
Citation: Kawahara, D.; Nishibuchi,

I.; Kawamura, M.; Yoshida, T.; Koh, I.;

Tomono, K.; Sekine, M.; Takahashi,

H.; Kikuchi, Y.; Kudo, Y.; et al.

Radiomic Analysis for Pretreatment

Prediction of Recurrence

Post-Radiotherapy in Cervical

Squamous Cell Carcinoma Cancer.

Diagnostics 2022, 12, 2346.

https://doi.org/10.3390/

diagnostics12102346

Academic Editor: Ralph P. Mason

Received: 14 September 2022

Accepted: 23 September 2022

Published: 28 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diagnostics

Article

Radiomic Analysis for Pretreatment Prediction of Recurrence
Post-Radiotherapy in Cervical Squamous Cell
Carcinoma Cancer
Daisuke Kawahara 1,*,†, Ikuno Nishibuchi 1,† , Masashi Kawamura 2, Takahito Yoshida 3, Iemasa Koh 4 ,
Katsuyuki Tomono 4, Masaki Sekine 4, Haruko Takahashi 5 , Yutaka Kikuchi 5 , Yoshiki Kudo 4

and Yasushi Nagata 1,6

1 Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences,
Hiroshima University, Hiroshima 734-8551, Japan

2 Medical and Dental Sciences Course, Graduate School of Biomedical and Health Sciences,
Hiroshima University, Hiroshima 734-8551, Japan

3 School of Medicine, Hiroshima University, Hiroshima 734-8551, Japan
4 Department of Obstetrics and Gynecology, Graduate School of Biomedical and Health Sciences,

Hiroshima University, Hiroshima 734-8551, Japan
5 Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama 1-3-1,

Higashi-Hiroshima, Hiroshima 739-8526, Japan
6 Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima 732-0057, Japan
* Correspondence: daika99@hiroshima-u.ac.jp; Tel.: +81-82-257-1545
† These authors contributed equally to this work.

Abstract: Background: The current study aims to predict the recurrence of cervical cancer patients
treated with radiotherapy from radiomics features on pretreatment T1- and T2-weighted MR images.
Methods: A total of 89 patients were split into model training (63 patients) and model testing
(26 patients). The predictors of recurrence were selected using the least absolute shrinkage and
selection operator (LASSO) regression. The machine learning used neural network classifiers. Results:
Using LASSO analysis of radiomics, we found 25 features from the T1-weighted and 4 features from
T2-weighted MR images, respectively. The accuracy was highest with the combination of T1- and
T2-weighted MR images. The model performances with T1- or T2-weighted MR images were 86.4%
or 89.4% accuracy, 74.9% or 38.1% sensitivity, 81.8% or 72.2% specificity, and 0.89 or 0.69 of the area
under the curve (AUC). The model performance with the combination of T1- and T2-weighted MR
images was 93.1% accuracy, 81.6% sensitivity, 88.7% specificity, and 0.94 of AUC. Conclusions: The
radiomics analysis with T1- and T2-weighted MR images could highly predict the recurrence of cervix
cancer after radiotherapy. The variation of the distribution and the difference in the pixel number at
the peripheral and the center were important predictors.

Keywords: radiotherapy; machine learning; cervix cancer

1. Introduction

Cervical cancer is one of the most common malignant tumors in women worldwide [1].
Definitive radiotherapy is the mainstream treatment for cervical squamous cell carcinoma
in early-stage and advanced cases. The treatment outcomes of radiotherapy and surgery are
comparable in the early stage. For locally advanced-unresectable cervix cancer, concurrent
chemoradiotherapy (CCRT) is the standard treatment. However, Jemal et al. reported that
one third of the patients would experience recurrence [2]. Tumor recurrence is often not
detected for several months after primary therapy. Prediction of the treatment response
and the long-term outcome presents a challenge in developing precise personalized care.
High-risk recurrence patients can receive treatments such as additional chemotherapy and
dose escalation in time by predicting reliable biomarkers.
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Medical imaging, such as magnetic resonance imaging (MRI) and computed tomog-
raphy, is essential in the staging of patients and guiding treatment decisions. For cervical
cancer patients, the MRI provides high soft-tissue contrast and functional information,
which plays a key role in the assessment of the reference standard for the pre-therapeutic
study [3].

Radiomics analysis provides high-dimensional data such as tumor homogeneity and
heterogeneity that cannot be identified by general visual evaluation using texture analysis
in addition to the shape and volume [4,5]. Texture analysis can evaluate the position
of the pixels and gray level intensity within an image using a variety of mathematical
methods. Radiomics can classify the stage or histology of the tumor through the prediction
of responses to chemotherapy [6] or radiotherapy [7].

Reuze et al. reported that the positron emission tomography (PET) texture analysis
could predict the recurrence of cervical cancer treated by brachytherapy and chemoradia-
tion than the maximum standardized uptake value (SUVmax) [8]. Meng et al. evaluated
useful texture features extracted from T2-weighted MR images and apparent diffusion
coefficient (ADC) maps for the prediction of recurrence for advanced cervical cancer pa-
tients treated with CCRT [9]. The MR-associated prediction model improved the accuracy
of the prediction beyond that from the PET. In contrast, the regions of interest (ROIs)
were drawn on each slice covering the whole tumor. Xie et al. showed the usability of a
sub-region-based radiomics analysis in which the ROI was divided into sub-regions based
on the local entropy and cluster of CT values [10]. It suggests that the number of radiomics
features could be increased by adding the ROI, thus improving the prediction accuracy.

This study entailed the development of a prediction model of the recurrence for
cervical cancer patients using radiomics features extracted from the extended and shrink-
uterus regions on pretreatment T1- and T2-weighted MR images.

2. Materials and Methods
2.1. Patients

Eighty-nine cervical squamous cell carcinoma patients who were treated with external
beam radiotherapy (EBRT) followed by intracavitary brachytherapy (ICBT) from 2003 to
2015 at our institution were reviewed. All patients provided written informed consent for
treatment. The patients’ and tumor characteristics are presented in Table 1. The recurrence
rate was 25% for early T (T1/T2) patients, 43% for advanced T (T3/T4) patients, and 34%
for all patients. Among the patients with distant metastasis, patients with para-aortic
lymph node (PAN) metastasis on imaging were included. Hiroshima University Certified
Review Board approved this retrospective study (E-1656). The need for informed consent
was waived owing to the retrospective nature of the study. The methodology in the current
study was subjected to relevant regulations and guidelines.

Table 1. Patient and tumor characteristics.

Age (Years) Median (Range) 63 (30–85)

PS

0 71

1 14

2 4

3 0

Histology Squamous 89

T factor (UICC-8th)
1a 1

1b 8
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Table 1. Cont.

Age (Years) Median (Range) 63 (30–85)

T factor (UICC-8th)

2a 1

2b 37

3a 0

3b 36

4a 6

N factor
0 43

1 46

M factor
0 76

1 13

2.2. Image Acquisition

MR images were scanned with three 1.5 T MR imaging units (Integenia Ambition,
Philips; Siemens Healthcare Magnetom Avanto; Signa Excite, GE Healthcare), with a pelvic
array coil for the pelvic scans. All patients were scanned using the same MR sequence,
including axial T1-weighted fast spin-echo (FSE), and axial T2-weighted FSE. Patients
scanned only with T1- or T2-weighted FSE with fat saturation were eliminated from the
analysis. Images from 89 patients were retrospectively analyzed in an institutional review-
board-approved study.

2.3. Treatment
2.3.1. Radiotherapy

One patient was treated with ICBT alone, and 88 patients were treated with a combi-
nation of EBRT and ICBT. Three-dimensional radiotherapy planning using an X-ray beam
(6–18 MV) was performed for all the patients who received EBRT. Patients without PAN
metastasis received whole pelvis irradiation (WPI), and patients with PAN metastasis
received extended-field irradiation. Center shielding (CS) was used in 67 patients, and
boost irradiation for lymph node or parametrium regions was performed in 36 patients.
The indication and dose of CS and boost irradiation were determined by the radiation
oncologist based on the initial tumor size and therapeutic effect of WPI. The median EBRT
dose was 50 Gy/25 fractions (range 28–66 Gy). Image-guided brachytherapy (IGBT) was
performed on 20 patients. The prescribed dose of ICBT was 6 Gy to point A (a point 2 cm
cranial from the external cervical os and 2 cm lateral from the tandem) in two-dimensional
treatment planning and to D90 (minimum dose to 90%) of high-risk clinical target volume
(the residual tumor at the time of ICBT and the whole uterine cervix) in IGBT. The fractions
of ICBT depended on the CS dose, and the median ICBT dose was 18 Gy/3 fractions
(range 6–30 Gy/1–5 fractions). The median overall treatment time was 44 days (range
30–58 days). The most common treatment schedule was as follows: WPI 40 Gy/20 fractions,
CS 10 Gy/5 fractions, and ICBT 18 Gy/3 fractions.

2.3.2. Chemotherapy

Sixty-eight patients received concurrent chemotherapy. The selection of the chemother-
apeutic regimen and reduction of chemotherapeutic dosages were determined according
to the hospital’s protocol and the physician’s judgment. The regimens of the chemothera-
peutic were as follows: weekly cisplatin in 33 patients, weekly nedaplatin in 21 patients,
intraarterial chemotherapy in 10 patients, and paclitaxel/cisplatin in two patients, irinote-
can/cisplatin in one patient, and paclitaxel in one patient.
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2.4. Radiomics Analysis

The acquisition process of the MR images to the prediction model is shown in Figure 1.
The proposed radiomics model was designed as a Transparent Reporting of a Prediction
Model for Individual Prognosis or Diagnosis type 2a [11]. The T1- and T2-weighted MR
images were transferred to a medical image computing tool (3D Slicer, www.slicer.org,
accessed on 1 January 2020) [12]. Figure 2 shows an example of the segmentation. A uterus
that included the primary tumor was defined as clinical target volume (CTV) and was
manually segmented on the axial T1- and T2-weighted MR images. The segmentations were
performed by one or two radiation oncologists, including one expert radiation oncologist.
Then, the extended-CTVs were generated by adding 5-, 10-, and 20 mm margins from the
CTV, which were defined as eCTV5, eCTV10, and eCTV20, respectively. Moreover, shrink-
CTVs were generated by adding 5 mm and 10 mm margins from the CTV, which were
defined as sCTV5 and sCTV10. The radiomics features were extracted with an open-source
package in Python, Pyradiomics software [13]. A detailed list of the radiomics features is
shown in Tables 2 and 3.
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Figure 1. The process of the prediction model with radiomics analysis and machine learning.
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Figure 2. An example of the segmentation of CTV, extended-CTV (eCTV), and shrink-CTV (sCTV).

Table 2. Feature type and associated features.

Feature Type Methods Feature Name

Morphology-based Shape

Maximum 3D diameter
Maximum 2D diameter slice

Sphericity
Minor axis
Elongation

Surface volume ratio
Volume

Major axis
Surface area

Flatness
Least axis

Maximum 2D diameter column
Maximum 2D diameter row

www.slicer.org
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Table 2. Cont.

Feature Type Methods Feature Name

First or-der-based Histogram

Interquartile range
Skewness

Uniformity
Median
Energy

Robust mean absolute deviation
Mean absolute deviation

Total energy
Maximum

Root mean squared
90 percentile

Minimum
Entropy
Range

Variance
10 percentile

Kurtosis
Mean

Texture-based

GLCM

Joint average
Sum average
Joint entropy
Cluster shade

Maximum probability
Idmn

Joint energy
Contrast

Difference entropy
Inverse variance

Difference variance
Idn
Idm

Correlation
Autocorrelation

Sum entropy
Sum squares

Cluster prominence
Imc2
Imc1
MCC

Difference average
Id

Cluster tendency

GLSZM

Gray level variance
Zone variance

Gray level non-uniformity normalized
Size zone non-uniformity normalized

Size zone non-uniformity
Gray level non-uniformity

Large area emphasis
Small Area high gray level emphasis

Zone percentage
Large area low gray level emphasis
Large area high gray level emphasis

High gray level zone emphasis
Small area emphasis

Low gray level zone emphasis
Zone entropy

Small area low gray level emphasis
Gray level variance
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Table 2. Cont.

Feature Type Methods Feature Name

Texture-based

GLRLM

Short run low gray level emphasis
Gray level variance

Low gray level run emphasis
Gray level non-uniformity normalized

Run variance
Gray level non-uniformity

Long run emphasis
Short Run high gray level emphasis

Run length non-uniformity
Short run emphasis

Long run high gray level emphasis
Run percentage

Long run low gray level emphasis
Run entropy

High gray level run emphasis
Run length non-uniformity normalized

NGTDM

Coarseness
Complexity

Strength
Contrast
Busyness

GLDM

Gray level variance
High gray level emphasis

Dependence entropy
Dependence non-uniformity
Gray level non-uniformity

Small dependence emphasis
Small dependence high gray level emphasis

Dependence non-uniformity normalized
Large dependence emphasis

Large dependence low gray level emphasis
Dependence variance

Large dependence high gray level emphasis
Small dependence low gray level emphasis

Low gray level emphasis
GLCM, gray-level co-occurrence matrix; GLSZM, gray-level size-zone matrix; GLRLM, gray-level run-Length
matrix; NGTDM, neighboring gray-tone difference matrix; GLDM, gray-level dependence matrix.

Table 3. Feature associated with the imaging filters.

Feature Type Wavelet-Based

Methods
First-order statistic and texture of wavelet
decomposition. Decomposition levels: LLL, LLH, LHL,
LHH, HLL, HLH, HHL, HHH.

Feature name

First-order features

GLCM features

GLSZM features

GLRLM features

NGTDM features

GLDM features

We extracted 13 shape radiomics features, 21 first-order radiomics features, 50 quantitative
radiomics features, and 93 texture radiomics features. Additionally, the radiomics features
were extracted from the wavelet filters with high-pass and low-pass filters. The wavelet
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filter was decomposed in the x, y, and z directions. A total of 837 radiomics features were
extracted for each segmentation.

2.5. Prediction Model

In this study, all loco-regional recurrence and distant metastasis after RT were regarded
as recurrence and were used to examine the prediction model. The clinical patient data were
updated in May 2020, and the median follow-up time was 59 months (range, 1–160 months).
Recurrence was observed in 30 of 89 patients at the last follow-up.

The least absolute shrinkage and selection operator (LASSO) regression model was
used with MATLAB code to prevent overfitting [14,15]. The most significant predictive
features were selected with the LASSO regression, which reduces the dimension from
among all the candidate features in the training dataset.

We classified recurrence patients and non-recurrence patients with machine learning
(ML) classifiers. The recurrence and non-recurrence patients were labeled as 1 and 0,
respectively. The ML classifiers used a neural network (NN) with rectified linear unit
activation and 10 hidden layers. All patients were randomly divided into a training set
(49 patients), a validation set (14 patients), and a testing set (26 patients). The prediction
model was constructed with the five-fold cross-validation method, as shown in Figure 3.
The predictive performance was evaluated using the area under the curve (AUC) from the
receiver operator characteristic (ROC) curve, accuracy, sensitivity, and specificity.
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3. Results

A total of 5022 features were extracted from the T1- and T2-weighted MR images.
The T1- and T2-weighted MR images were ultimately reduced to 25 and four features,
respectively, with the LASSO regression model, as shown in Figure 4 and Table 4. The
following features were extracted from the T1-weighted MR image: one feature from the
CTV, two features from the eCTV5, seven features from the eCTV20, five features from
the sCTV5, and ten features from the sCTV10. The following features were extracted from
the T2-weighted MR image: one feature from the CTV, one feature from the eCTV20, one
feature from the sCTV20, and one feature from the sCTV10. Most of the features from the
wavelet filter were extracted. The T1-weighted MR image had more features used for the
prediction model than the T2-weighted MR image. The features of the low pixel number
at the center region of the uterus for the T1-weighted MR image indicate low blood flow.
The radiomics feature of a lower pixel number and a high conformality was selected from
the T1- and T2-weighted MR images from the shrink-CTV (sCTV) analysis. The area of the
low pixel number and the conformality was larger with the T1-weighted MR image for the
recurrence group compared to the T2-weighted MR image. Moreover, the mean value of
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the low pixel number was small with the T2-weighted MR image for the recurrence group.
From the extended-CTV, the features that showed a nonuniformity, asymmetric distribution
of the pixel values, and a larger volume with a high pixel number were selected.
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Figure 4. Radiomics features were selected using the LASSO regression. (a) Tuning penalization
parameter (λ) and minimum criterion in the LASSO model. The binomial deviance was plotted
against log(λ). (b) LASSO coefficient profiles of the 4185 radiomics features. The green line showed
the optimal lambda in the LASSO analysis with the least partial likelihood of deviance.

Table 4. Selected the features by LASSO Cox regression.

ROI Filter Feature List

T1-weighted MR image

CTV wavelet-LLH Firstorder Skewness
eCTV5 wavelet-HLL GLDM LargeDependenceHighGrayLevelEmphasis
eCTV5 wavelet-HLH GLCM Correlation
eCTV20 Original Shape SurfaceVolumeRatio
eCTV20 Original GLCM MCC
eCTV20 wavelet-LLH GLSZM GrayLevelNonUniformity
eCTV20 wavelet-HLH Firstorder Kurtosis
eCTV20 wavelet-HHH Firstorder Skewness
eCTV20 wavelet-HHL Gldm DependenceNonUniformity
eCTV20 wavelet-HHL Glcm Imc1
sCTV5 wavelet-HLL Glcm InverseVariance
sCTV5 wavelet-HLL Firstorder Skewness
sCTV5 wavelet-LHL Glszm LargeAreaLowGrayLevelEmphasis
sCTV5 wavelet-LLH Firstorder Skewness
sCTV5 wavelet-HLH Firstorder Median
sCTV10 Original Glszm LargeAreaHighGrayLevelEmphasis
sCTV10 wavelet-HLL Glcm InverseVariance
sCTV10 wavelet-LHH Firstorder Mean
sCTV10 wavelet-LLH Gldm SmallDependenceLowGrayLevelEmphasis
sCTV10 wavelet-HLH Firstorder Mean
sCTV10 wavelet-HHH Gldm SmallDependenceLowGrayLevelEmphasis
sCTV10 wavelet-HHH Firstorder Skewness
sCTV10 wavelet-HHL Firstorder Skewness
sCTV10 wavelet-HHL Firstorder Mean
sCTV10 wavelet-LLL Gldm SmallDependenceLowGrayLevelEmphasis

T2-weighted MR image

CTV wavelet-HHH Firstorder Median
eCTV20 wavelet-HLL Firstorder Skewness
sCTV5 wavelet-HHH Firstorder Median
sCTV10 Original Gldm SmallDependenceLowGrayLevelEmphasis

The prediction models with the T1-weighted MR images, the T2-weighted MR images,
and the combination of the T1-and T2-weighted MR images were evaluated. Figures 5–7
show the validation of the performance of the predictive models according to ROC met-
rics with five-fold cross-validation. Table 5 shows the results of the accuracy, sensitivity,
specificity, and AUC for the training and testing data.
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Table 5. Assessment of the predictive performance of the predictive model for training and testing
data with T1-weighted MR image (T1), T2-weighted MR image (T2), and the combination of T1- and
T2-weighted MR images (T1&T2).

T1 T2 T1&T2
Training Test Training Test Training Test

Sensitivity 89.9 86.4 87.8 87.4 97.6 93.1
Specificity 81.7 74.9 31.3 38.1 92.2 81.6
Accuracy 87.2 81.8 67.9 72.2 95.9 88.7

AUC 0.89 0.69 0.94

The average accuracy of the five models for the testing data was 81.8% with T1-
weighted MR image, 72.2% with T2-weighted MR image, and 88.7% with a combination of
T1- and T2-weighted MR images. The average AUC of the five models for the testing data
was 0.89 with T1-weighted MR image, 0.69 with T2-weighted MR image, and 0.94 with a
combination of T1- and T2-weighted MR images. The prediction model with a combination
of T1- and T2-weighted MR images had higher accuracy and AUC. The prediction model
with a T1-weighted MR image had higher accuracy and AUC than the T2-weighted MR
image. The specificity of the prediction model with T2-weighted MR images was under
40% for both training and testing data.

4. Discussion

The radiomics approach uses image-based features as the imaging biomarker for the
prediction of the grade of the tumor, treatment response, and side effects of treatment. Past
studies (Ho et al. and Reuze et al.) have reported that the PET texture analysis could predict
the recurrence of cervix cancer based on SUVmax [8,16]. The AUC of the prediction model
with PET texture analysis was 0.75 according to Ho et al. and 0.76 according to Reuze et al.;
Mengal et al. improved the accuracy of the prediction of recurrence of advanced cervical
cancer patients treated with concurrent chemoradiotherapy using the texture features
extracted from T2-weighted MR image and apparent diffusion coefficient (ADC) maps [9].
The AUC of the prediction model with the support vector machine was 0.89.

Our study demonstrates the potential of radiomics analysis using T1- and T2-weighted
MR images to predict the recurrence of cervix cancer after radiotherapy. The current study
improved the accuracy of the prediction model of T1- and T2-weighted MR images with
the NN. The PET is more infrequently used clinically than the MR image and the MR image
has relatively more predictors.

Sun et al. showed a potential for the prediction of the clinical response to neoadjuvant
chemotherapy using the radiomics analysis of combining the intratumoral and peritumoral
regions on the pretreatment T1- and T2-weighted MR images [17]. The current study
investigated the usability of the radiomics model based on pretreatment T1- and T2-
weighted MR images for the prediction of recurrence after radiotherapy. In addition to
the CTV, the features of the segmentation of the shrink-CTV and extended-CTV were
selected for the prediction model. The extended CTV could extract the features in and the
boundaries of the tumor, which allows us to detect its associations with metastases within
the microenvironment [18].

Mayr et al. investigated the correlation of the dynamic T1-weighted MR image for
the prediction of tumor control in patients treated with radiotherapy for advanced cervical
cancer by pixel-by-pixel statistical analysis [19]. The dynamic MRI contrast enhancement
can assess the regional variation in tumor microcirculation and facilitate a better assessment
of low perfusion regions within tumors. They revealed poor blood supply and hypoxia as
contributing factors to radiation therapy failure. Other studies also support the relationship
between tumor hypoxia and dynamic MRI contrast enhancement [20–22]. Kjersti et al.
divided the high and low signals on the dynamic MRI contrast images and analyzed
the relation between signals and the prognosis [22]. They showed that the low signal
enhancement was a biomarker of poor prognosis.
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The current study performed the radiomics analysis with T1- and T2-weighted MR
images, not the dynamic MRI contrast enhancement image. The shrink-CTV was mostly lim-
ited to the primary tumor region. In the shrink-CTV, the distribution of small dependence
with lower pixel values was larger with the T1-weighted MR image and smaller with the
T2-weighted MR image. This may suggest that the central tumor region has low blood flow.
Thus, the radiomics feature can detect the hypoxia region by poor blood supply without a
dynamic contrast-enhanced MR image. The blood oxygenation level-dependent (BOLD)
response is sensitive to tumor vascular oxygenation [23–25]. Hallac et al. demonstrated that
BOLD MRI examination is a potentially valuable biomarker of oxygenation [24]. Although
the BOLD is sensitive to vascular oxygenation, tissue oxygen level-dependent contrast with
T1-weighted MR image has the potential to more directly reflect tissue oxygenation [25,26].
Matsumoto showed the possibility to monitor changes in T1 that are related to changes
in pO2 using a T1-weighted spoiled gradient echo image [25]. Moreover, O’Connor et al.
showed a significant response in T1 of cervical cancer in response to oxygen breathing [25].
Zhou et al. examined T1 and T2 responses to oxygen gas breathing challenge albeit with
respect to prostate cancer [26]. They identified two principal components representing
49% and 29% respectively. The current study showed a high prediction ability using the
radiomics features. Thus, the radiomics analysis has a great potential to extract the biomark-
ers for the outcome of cancer treatment such as oxygenation from pretreatment T1- and
T2-weighted MR images. In the present study cohort, the recurrence rates were lower for
early T (T1/T2) patients than advanced T (T3/T4) patients. Lee, et al. reported a significant
correlation between VEGF expression and tumor size, and deep cervical invasion [27].
Advanced cervix cancer causes more angiogenesis. Angiogenesis increases the vessel to
provide oxygen and nutrients to the growing tumor tissue that expands rapidly; however,
more cancer cells means more demand causing even more hypoxia. The tumor ends up
being highly hypoxic with dysfunctional vasculature [28]. Although the validation of the
correlation between these features and blood flow and hypoxia is required in the future,
we believe that the results of this study focused on T1-weighted MR images are of great
significance. In addition to hypoxia in the tumor, the poor prognosis for cervical cancer has
been associated with high interstitial fluid pressure (IFP). Simonsen et al. showed that the
prognosis is less affected by tumor hypoxia and strongly affected by the IFP [9]. We will
reveal the tumor microenvironment from the radiomics feature in further study.

There were several limitations in the current study. The study was conducted at a
single institution with a limited number of cervix cancer patients. The study did not set
the exclusion criteria according to the prescription dose and ICBT alone. We consider it
necessary to examine the universal prediction model with a large number of cases in a mul-
ticenter and perform a sub-group analysis. The current study used multiple MRI devices. A
further study will be performed to reveal the robustness of the radiomics features between
these devices. The prediction model was proposed only with pretreatment MR images.
Meng et al. improved the prediction of the recurrence of cervix cancer using MR images
during treatment [29]. The changes in radiomics features from pretreatment and during
treatment, called delta-radiomics features, have been investigated for their prognostic po-
tential in cancer [30–32]. In the future, we will reveal the correlation between the radiomics
features and the biological effect and construct a highly versatile predictive model.

5. Conclusions

The radiomics analysis with T1- and T2-weighted MR images can accurately predict
the recurrence of cervix cancer after radiotherapy. The variation of the distribution and the
difference of the pixel number at the peripheral and the center were important predictors.
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