FDR (estimated from decoy transitions) yielded peptide-level copies
per cell values, which were then integrated to the protein level for a final quantification.
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otein’s cleavage context, with notable improvements in some
cases (31–33). However, when attempting 2000� proteins the
inclusion of spacers was not considered cost-effective, and
we simply concatenated native Q-peptides reasoning that if
the digestion proceeds to near-completion then the issue of
differential cleavage kinetics is not relevant. Furthermore, we
used our missed cleavage prediction algorithm (24) to miti-
gate against the generation of poor cleavage contexts in the
QconCATs and avoided selecting peptides with poorly pre-
dicted endogenous cleavage sites. Although we recognize
that inclusion of natural flanking spacers offers some potential
benefits, we believe that a robust single, digestion protocol
and careful design offset these concerns, coupled to the
consideration of two peptides per protein. This is discussed
further in the supplemental Material and Fig. S11.

Despite the extensive design principles, both surrogate
peptides did not always yield a detectable SRM signal for
either the yeast analyte (light) or, less frequently, for the arti-
ficial QconCAT protein-derived standard (heavy). We refer to
the quantification outcome according to the nomenclature
developed previously (2): Type A, where acceptable data is
available for both the native yeast analyte and the isotope-
labeled Q-peptides; Type B where the analyte quantotypic
peptide was not quantifiable although data was obtained for
the QconCAT-derived SIL peptide—this therefore defines a
conservative upper limit for analyte quantification; and Type
C, where neither of the SRM chromatograms for the native
(light) or reference (heavy) peptides yielded signal above the
minimum signal-to-noise ratio of five.

To date, we have attempted to quantify a total of 1903
protein groups, from 3835 unique peptides contained within
92 specifically designed QconCAT proteins, yielding 1700
(44.4%) type A, 1476 (38.4%) type B and 659 (17.2%) type C
peptides respectively. This equates to a peptide-level suc-
cess rate of 83% of peptides capable of yielding quantitative
information (see supplemental Data S1 and supplemental Fig.
S1 for a detailed breakdown of the Q-peptides selected and
associated statistics). Peptide quantification was highly re-
peatable, with a median robust coefficient of variation (rCV) of
11.4% across the replicates (supplemental Fig. 2B), which is
comparable to or better than similar SRM-based studies (6,
22). Significantly, these studies have yielded a total of 9865
validated yeast SRM transitions for use by the community
(supplemental Data S2), which are available from Peptide
Atlas via PASSEL (accession PASS00717).

Although more surrogate peptides could potentially im-
prove the accuracy of protein quantification, our choice of two
peptides per protein represents a compromise between cost
(time and monetary) and analytical rigor. However, such a
strategy exposes some of the challenges faced in absolute
quantitative proteomics when disagreement arises between
the values obtained from sibling peptides. Fortunately, this is
relatively rare and good agreement was generally observed
between the 532 type A peptide sibling pairs (Fig. 2A, 2B).

Classifying the paired data so that peptide X is always greater
than peptide Y, the median log2 abundance ratio X/Y for all AA
proteins is 0.54; �70% of AA proteins have a log2 ratio 	1
meaning that their peptide cpc values differ by less than
twofold. We noted a statistically significant enrichment in
certain features of the X and Y peptides in pairs with log2

ratios above and below the median (supplemental Fig. S3);
most notably, an increased missed cleavage potential in the
native protein context of the lower abundance Y peptides (24).
Accordingly, we adopted the following protocol for protein
level quantification: when the discrepancy between the pep-
tides was less than 0.54, the final protein value was taken as
the median average of the two peptide values; for the remain-
ing cases the higher of the two peptides was used for quan-
tification, reasoning that signal loss from endogenous peptide
is more likely. For the other classes of protein quantifications
(AB and AC) the protein quantification value was taken from
the A-class peptide.

We obtained absolute quantification in cpc for 1167 type A
proteins (AA, AB, and AC), an upper limit was defined for a
further 668 type B proteins (BB, BC), with only 68 type C
proteins failing to yield any quantitative information, corre-
sponding to an overall 96% success rate. Formally, the 1167
quantified proteins are protein “groups,” including some ho-
mologs that are indistinguishable because of the lack of
unique and selectable Q-peptides. Therefore, the 1167 type A
quantifications span 1217 yeast ORFs from the genome, cov-
ering a wide range of functions (supplemental Fig. S1B). For
convenience we refer to this as the P1200 dataset of absolute
protein quantifications. We also observed good reproducibil-
ity at the protein level, with cpc values across biological
replicates generating a median rCV of 12.6% (supplemental
Fig. S2C) with the quantitative values spanning a dynamic
range of 5 orders of magnitude from �60 cpc (IRS4) to 4.4 �

106 cpc (PDC1), shown in Fig. 2C. The dynamic range at the
peptide level is shown in supplemental Fig. S2A.

Some key points should be emphasized. First, this is the
largest direct and absolute quantification of the yeast pro-
teome via mass spectrometry obtained to date, with cpc
values obtained for endogenous proteins in their native, un-
modified form. This distinction is important because most
studies define protein changes in relative amounts, or use
limited or indirect standards for quantification (11, 34), thereby
introducing additional variability. Our approach has internal
standards for every peptide. Second, unlike relative quantifi-
cation studies, absolute data informs on global protein
changes, such as those that might be introduced in a mutant
strain or under an environmental stress that perturbs transla-
tion genome-wide (e.g. (35)). Similarly, relative quantification
cannot be used to assess the stoichiometry of protein com-
ponents of complexes. Finally, knowledge of the absolute
protein abundance supports an independent estimate of the
total protein content in a cell, and can be used to estimate
associated properties such as translational efficiency.
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Comparison of Yeast Proteome Quantification Data Sets—
The utility of a “gold standard” yeast strain is obvious; as has
been suggested (36), a standard strain whose proteome is
accurately quantified can be used as an internal standard
itself for absolute quantification of other yeast proteomes,
either in label-free or label-mediated SILAC type workflows.
Additionally, SRM-based absolute concentrations can be
used to calibrate label-free data to achieve essentially com-
plete proteome coverage (8, 37).

We compared the P1200 absolute quantification data set
with the yeast data sets available in the PaxDb database (38),
including data sets acquired by epitope tagging via TAP (11)
and GFP (12), label-free spectral counting (39), SILAC MS (4),
as well as a recent high coverage label-free data set (10) and
two independent label-free acquisitions performed in our own
laboratories relying on data-independent acquisition “Hi-3”
quantification (34) (see supplemental Methods and Data S1,
full raw data available from ProteomeXchange PXD002694).
For consistency, we rescaled data sets not yet in PaxDb to
parts-per-million (ppm), the preferred unit of PaxDb, assum-
ing 60 million total protein molecules per cell as the total
protein constituency (38, 40). Hierarchical clustering of the
data reveals clear trends, shown in Fig. 2D, grouping sets by
virtue of their underlying methodologies and laboratories.

Most notably, the epitope tagging methods and MS-based
methods cluster independently, as might be expected and as
observed previously for smaller data sets (19). Of potentially
greater interest, however, is the similarity between quantita-
tive data sets generated by the same laboratory on the same
yeast but under different growth conditions, contrasted with
reduced similarity between different labs on yeast under the
same (or very similar) growth conditions. This suggests that
the natural biological variance observed from growth differ-
ences is typically smaller than the technique-based variance
introduced by different laboratories, protocols, and analytical
methods. This phenomenon is well illustrated by the epitope
tagging methods used by Newman and colleagues (12) that
are tightly clustered, as are the spectral counting-based
quantifications from Lu and colleagues (39), despite the fact
that the paired studies are of yeast grown under different
nutrient conditions: rich and minimal media. Similar observa-
tions have also been reported for transcriptomic data (41).
However, there is clear co-clustering between independent
quantifications conducted on very similar yeast samples; the
two data sets from the Mann laboratory (de Godoy and Kulak
data sets), and our identical chemostat cultures quantified
using label-free methods (denoted SAX and Q-Exactive in Fig.
2D). Our SRM-based direct quantification is a modest outlier,

FIG. 2. Peptide and protein level quantification statistics. A, Peptide level abundance (copies per cell) displayed for the 532 matched
sibling peptide pairs for Type A proteins, where the paired peptide abundances are shown X 
 Y in all cases, as a smoothed scatterplot. The
bulk of the points lie on the x � y line, as shown by the high density of points, though some show deviation from expectation. B, Histogram
of the log ratios of the sibling peptides (log2 X/Y). The majority of peptides have log2 ratio less than 1, meaning their cpc values are within
twofold of each other. C, S-curve scatterplot plot of the complete range of protein level cpc values spanning over 4 orders of magnitude,
distinguishing A-type from B-type quantification. D, Hierarchical clustering dendrogram of independent quantitative proteomes of yeast, based
on pairwise Spearman Rank correlations. The various datasets were acquired by different laboratories and by different methods. Data sets
were either determined in this study (CoPY, SAX, and Q-Exactive, see Methods) or taken from PaxDb (38). They are associated with the
following studies: Ghaemmaghami (11), Newman (12), Lu (39), de Godoy (4), Kulak (10), or from PaxDb directly.
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but clusters with all the mass spectrometry based methods
and shows the highest correspondence overall with the SAX
and Kulak data sets (Spearman correlations of 0.75 and 0.76).
We noted similar good correspondence between QconCAT-
derived SRM data and label-free data for a small-scale study
of glycolytic enzymes (21). This argues that the choice of
analytical approach contributes considerable variance when
strains/growth conditions are identical.

We also compared our data with a previous targeted study
in yeast that quantified 21 proteins via stable-isotope labeled
standards (5). Only nine proteins were quantified by both
methods, but there was generally good agreement (r2 � 0.84
comparing log(cpc)), across this limited data set.

Although these independent studies have used different
methods, growth conditions and yeast strains (though gener-
ally in the BY background), the correspondence across dif-
ferent datasets is modest (supplemental Fig. S4) with the
Spearman rank correlations between different laboratories
around �0.6–0.7. This is only slightly higher than that typi-
cally observed between the proteome and transcriptome
within the same organism (42), and close to that observed
across species boundaries for the quantitative proteome (43,
44). These results match a recent reanalysis of diverse yeast
transcriptome and proteome data sets (45), and reinforce the

need for a true gold standard absolute quantification of the
yeast proteome (36).

Importantly, the present study quantified proteins that had
not been measured previously, whether by antibody-based or
other mass spectrometry-based methods (supplemental Fig.
S5C). We also note that although we obtain A-type quantifi-
cation as low as �50 cpc, the very low abundance B-type
proteins (where only an upper limit is defined) correspond to
genes with equally low abundance transcripts. These proteins
are generally refractive to all quantitative methods but do
possess Q-peptides that are equally well predicted to be
proteotypic compared with A-type peptides. This contrasts
with the C-type peptides that are the poorest predicted and
were often selected because no better peptide could be nom-
inated (supplemental Fig. S5).

A more detailed comparison of the quantification values for
contrasting methodological approaches allowed systematic
differences to be assessed. Representative scatterplots and
“M versus A” plots are shown in Fig. 3 for protein values in
common between paired approaches, calculated from protein
abundances scaled to 60 million copies per cell (see also
supplemental Figs. S6 and S7). In comparison with our SRM
targeted proteomics approach, epitope tagging methods
show reasonable agreement but there is clearly considerable

FIG. 3. Example correlation and M-versus-A plots for protein abundances from different studies compared with the CoPY project.
Scatterplots showing the correlation between CoPY protein abundance in cpc converted to ppm (assuming 60 million copies per cell)
compared with exemplar datasets taken from the PaxDb database. Panel A–C show correlation plots for an epitope-tagging method,
Ghaemmaghami (11), and a SILAC-based study, de Godoy (4), and a label-free study, Kulak (10). These are matched by M-versus-A plots
below in D–F, calculated by plotting the log ratio of the protein abundances against the average protein abundance. The plots show a
systematic trend toward higher protein abundance estimates in the CoPY data for low abundance proteins in the shotgun mass
spectrometry studies (E and F).
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variance across the abundance range. Better agreement is
generally observed with mass spectrometry-based methods
particularly for proteins at high abundance. We also note a
systematic difference between label-free/SILAC MS methods
and our targeted SID-SRM approach where proteins of low
average abundance are generally determined to be of higher
abundance from the SRM experiments. This effect was noted
when comparing the targeted data to all label-free ap-
proaches and suspect this is because of the systematic un-
der-representation of ions from low abundance proteins in
shotgun DDA experiments that leads to underestimation of
either spectral counts or ion intensity aggregated to the pro-
tein level. Despite this, modern MS instruments are clearly
able to offer excellent coverage of the low abundance pro-
teome, down to the tens of copies of proteins per cell (7, 10).
It remains to be seen whether equivalent levels of sensitivity
can be developed in much larger eukaryotic cells that could
contain 50 times as much protein as a yeast cell.

Protein Stoichiometry and Abundance in Signaling Mod-
ules—Unlike differential expression studies, absolute quanti-
fication supports examination of protein stoichiometry and the
comparison of different components in a complex, network or
pathway. As an exemplar, we considered protein stoichiom-
etry in the anaphase promoting complex/cyclosome (APC/C),
a highly regulated cell cycle ubiquitin E3 ligase complex im-
portant for entry into S-phase and essential for progression
through mitosis and meiosis. Our SID-SRM data did not offer
universal coverage of all the proteins involved in this complex;
the Apc1 core protein and the anaphase-promoting complex
subunit Cdc23 were measured at 260 and 830 cpc, with four
of the other core proteins (Apc4, Apc5, Apc10, Apc11) pres-
ent at 	500 cpc and Apc9 at 	130 cpc (supplemental Table
S1 and Material). This is consistent with previous structural
studies, which estimated the relative subunit stoichiometry of
Cdc23 to be double that of Apc1/4/5/10/11 using a purified,
reconstituted APC/C system (46), and in agreement with the
potential additional roles of Cdc23 suggested by its known
cellular interactions.

Absolute protein abundance is also relevant to modeling
metabolic and regulatory pathways (3, 21). Here, we consider
our data in the context of MAP kinase signaling cascades that
sensitively propagate signal from the cell surface via intracel-
lular effector molecules to elicit a transcriptional response.
Because protein kinases, as opposed to protein phospha-
tases, are thought to be the key regulatory factors in modu-
lating signal amplitude (47), measuring their absolute protein
abundance has high value for rationalizing signal amplifica-
tion. However, to date, most studies have focused on relative
quantification of specific phosphopeptide stoichiometries
(which could be used as a read out of enzymatic activity) and
not the absolute protein levels (c.f (48–50).). The ratio of active
enzyme to total available protein dictates whether a pathway
becomes “weakly” or “highly” activated and controls the de-
gree of ultrasensitivity of the system. Under normal physio-

logical conditions, most signaling pathways are likely to exist
in a weakly activated state, permitting both finer control
(shorter signal duration) and the ability to respond rapidly to
pathophysiological conditions.

Absolute protein quantification of components of the differ-
ent MAPK cascades in S. cerevisiae shows that, unlike relative
enzyme activity, protein amount does not increase uniformly
along the pathway (Fig. 4). For example, the Kss1 and Fus3
pathways, which together mediate the responses to mating
and filamentation, exhibit a decrease in absolute protein levels
from Cdc42 through Ste20, to the MAPKKK Ste11, the
MAPKK Ste7 and the MAPKs Kss1 and Fus3. However, the
effector transcription factors are present at much higher num-
bers. Protein quantity at the different “levels” through the
other MAPK pathways (e.g. Gpr1 mediated response to glu-
cose sensing) is variable. Rationalization of the differences in
protein abundance throughout these cascades is further com-
plicated by extensive cross talk, as kinases frequently regu-
late the function of multiple substrates (e.g. Cdc42 acting on
Ste20, Bni1) and thus affect multiple outcomes (e.g. polarity,
mating, filamentation in fission yeast). Equally, our cpc meas-
urements determine global protein levels and do not reflect
any localized protein concentration that may arise as a result
of compartmentalization or targeted localization (e.g. by at-
tachment to a scaffold such as Ste5). However, coupled to
enzymatic assays and phosphopeptide analysis, absolute
quantification greatly informs attempts to understand sensi-
tivity and control of signaling (and metabolic) systems.

Translational Efficiency of Yeast Gene Expression—Akin to
previously published studies (4, 11, 39, 51, 52), we quantified
the transcriptome of our chemostat grown yeast to compare
directly with the proteome. Previous large-scale studies in S.
cerevisiae have compared relative changes between tran-
script and protein ratios between cell types (4) and conditions
(52), have compared proteome and transcriptome data sets
from different studies/conditions (11), or combined multiple
proteomic and transcriptomic data sets to produce a refer-
ence data set (39). As pointed out by a recent modeling study
(45), few have compared high quality matched transcriptome
and proteome data from the same yeast cells. Here, we used
replicated next-generation sequencing (RNA-seq) to obtain a
measure of transcriptome abundance, extrapolating our
FPKM values to an estimated mRNA cpc assuming the aver-
age yeast cell contains 60,000 total mRNA copies (53). We
caution that this is an estimate because we did not directly
quantify the absolute transcriptome ourselves, though similar
approaches have been taken by other groups (39, 53). A
strong and significant correlation was observed between our
P1200 protein cpc values and their respective transcript cpc
(r2 � 0.58 and rsp � 0.73; Fig. 5A). This is in good general
agreement with previous estimates (39, 54), but toward the
top end of the range of estimated proteome variance ex-
plained by the transcriptome (�60%). This relationship has
been a topic of recent debate in the field, with a number of
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recent studies arguing that the role of post-transcriptional
control has been overestimated and the true correlation is
closer to 90% (45, 55). This disagreement in the field stems in
part from issues with experimental noise, incomplete cover-
age, and modest experimental repeatability.

As previously reported (39, 54) we also observe a log nor-
mal distribution of individual protein/mRNA ratios (Fig. 5B),
with a higher dynamic range observed in the proteome data
(from 	102 to 
106 copies per cell). These ratios represent
the translational efficiencies of individual genes estimated
from our direct measurements of absolute protein and mRNA
abundance. Our ratios range from the GATA zinc finger pro-
tein GZF3 at 40 proteins per transcript, through to ILV6, the
regulatory subunit of acetolactate synthase complex, at
�180,000. The median of 103 protein molecules per transcript
is considerably smaller than previous estimates that report
values between 4000–5600 (11, 39, 56). We ascribe this in
part to our use of the more up-to-date estimate of 60,000
mRNAs in the yeast cell (53) compared with the previously
widely reported 15,000 copies per cell. The latter leads to
similar protein:RNA estimates with our proteome data of
�4000 proteins/mRNA. It may also reflect improvements in

the underlying technologies used to measure both mRNA and
absolute protein copy number, as well as slower growth rates
in chemostat cell cultures compared with batch/rich media
(57), the latter being used in some previous studies.

Our comprehensive transcriptome data also supports a
revised estimate of total protein present in a yeast cell. Be-
cause our quantification of 1167 proteins sums to 54 million
cpc, we can extrapolate using the median protein copies per
transcript, to calculate an estimated sum of about 100 million
cpc for the entire proteome. Again, this estimate is larger than
previously reported (11, 21, 56), though consistent with recent
re-analyses (40) and observations of higher biomass yield in
chemostat cultures compared with batch or slower growth
rates (57, 58).

The wide range in observed correlations between measured
quantitative yeast proteomes and transcriptomes (4, 11, 45,
59, 60) reveals a large variation in the protein/mRNA relation-
ships (45), stressing the importance of paired data from the
same cells. Indeed, our quantitative proteome is more tightly
clustered with our own transcriptome data set than all other
quantitative proteomes (supplemental Fig. S8), reinforcing the
necessity to avoid bias where possible by integrating different

FIG. 4. Protein abundances from the CoPY project mapped to MAP kinase signaling pathways. Proteins are shown as rectangles,
colored by abundance as shown in the key. Despite no single, consistent trend it is apparent that there is not a systematic increase in protein
abundance throughout the MAPK pathways as signal is propagated toward the nucleus.
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‘omics data from different labs. A similar observation has
been made for RNA-seq platforms (41, 61). We also note that
proteo-transcriptome correlations from matched cells in other
organisms yield similar values to ours (13, 54), including a

recent study in Schizosaccharomyces pombe whereby a
comparable correlation (r2 � 0.55) was observed in prolifer-
ating cells using protein measurements from label-free MS
and transcript measurements from RNA-seq (13).

FIG. 5. Translational efficiency and the relationship between transcriptome and proteome. A, Scatterplot showing the relationship
between the quantitative proteome and transcriptome in this study for the P1200 set proteins, plotting absolute cpc values matched to the
mRNA equivalent derived from their FPKM values. B, Histogram of the log2 ratio distribution of protein to transcript, for all P1200 set proteins,
with median value of 1035 proteins per transcript. Panels C–H illustrate the relationship between absolute protein abundance and a subset of
the features considered in the linear model construction. C, The translational adaptation index (tAI) (68) calculated from P1200 set transcripts
show a positive correlation with the respective log protein abundances (r2 � 0.53, p 	 2.2 � 10�16). D, RNA-binding protein immunoprecipi-
tation enrichment of the transcripts for the translation factor CAF20 (67) shows a strong negative relationship to respective log protein
abundances (r2 � 0.42, p 	 2.2 � 10�16). E, Boxplots showing a significant but surprising increase in the abundance of the P1200 subset that
contain degradative PEST sequences (Wilcoxon rank test, p � 2.8 � 10�12). F, A positive linear correlation (r2 � 0.33, p 	 2.2 � 10�16) between
protein abundance and the transcript propensity to form secondary structure, the PARS score (71). G, A weak negative correlation between
the median transcript poly-A tail length and protein abundance (r2 � 0.16, p 	 2.2 � 10�16). H, Boxplots of protein abundance values (log scale)
for proteins classified into three groups based on measured protein turnover data (66). Groups were defined by protein half-life, 0–20 min (Fast),
20–40 min (Medium) and 40–60 min (Slow). All comparisons of Fast-Medium, Fast-Slow and Medium-Slow show a significant increase in
protein abundance using a Wilcoxon rank test with p 	 0.05.
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Modeling the Relationship Between Transcriptome and Pro-
teome—Although recognizing that our quantitative data is still
subject to experimental noise and modest coverage, we built
a simple linear modeling to examine the relationship between
mRNA and protein (62–64) and consider the effect of post-
transcriptional processes. A linear regression model based on
transcript measurements was used to develop a multivariate
linear model involving additional translation-associated met-
rics (60, 65–72) (see Supplemental Methods). The relationship
of some of these characteristics to our absolute protein abun-
dance measurements are presented in Figs. 5C-5H, and the
complete list of features assessed in the model are listed in
supplemental Table S2. For example, when we classified
proteins into three categories of turnover (66); “slow” (half-
life 	 20 min), “medium” (half-life 20 to 40 min), and “fast”
(
40 min), we observe significant differences between the
distributions of protein abundance (Wilcoxon rank test, p 	

0.05, Fig. 4H) suggesting it would be informative in the model.
Using an iterative, sequential approach we derived a high

performing, multivariate regression model using seven fea-
tures, three of which were included when used as an interac-
tion term with transcript abundance (see supplemental Meth-
ods). The model achieved an r2 of 0.7 (p 	 2.2 � 10�16) and
resulted in a Spearman Rank of 0.83 (p 	 2.2 � 10�16)
between real and predicted protein abundances (supplemen-
tal Fig. S9). The most significant contributor to the final model
(after transcript abundance itself) was the translation adapta-
tion index (tAI), a measure of codon bias, which increases the
r2 from 0.58 to 0.63 (rsp of 0.77 from 0.73, p 	 2.2 � 10�16).
Although this indicates a positive role for post-transcriptional
regulation, the overall increase in the variance explained is
modest; 30% of the variance still remains unexplained. As has
been recently suggested (45), this could be a result of limita-
tions in the extant data or model, or possibly because of some
hitherto unknown control step in translational regulation. Im-
portantly, in this regard, our model is the first large-scale
attempt to explain translational control in S. cerevisiae using
matched mRNA and direct SRM-based protein measure-
ments from the same cells. However, this condition is unfor-
tunately not met by some of the other postgenomic data used
in the model, which are derived from different laboratories
using different yeast cells grown under different conditions,
adding additional noise.

Such experimental noise has been suggested as the prin-
cipal reason for the apparent disparity between transcriptome
and proteome abundance data by Csardi and colleagues (45).
They subsequently proposed a simple correction based on
the work of Spearman, which uses the inherent repeatability
of the individual experimental approaches estimated from
biological replicates. Applying the same approach to our data
transforms our uncorrected Pearson correlation of 0.72 to
rcorrected of 0.74. This modest increase can be attributed to the
high repeatability between our replicates; 0.98 and 0.96, for
protein and transcript levels respectively. Despite this, our

correlation may well still be an underestimate; our data, al-
though comprehensive, is still an under-sampling of the com-
plete proteome and like other approaches has a modest bias
against very low abundance proteins. We also considered the
log-log correlation between transcriptome and proteome, ob-
serving a near unitary slope of 1.08 for ordinary least squares
fitting, but a slope of 1.50 following the Ranged Major-Axis
approach (supplemental Fig. S10). This is supportive of the
assertion that proteome abundance is nonlinearly dependent
on the transcriptome (45).

CONCLUSIONS

We present here the most comprehensive and robust direct
absolute quantification of the yeast proteome to date; for
nearly 1200 proteins abundance is defined in copies per cell
and an upper limit provided for a further 668 proteins. Abso-
lute quantification is of great utility for systems biologists
wishing to understand translational control or build kinetic
models, to inform on protein stoichiometry by measuring the
total cellular abundance of the complex components, and to
determine absolute levels distributed throughout regulatory
and metabolic pathways. These studies further highlight the
value of targeted SRM-based quantification using stable-iso-
tope mediated standards to directly quantify protein abun-
dances. Our careful peptide selection and subsequent design
of suitable transitions have added a total of 9865 validated
SRMs for community use. Good reproducibility is observed
across biological replicates (median rCVs � 13%), as well as
very good agreement overall between sibling peptides.

The value of this robust, absolute quantification is demon-
strated; offering revised and improved estimates of the total
protein copy number in a chemostat grown yeast culture, and
associated translational efficiency measures derived from
matched RNA-seq data. In turn, the transcriptome data have
supported the derivation of an improved model of translation
in steady state. We also demonstrate the data’s utility to
better understand the stoichiometry of molecular machines
(APC/C) and signaling pathways (MAPK), which is essential to
rationalize their complex biological function.

Although the entire proteome has not been used to quan-
tified via SIL-SRM, we believe the data and yeast strain itself
are of high value. The complete QconCAT designs are avail-
able for use by other laboratories (see supplemental Data S1
and Data S3), with validated transitions for proven quanto-
typic peptides, all deposited in the PASSEL database (acces-
sion PASS00717) where users can browse the entire collec-
tion and examine chromatograms for individual transitions.
Indeed, we believe we have more than sufficient quantitative
data to complete the comprehensive absolute quantification
of the yeast proteome to define a gold standard, exploiting the
SRM-derived data to calibrate label-free approaches pro-
teome-wide (7), a strategy that has shown promise with con-
siderably fewer proteins as calibrants (8, 13). Once this has
been achieved, the yeast strain described here, if cultured
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under the same conditions, can act as an internal standard
(with or without stable-isotope labeling) for other conditions,
strains, and environments, offering a genome-wide calibration
set to facilitate routine absolute quantification of the yeast
proteome.
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