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Dynamical Majorana edge modes in a broad class
of topological mechanical systems
Emil Prodan1, Kyle Dobiszewski2, Alokik Kanwal2, John Palmieri3 & Camelia Prodan2

Mechanical systems can display topological characteristics similar to that of topological

insulators. Here we report a large class of topological mechanical systems related to the BDI

symmetry class. These are self-assembled chains of rigid bodies with an inversion centre and

no reflection planes. The particle-hole symmetry characteristic to the BDI symmetry class

stems from the distinct behaviour of the translational and rotational degrees of freedom

under inversion. This and other generic properties led us to the remarkable conclusion that,

by adjusting the gyration radius of the bodies, one can always simultaneously open a gap in

the phonon spectrum, lock-in all the characteristic symmetries and generate a non-trivial

topological invariant. The particle-hole symmetry occurs around a finite frequency, and hence

we can witness a dynamical topological Majorana edge mode. Contrasting a floppy mode

occurring at zero frequency, a dynamical edge mode can absorb and store mechanical energy,

potentially opening new applications of topological mechanics.
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T
opological mechanics evolved in an extremely vigorous
field and, in a relatively short time span, we have
seen theoretical and experimental realizations of such

topological effects in purely mechanical settings1–23, something
that would have been hard to imagine just a few years ago.
Among the most striking examples are the mechanical analogues
of the quantum Hall and spin-Hall effects where, for example, the
latter requires a half-integer spin that has no direct equivalent
in the classical realm. Here we report another intriguing
correspondence between quantum and classical mechanics,
realized by mechanical analogues of band Hamiltonians
describing the fermionic excitations of one-dimensional (1D)
topological superconductors from the BDI symmetry class24.
They are linear periodic chains of rigid bodies with an inversion
symmetry point, where the particle-hole symmetry stems from
the distinct behaviour of the translational and rotational degrees
of freedom under the inversion operation and it manifests as a
mirror symmetry of the phonon spectrum. An interesting finding
is that the particle-hole symmetry occurs relative to a finite
energy and, as a consequence, the topological Majorana edge
modes exist at a finite frequency. Hence, they have non-trivial
dynamics, in particular, they can collect and store energy that can
enable a completely new array of applications.

A few comments about the terminology are in order. In the
context of fermionic 1D topological superconductors from
the BDI symmetry class24, the topologically protected edge
excitations are termed Majorana fermions25. This is because these
states are their self-mirror image under the charge conjugation,
very much like the fermion proposed by Majorana26 is its self
anti-particle. In this work we propose the same terminology for
the edge modes of our systems, but with the word fermion
crossed out because the statistics does not play any role here.
We believe the terminology is appropriate and useful because the
edge states are invariant under a charge conjugation. This gives
them a distinct feature that separates them from other ordinary
vibrational edge modes that can appear by accident. For example,
the motion of the Majorana mode remains unchanged if we
exchange the rotational and translational degrees of freedom
and follow with time-reversal operation. Furthermore, the
characteristic symmetries of the BDI class are locked-in for
these mechanical systems, since the only way to violate them is to
destroy the rigid bodies making up the system. In the other
context, this will be equivalent to destroying the superconducting
phase.

Our study goes beyond the simple reporting of a topological
mechanical system from the BDI symmetry class and, in fact,
it is focused on much broader issues as we now explain. Let us
first introduce the context. Guided by the protein structure of
microtubules and motivated by their yet not fully understood
dynamical instability27, Prodan and Prodan1 designed a
topological Chern phononic crystal and put forward the thesis
that its topological vibrational edge modes may assist in the
destabilization of the microtubules’ caps that triggers the
depolymerization process28. Along similar lines, Berg et al.2

generated a mechanical model of the actin filaments displaying
topological edge modes, a finding that could support/explain the
brownian ratchet hypothesis29, central to understanding how
actin filaments push against the cell membrane30. The proposed
topological phonon-assisted mechanisms were described in detail
by our previous works but the following pressing questions need
to be answered before such proposals can be taken seriously:
How large can a class of such topological structures be within the
generic class of self-assembled structures? What kind of
fine-tuning is required for a mechanical structure to enter a
topological phase? Our study substantiates these issues by
reporting a large class of mechanical systems that can be always

tuned into a topological phase using a single parameter that,
in practice, can be as simple as modifying a gyration radius.
More precisely, we show that, upon varying this parameter, the
following required conditions are simultaneously satisfied: first,
the bulk phonon spectrum has a gap; second, the required BDI
symmetries are all in place and locked, even when a boundary is
present; and third, the bulk topological invariant is non-trivial.
Let us clarify that we need to tune the parameter into a single
value rather than an interval. Still, the remarkable fact here is that,
typically, enforcing all these three conditions simultaneously will
require a three-dimensional (3D) tuning space, that is, one
dimension per constraint, yet here we can achieve all of the above
in a 1D tuning space. The latter is special because, when
continuously evolving in the right direction, the system will
necessarily cross the desired value but this is not at all the case if
the tuning space was of higher dimension. As such, the tuning
may even happen by random chance, as often is the case in
nature, hence one could wonder whether the living organisms
have indeed stumbled upon such exotic structures during the
millions of years of evolution.

Results
A concrete example. We start our analysis with a concrete
example that requires no tuning at all. It consists of a periodic
array of dimers interconnected by two springs, as described
in Fig. 1. The small oscillations of the system are analysed
theoretically in Supplementary Note 1. When the two springs
are identical as in Fig. 1a, the system has inversion and
mirror symmetries and displays ungapped phonon spectrum
(see Fig. 1b). As soon as the springs are not identical as in Fig. 1d,
the mirror symmetry is lost and the system displays a gapped
spectrum (see Fig. 1e). Note that the inversion symmetry remains
unbroken and this leads to the particle-hole symmetry mentioned
above that becomes visible once we plot the pulsations squared
(see Fig. 1c,f). The particle-hole symmetry together with
the intrinsic time-reversal symmetry provide the characteristic
symmetries of the band Hamiltonians from the BDI symmetry
class. For this model, one can straightforwardly evaluate the
standard topological invariant31 associated with the BDI
symmetry class (see equation (15)), and the result is always ±1
and never zero. Since closing the spectral gap requires
fine-tuning, we can rightfully say that this particular class of
dimer chains always exists in a gapped topological phase.
A laboratory realization of the system is reported in Fig. 2 and
the expected Majorana edge modes are documented in Fig. 2b. All
experimental parameters are supplied in the Supplementary
Fig. 1. The dynamics of the system and of the dynamical
Majorana edge modes can be further analysed in Supplementary
Movies 1 and 2, where the chirality of the modes can be clearly
identified. Let us point out that the system requires no fine-tuning
precisely because of the particular connection of the springs. For
example, if the springs were not connected to the centres of the
spheres but somewhere on the connecting rod, then a tuning
would be necessary, as further discussed below. The present
experimental model is similar yet quite different from the system
analysed theoretically in Berg et al.2. There, the presence of two
additional springs can break the particle-hole symmetry and, as a
consequence, the system was analysed in Berg et al.2 solely from
the point of view of an inversion-symmetric system, a class
known to accept non-trivial topological classification32,33. For this
reason, the topological invariant invoked in Berg et al.2 is of very
different nature from the standard invariant of the BDI symmetry
class used here. Note, however, that the particle-hole symmetry of
the chain analysed in Berg et al.2 can be always restored using the
tuning mechanism introduced below.
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Analysis of the general case. In the following, we show that the
experimental model is actually part of the vastly larger topological
class depicted in Fig. 3. Key assumptions for our analysis are the
inversion symmetry of the dimers, lack of any reflection sym-
metry planes and the existence of only two relevant degrees of
freedom per dimer, x¼ (xt,xr), of which one is translational and
one is rotational (that is, an angle), as in Fig. 3b. When we do not
need to emphasize the distinct nature of the degrees of freedom,
we will use the more convenient notation x¼ (x1,x2). We will
multiply the angles by the radius of gyration d¼

ffiffiffiffiffiffiffiffiffi
I=M

p
, such

that both degrees of freedom have the unit of length and the
kinetic energy is isotropic. Here, I and M are the moment of
inertia relative to the inversion point and the mass of the rigid
bodies, respectively. The equilibrium configuration of the chain is
assumed linear and periodic as in Fig. 3a that, among other
things, ensures that the whole structure is symmetric relative to
inversion.

The rigid bodies interact pairwise, and hence the dynamics of
the chain is determined by a generic Lagrangian of the form:

L ¼ 1
2

M
X
n2Z

_xtðnÞ2þ _xrðnÞ2
� �

�
X
q40

X
n2Z

Vq xðnÞ; xðnþ qÞð Þ ð1Þ

Note that q, that labels the rank of the neighbours, assumes only
positive values in equation (1). Later, we will let q assume
negative values too, in which case V� q(x,x0)¼Vq(x0,x). The
linearized Lagrange equations take the form:

M€xðn; tÞ ¼ �
X
q2Z

bQq xðnþ q; tÞ; n 2 Z ð2Þ

where bQq are the 2� 2 matrices:

bQ0ði; jÞ ¼
X
q 6¼ 0

@2Vq x; x0ð Þ
@xi@xj

; bQqði; jÞ ¼ @
2Vq x; x0ð Þ
@xi@x0j

;

q 6¼ 0

ð3Þ

with the derivatives taken at the equilibrium configuration.
The matrices are real and bQ� q equals the transpose of bQq.
Throughout, we will consistently indicate the matrices by a hat
and the vectors by bold symbols. Passing to the frequency-
momentum domain, x(n,t)¼A(k,o)ei(ot� kn), we obtain the
dispersion equation:

o2MAðk;oÞ ¼ bDðkÞAðk;oÞ ð4Þ
with

bDðkÞ ¼X
q

bQqþ bQ� q

� �
cosðqkÞþ i bQq� bQ� q

� �
sinðqkÞ

h i
ð5Þ

This dynamical matrix is a positive 2� 2 Hermitean matrix withbDðkÞ� ¼ bDð� kÞ that reflects the time-reversal symmetry of the
dynamics.

The dynamical matrix is said to possess the chiral symmetry if,
after removing an uninteresting constant diagonal part, the
matrix can be sent into minus itself using a symmetry bS:

bS bDðkÞ�mbI2�2

� �bS� 1 ¼ � bDðkÞ� mbI2�2

� �
; bSy ¼ bS;

bS2 ¼ bI2�2

ð6Þ
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Figure 1 | Example of a dimer chain that posses the particle-hole symmetry without any fine-tuning. The dimers can rotate in the plane and the centre

of the dimers can move along the longitudinal axis of the chain. The dimers are interconnected by two springs attached directly to the point masses. In (a),

the two springs are identical and the system has both the inversion and reflection symmetries relative to the marked inversion centres and reflection

planes, respectively. In this case, the phonon spectrum, shown (b), is ungapped. In (d), the two springs are different and only the inversion symmetry

remains. In this case, the phonon spectrum, shown in (e), is gapped and the chain is in a topological phase from the BDI symmetry class, with bulk winding

number n¼ 1. If the frequency is replaced by o2 (pulsation squared), then the particle-hole symmetry becomes explicit in (c,f), relative to the dotted lines.

The phonon spectrum in (e) was computed with theoretical parameters that fit the experimental phonon spectrum.
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We recall that chiral and time-reversal symmetries automatically
imply the particle-hole symmetry. The first remarkable property
of the proposed systems is that inversion symmetry alone induces
a chiral symmetry on the traceless part of bDðkÞ. Indeed, as shown
in Fig. 3b, under the inversion relative to the centre of a dimer at
equilibrium, the translational degrees of freedom transform
as xt(n)-� xt(� n), while the rotational ones transform as
xr(n)-xr(� n). The last rule reflects the universal fact that,
in two dimensions, lines remain parallel when inverted relative to
any point in space. As such, the inversion operation takes the
form xðnÞ ! bs3 xð� nÞ and the inversion symmetry of the
original Lagrangian implies:bDðkÞ ¼ bs3 bDð� kÞbs3 ð7Þ

Examining the structure in equation (5), we see that bQqþ bQ� q

must commute while iðbQq� bQ� qÞ anti-commutes with bs3.

Furthermore, iðbQq� bQ� qÞ is traceless, self-adjoint and purely
imaginary. Hence, it must be proportional with bs2. In other words:bDðkÞ ¼ mðkÞbI2�2þ d2ðkÞbs2þ d3ðkÞbs3

� mðkÞbI2�2þ bDðkÞ ð8Þ
We now can see explicitly that the traceless part of the dynamical
matrix has indeed the chiral symmetry:

bs1
bDðkÞbs1 ¼ � bDðkÞ ð9Þ

Remarkably, the chiral symmetry, implemented by bs1, inter-
changes the rotational and translational degrees of freedom. Let us
point out that it is the traceless part bDðkÞ that determines the direct
gap in the phonon spectrum, while the diagonal term mðkÞbI2�2
shifts the bands by an equal amount. The bulk invariant from
equation (15) can be already defined at this level and a bulk
classification can be given in the sense that two chains with
different bulk topological invariants cannot be adiabatically
deformed into each other without closing the bulk direct gap.
However, the bulk-boundary correspondence is not present unless
m(k) is a pure constant31.

We now restrict to the typical case of nearest-neighbour
interactions (q¼ 1) and we assume that the radius of gyration d
can be adjusted without modifying the interaction potential This
will be used next to set mðkÞ¼ TrðbDðkÞÞ in equation (8) to a true
constant. For this we need to examine some particularities of the
system. The first observation is that mechanical stability requires:

Q0ði; iÞ40; i ¼ 1; 2 ð10Þ
and, since the pair-interactions depend only on xt(n)� xt(n±1),
it follows from equation (3) that:

bQ� 1ð1; 1Þ ¼ bQþ 1ð1; 1Þ ¼ � 1
2
bQ0ð1; 1Þ ð11Þ

hence bQ� 1ð1; 1Þ are necessarily negative. Equation (11) also
warrants the existence of an acoustic dispersion band touching
the zero frequency at k¼ 0. Regarding the response of the system
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Figure 2 | Experimental measurements. (a) The experimental model consists of 32 red and 9 white dimers connected via springs. There is one such spring

on one diagonal, while on the other there are two of them, intertwined. The configuration of the springs is switched between the red and white dimers, so

that the red and white chains are inverted images of each other. This assures that the two chains are in topological phases with opposite bulk invariants.

Hence, edge modes are expected at the boundary of the two phases. (b) Each dimer is made of two brass balls encapsulated in 3D printed plastic shells and

connected by a plastic rod. (c) Typical measurements of the phonon response of the system. Each data point represents the root mean square of the output

voltage of an accelerometer sensor attached to a ball and aligned with the axis of the chain. The red and blue curves represent simultaneous recordings

from two sensors, one placed at the boundary and one in the bulk, respectively, while the actuator was attached to the red boundary dimer. The purple

curve represents the recording from a sensor placed in the bulk, while the actuator was attached to the left free edge of the red chain. The phonon gap is

clearly visible and the two expected topological edge modes appear prominently in the gap. (d) Simultaneous recordings from two sensors placed on

different dimers in the bulk, while the actuator was attached to a boundary dimer. The blue line is identical with the one in (c). (e) Simultaneous recordings

from two sensors placed on different dimers in the bulk, while the actuator is attached to the free left edge. The purple line is identical with one in (c).
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to rotations of the dimers, we point to the universal facts that
chains are easy to bend yet difficult to shear apart. Hence, the
restoring forces are generally weak when the dimers are rotated
by opposite angles as in Fig. 4a and are strong when the dimers
are rotated by equal angles as in Fig. 4b. In other words, the pair
potentials V±1 are primarily functions of the combinations
xr(n)þ xr(n±1) and, as a consequence:

Q� 1ð2; 2Þ ¼ Qþ 1ð2; 2Þ � 1
2Q0ð2; 2Þ ð12Þ

In particular, Q±1(2,2) are positive. These features, which follow
directly from the very nature of the dimer chains and are not a
result of some fine-tuning, lead to a string of remarkable
consequences.

The first consequence is that the coefficient

mðkÞ ¼ 1
2
bQ0ð1; 1Þþ bQ0ð2; 2Þ
h i

þ bQ1ð1; 1Þþ bQ1ð2; 2Þ
h i

cosðkÞ

ð13Þ
can be set to a constant by adjusting the parameter d. Indeed, the
positive term bQ1ð2; 2Þ scales as d� 2, while the negative term

bQ1ð1; 1Þ does not have such dependence. Hence, exact cancella-
tion in the second term of equation (13) can be always achieved
by varying d. In this case, the band spectrum of o2 will display
the particle-hole symmetry.

The second consequence is that a full spectral gap is generically
opened in the phonon spectrum. Indeed, note that if the system
possesses an additional reflection symmetry (as in Fig. 1a), then
the term involving d3(k) is missing in equation (8), and the two
spectral bands of bDðkÞ cross at k¼ p

2 as in Fig. 1b. Furthermore,
due to the characteristics discussed above, the bands associated
with the translational and rotational degrees of freedom have a
minimum at k¼ 0 and k¼p, and a maximum at k¼ p and k¼ 0,
respectively. This leads to the particular crossing of the bands
seen in Fig. 1b so that when the degeneracy at k¼ p

2 is lifted by
breaking the reflection symmetry, which was our original
assumption, the bands split and a full spectral gap opens in the
phonon spectrum as in Fig. 1e. Note that this will not be the case
if the bands cross, for example, as in Fig. 6a of Berg et al.2

The third consequence is that the topological invariant is
always non-trivial. Indeed, let us represent Pauli’s matrices

in the basis 1ffiffi
2
p 1

1

� �
and 1ffiffi

2
p 1

� 1

� �
so that bs1 is diagonal

bs1 ¼
1 0
0 � 1

� �
. In this case:

bDðkÞ ¼ 0 f ðkÞ�
f ðkÞ 0

� �
; f ðkÞ ¼ d3ðkÞþ id2ðkÞ ð14Þ

and it is easy to see that the phonon spectrum is composed of two
bands separated by a direct spectral gap D(k)¼ 2|f(k)|. As long as
this direct gap remains open, which we already know is
generically the case, the winding number:

n ¼
Z 2p

0

df ðkÞ
f ðkÞ ð15Þ

is a well-defined quantized topological invariant31. Geometrically,
n counts the windings around the origin of the loop traced by f(k)
in the complex plane as k is varied from 0 to 2p. Explicitly:

f ðkÞ ¼ 1
2

Tr bs3bQ0

n o
þ 1

2
Tr bs3 bQ1þ bQ� 1

� �n o
cosðkÞ

þ i Tr bs2 bQ1þ bQ� 1

� �n o
sinðkÞ

ð16Þ

that is the equation of an ellipse in the complex plane, centred

at xc ¼ 1
2
bQ0ð1; 1Þ� bQ0ð2; 2Þ
h i

and of horizontal semi-axis

b ¼ 1
2
bQ1ð1; 1Þ� bQ1ð2; 2Þ
			 			. The winding number is ±1 if the

origin of the coordinate system is located inside this ellipse
(that is, b4xc) and zero otherwise. As a consequence,
we can write a simple condition for a non-trivial topological
number na0:

bQ1ð2; 2Þ� bQ1ð1; 1Þ
			 			4 1

2
bQ0ð2; 2Þ� bQ0ð1; 1Þ
			 			 ð17Þ

However, this condition is obviously satisfied because, if we add
equations (11 and 12) we obtain:

Q1ð2; 2Þ�Q1ð1; 1Þ � 1
2
ðQ0ð2; 2ÞþQ0ð1; 1ÞÞ ð18Þ

that, together with the positive character of Q0(i, i), automatically
implies equation (17).

Analysis of the edge modes. When an edge is present, the
bulk-boundary correspondence for the BDI symmetry class in
one-dimension reads34:

n ¼ Nþ �N� ð19Þ

a

b

In
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xr(n – 1)
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xr(n)

n – 1 n n + 1

Figure 3 | The generic topological system. (a) The equilibrium

configuration of a self-assembled periodic array of rigid dimers with

inversion symmetry relative to their centre of mass (marked by the dot).

One important observation is that, regardless of the details of the

self-assembly process, the periodic array, as a whole, has the inversion

symmetry. (b) A dynamical configuration of the dimer chain showing the

relevant degrees of freedom that are the translations of the dimer centres

along the axis of the chain and the rotation of the dimers. It also shows how

the degrees of freedom transform under the inversion operation. The key

observation here is that the translational degrees of freedom change sign

while the rotational ones do not.

a b–xr xr xr xr

Figure 4 | Behaviour under different rotations. Rotation of the dimers by

opposite angles (a) corresponds to bending the dimer chain, while a

rotation by identical angles (b) is closely related to shearing the dimer

chain.
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where N± are the number of topological Majorana edge modes of
positive/negative chirality. Note that this principle ensures the
existence of at least n Majorana edge modes that in our case occur
in the middle of the bulk spectral gap at a finite frequency. The
key condition for equation (19) to hold is that the edge does not
break the particle-hole symmetry of the system. Another
remarkable fact is that this is indeed the case when we sever
the dimer chain in half because, with the tuning from point (1),
all three matrices bQ0� mI2�2 and bQ� 1 anti-commute with s1.
In other words, the normal-mode equation in the presence of
an edge

o2M�m
� �

xðn;oÞ ¼bQ� 1xðn� 1;oÞþ ðbQ0� mI2�2Þxðn;oÞ
þ bQþ 1xðnþ 1;oÞ

ð20Þ
with n40 and x(0, o)¼ 0 continues to display the chiral
symmetry with respect to bs1. This is precisely the setting for the
bulk and boundary index theorems formulated in ref. 31, leading
to a rigorous proof of equation (19), and hence the existence of
robust Majorana edge modes is proven. For the same reason,
the chiral symmetry remains unbroken when two chains with
opposite topological numbers are connected as in the experiment
of Fig. 2, in which case the bulk-boundary correspondence
principle predicts two Majorana edge modes as it was indeed
observed. The splitting of the modes from the predicted mid-gap
position is attributed to non-linear effects and to a small possible
symmetry breaking.

Discussion
The main message of our work is that, if particles with an
inversion centre, such as dimers, self-assemble into periodic linear
chains, then by a simple one-parameter tuning the chains can be
driven into a topological phase from the BDI symmetry class. Let
us point out that the building blocks of many soft materials in
living organisms are protein dimers and such self-assembled
structures are common35. It was this observation that prompted
us in the first place to focus on this type of systems. In the real
world, of course, the systems are much more complex and will
certainly have additional degrees of freedom. Note however,
that our hypothesis was about the relevant degrees of freedom,
namely, those that, to a high degree, determine the phonon
spectrum around the topological gap. For example, our
experimental model certainly had additional degrees of
freedom. The centre of mass of the dimers was not constrained
on a line and the whole chain was actually very soft against
bending. For this very reason, the bending modes died out at very
low frequencies, and therefore we could ignore them entirely at
frequencies around the topological gap.

The tuning we propose is through the gyration radius
d¼

ffiffiffiffiffiffiffiffiffi
I=M

p
that can be easily changed by adding/subtracting

mass at/from near the inversion point, hence leaving I virtually
the same, or by redistributing the mass and hence changing I.
Both actions can be in principle accomplished without substantial
changes in the interaction between the rigid bodies. At the
microscale, the gyration radius can be varied, for example, by
exploiting the thermal expansion of the materials or, for soft
matter, by manipulating the medium conditions to induce
changes in the conformation of the dimers. The tuning can also
be achieved by varying the interactions, like in the case of
crystalline structures made with nanoscale programmable atom
equivalents (gold nanoparticles with a dense layer of DNA),
where plasticity can be changed on demand by modifying the
chemical cues of the buffer36.

To summarize, we found that self-assembled periodic arrays
of inversion-symmetric particles can acquire a particle-hole

symmetry under a mild tuning, in which case they generically
enter a topological mechanical phase where dynamical Majorana
edge modes are observed. Key features of the dynamical Majorana
modes are: (1) their symmetry with respect to the charge
conjugation, implemented by the exchange of the rotational and
translational degrees of freedom followed by time reversal,
(2) their stable positioning in the middle of the bulk phonon
gap and (3) the capacity to absorb and store energy without
spilling it into the bulk of the chain, a phenomenon that can be
clearly observed in the Supplementary Movies 1 and 2. Perhaps
the class of topological self-assembled chains discovered here is
just one among many others that remain to be discovered but,
in our opinion, their existence already provides more support
for the thesis that topological mechanical systems can occur
naturally outside laboratories. As opposed to the gyroscope-
assisted lattices18, the topology in the systems studied here
emerges solely from their structure. As such, new materials with
dynamic topological edge modes can be already engineered at
micron and nanoscale using the recent advances in self or
directed assembled materials. Indeed, methods to design and self-
assemble nano-structures with programmable lattices are widely
available and, for example, DNA and proteins, such as clathrin,
have been used extensively to create 3D lattices or other solid
state-like structures, 3D origami and even origami lattices37,38.

Methods
Assembly of the mechanical system. The dimers were produced by bonding
plastic half-shells of 1.15 inches in outer diameter around brass spheres of diameter
0.75 inches, as illustrated in Fig. 2b. The half-shells were produced of acrylonitrile
butadiene styrene through fused deposition modelling with a Hyrel 3D System
30M printer (Hyrel, Norcross, GA, USA). The plastic half-shells were designed
with indentations at various points to facilitate proper alignment of the hemi-
spheres and attachment of springs and rods at precise angles. A custom-designed
alignment jig facilitated the precise and uniform assembly of the dimer units.
To form the dimers, an acetal rod of 0.25 inch in diameter and 1 inch in length was
inserted into the indentations on two individual plastic/brass spheres. Acetal was
chosen because of its low coefficient of friction, and this was important because the
system is suspended from the centre of mass of the dimers that is in the middle of
the rods. Another custom alignment jig was utilized to ensure the precise and
uniform connection of the dimers. Springs of 50.8 mm length and 200 N m� 1

spring constant (supplied by Associate Spring Raymond) were affixed to the dimers
using the angled indentations on the plastic/brass spheres, as illustrated in Fig. 2a.
To suspend the system, 3/32 inch through holes were drilled vertically in the centre
of the acetal rod connecting each dimer, which was facilitated again by the use of a
custom drilling jig, and then a 3/32 inch chucking reamer was utilized to further
process each hole. A custom ball bearing system was designed to suspend the
system and allow nearly frictionless motion of the system. For this, 3/32 inch
diameter steel rods were inserted through the vertical through holes in the acetal
rod. Metalized (silver) plastic beads (3 mm in diameter) were utilized to ‘sandwich’
the acetal rod and the beads were held in place by steel collar nuts. To further
reduce the friction, a graphite dry lubricant (Blaster Corporation Valley View, OH,
USA) was applied to both the steel and acetal rods. Small ball links were utilized to
attach the vertical steel rods to a horizontal, stationary aluminum beam at precise
intervals. All the hardware utilized in the suspension of the model system was
purchased from Du-Bro Products, Inc. (Wauconda, IL, USA).

Data recording and analysis. The experiment was run using a custom-built
computer-controlled system coordinated by LabVIEW. A sinusoidal signal
of varying frequencies was produced using an arbitrary waveform generator
(HP 33120A) connected to a computer via a GPIB interface. The sinusoidal signal
was amplified by a Pasco function generator (TI8127) that was set up to accept an
external signal. The amplified signal was sent to a string vibrator (Pasco WA9857)
that was attached to a dimer via a screw. The kinematics of the dimers
was captured using analogue accelerometers and their evaluation boards
(eval-adxl326z). The accelerometers produced two voltage signals proportional to
the accelerations parallel and perpendicular to the chain’s axis. The signals were
captured using a USB data acquisition system (NI USB6216).

The LabVIEW program sets the frequency and outputs the sinusoidal signal on
the actuator. The actuator is set in motion and the system is allowed for 5 s to reach
its stationary regime and afterwards the data from the accelerometers is captured
for 10 s. Then, the sinusoidal signal is turned off and the system is allowed to come
to rest for 5 s. The frequency is increased (in steps of 0.1 Hz) and the cycle starts
again. The result is 100,000 measurements per frequency and, for each frequency,
the LabVIEW program calculates and subtracts the base line and then calculates
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the root mean square (r.m.s.) of the calibrated data. The r.m.s. is proportional with
the amplitude of the acceleration at that particular frequency. The r.m.s. values
are plotted in Fig. 2. The frequency interval combed during a whole experiment
was 0–35 Hz.

Data availability. All relevant data are available upon request from the authors.
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