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Size Functions and Support Vector Machines are used to implement a new automatic classifier of melanocytic lesions. This is
mainly based on a qualitative assessment of asymmetry, performed by halving images by several lines through the center of mass,
and comparing the two halves in terms of color, mass distribution, and boundary. The program is used, at clinical level, with two
thresholds, so that comparison of the two outputs produces a report of low-middle-high risk. Experimental results on 977 images,
with cross-validation, are reported.

1. Introduction

The incidence of malignant melanoma in fair-skinned
patients has increased dramatically in most parts of the
world over the past few decades. Because the prognosis of
melanoma depends almost entirely on tumor thickness, early
detection of thin melanoma is important for the survival
of patients [1, 2]. The diagnostic accuracy of the clinical
examination of pigmented skin lesions, however, is still
rather poor. Literature results arise the evidence that

(i) the ability of general practitioners to early diagnose
CMM with the naked eye is very low;

(ii) the ability of dermatologists to early diagnose CMM
with the naked eye ranges from 50% to 75%;

(iii) there is a high rate of false positive (causing unneeded
surgical excision).

In the last decade dermoscopy has changed the evalua-
tion of the diagnosis of pigmented skin lesions. Dermoscopy
is a noninvasive technique that enables the clinician to per-
form direct microscopic examination of diagnostic features,
not seen by the naked eye, in pigmented skin lesions. This

technique is more accurate than naked eye examination for
the diagnosis of cutaneous melanoma, in suspicious skin
lesions when performed in the clinical setting [3].

A complementary effort is in the automatization of
the diagnostic process. Several rather successful computer
programs have been implemented to the aim of an automatic
analysis of melanocytic lesions and their discrimination
between naevi and melanomas (see, e.g., [4–8]; see also
[9, 10] for a comparison between automatic and human per-
formance). Most of them keep into account the traditional
ABCDE parameters used by dermatologists: Asymmetry
(of boundary, texture, and color), Boundary (irregularity
and dishomogeneity), Color (presence of several colors),
Dimension, and Evolution. In particular, asymmetry is
generally based on quantitative comparison of the two parts
into which a lesion image is split by its principal axes. Here
we focus on asymmetry, perhaps the most important cue. We
have developed a new method for comparing in a qualitative,
yet precise way the two parts of a lesion at the sides of a
splitting line. The mathematical tool for comparison is the
theory of Size Functions, applied to three features: boundary
shape, mass, and color distribution.
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For each splitting line of a pencil we get an asymmetry
measure, so forming a map (two for each of the three
features). Some characteristic numbers of the six maps are
finally fed to a Support Vector Machine. A classification
experiment has been led on data set of 977 lesions with very
good results. The whole research is a follow-up of the ADAM
project of the European Union.

We are well aware that “qualitative measure” reads like an
oxymoron; of course, we mean that we compute a precise,
objective, repeatable measure of the difference between the
two half images; yet, this difference is of a qualitative
kind, in that it is not bound to geometric deformations,
superimpositions or the like. This is actually the great
advantage of using topological and not just geometrical tools.

2. Size Functions

Size Functions (SFs) are modular invariants of whatever
signal the user is interested in [10]; in the present case,
the concerned features are boundary shape, mass, and color
distribution. Size functions are maps from the plane to the
(extended) natural numbers. They depend on two inputs:
an object (e.g., a lesion boundary) and a real map, called
measuring function defined on it (e.g., distance from the
center of mass). Essentially, the SF registers the behavior of
the measuring function by using Morse theory (see [11]).
SFs are “qualitative” not only in that they are topological in
nature, but also in that a “similarity” based on them depends
on the user’s choice of a measuring function and of a distance
between SFs adapted to the context.

Let us recall the definition of an SF, adapted from the
more general setting of [12], where measuring functions are
allowed a multidimensional range. Consider a continuous
real-valued function ϕ : M → R, defined on a subset M of
a Euclidean space. The Size Function of the pair (M,ϕ) is a
function �(M,ϕ) : R2 → N ∪ {∞}. For each pair (x, y) ∈ R2,
consider the set Mx = {P ∈ M : ϕ(P) ≤ x}. The value
�(M,ϕ)(x, y) is defined to be the number of the connected
components of My which contain at least one point in Mx.
The discrete version of the theory substitutes the subsets
of the plane with a graph G = (V ,E), the function ϕ :
M → R with a function ϕ′ : V → R and the concept
of topological connectedness with the usual connectedness
notion for graphs. Figure 1 shows the size function obtained
from a curve with the ordinate as measuring function.

3. Classification

SFs have a standard structure, the one of superimposed
triangles already apparent in Figure 1. This has an important
outcome, in that the relevant information can be condensed
in the vertices of those triangles [13]. Comparison of two
images (as far as the criterion intrinsic to the measuring
function is concerned) can then be carried out by comparing
the sets of these points. Several distances can be defined on
the set of SFs; one which is very successful is the matching
distance (see Figure 2).
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Figure 1: A curve and its Size Function.
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Figure 2: The matching distance.

Distance from templates generally produces numbers of
some significance with respect to a classification. Unfortu-
nately, there do not exist archetypal naevi or melanomas, so
the task is harder than for classical classification problems.
We use distances for measuring asymmetries, as we shall
see further on. These distances produce other characteristic
numbers. At this point, Statistical Learning comes into play;
Vectors of characteristic numbers are the input of a Support
Vector Machine.

4. Segmentation

The first processing step is segmentation, that is, the isolation
of the skin lesion from its background. (See Figure 3; the
separating curve is drawn green). This is carried out with
well-tested methods depending on several parameters, most
of which have been fixed by experiment. Tuning of one of the
remaining, permits the removal of most hairs. This is notori-
ously a serious problem in the processing of dermatological
images, and has been solved by the operations of erosion and
dilation coming from mathematical morphology.

5. Asymmetries

The experience of dermatologists suggests that a major crite-
rion for suspecting malignancy is the asymmetry of various
aspects of the lesion. We have followed this suggestion by
splitting each lesion in two halves by a straight line passing
through the center of mass. Comparison of the two halves
is then performed by computing the distance between their
Size Functions. This represents a definite progress with
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Figure 3: A segmentation example.

respect to classical methods for detecting asymmetry; these
detected only geometrical asymmetry, while distances of Size
Functions determine also qualitative asymmetry. We repeat
the splitting for 45 equally spaced radial lines, so getting
distance as a function of angle (see Figure 4). From this curve
the software extracts a set of characteristic numbers: min,
max, average, min plus the value at 90◦ from min, integral,
first moment, variation, min derivative, max derivative,
integral of absolute value of derivative, and variation of
absolute value of derivative. A Support Vector Machine with
a third-order kernel is fed with these numbers, computed for
each measuring function. Actually, the vectors also contain
three more parameters: area, perimeter, and a bumpiness
measure coming from the SF of the whole lesion, with
distance from center of mass as the measuring function. An
initial set of experiments had been carried out with 90 lines
instead of 45, but the hit ratio was just slightly higher, while
almost doubling computing time.

We have used six measuring functions to distil the struc-
ture of boundary, mass distribution, and color distribution,
respectively. The first is the distance (of boundary points)
from the splitting line. The second sums grey levels along
segments orthogonal to the splitting line. The third sums
distances of colors (in RGB space) of consecutive pixels
along segments orthogonal to the splitting line. Our initial
experiments used just these three measuring functions.
Adding their three opposite functions improved the hit ratios
of 2 to 5 percentage points.

6. Experimental Results

The present method has been tested on well-controlled
lesion images. The acquisition setup consists of an LEICA
650 M stereomicroscope and a Sony 3CCD-930 color video
camera. The illumination of the stereomicroscope consists
of a 12 V/50 W halogen lamp that creates a bundle of light
perpendicular to the area of interest. The digital images have
been archived by means of the DBDERMO Mips software
package (Dell’Eva-Burroni, Siena).

Over half of the data set used in the present research,
had already been the subject of a formal study of clinical
diagnostic validation using also the local population-based
cancer registry (i.e., Registro Tumori Romagna) to cross-
check for possible false negatives, published on [14]. The data

Figure 4: One of the splittings of a lesion and the whole curve of
distances.

Table 1: Evaluation of classification results.

H R1 R2 S

Specificity 83.84 87.1 86.24 87.16

Sensitivity 84 90 86.67 96.41

set comes from the daily practice of one of us (Stanganelli);
of course, only “interesting” naevi had been acquired.
All melanomas and several naevi have been subjected to
histological test; all remaining naevi have been subjected
to follow-up. We have selected 977 images of melanocytic
lesions (melanomas and naevi) acquired in epiluminescence
microscopy with a fixed 16-fold magnification. The only
selection criterion was that the lesion be entirely visible.

The data set contains 50 melanomas (28 of them with
thickness less than 0.75 mm) and 927 naevi. Cross-validation
has been performed in three ways. In test H, every second
image was assigned to the training set (melanomas were
listed consecutively). In tests R1 and R2, a training set of
25 melanomas and 500 naevi was randomized from the
data set. The test set was formed by the complement (the
remaining 25 melanomas and 427 naevi). A fourth test (S)
was performed without cross-validation, with the whole data
set both as training and test set; we interpret the not much
higher scores of test S as a proof of stability. In Table 1 we
report, for each of tests H, R1, R2, and S, the specificity and
sensitivity of what we judge to be the best performances.

As a further information, in test S a 100% specificity was
attained only at cost of 4% sensitivity, but the decrease of
specificity to 93.64% yielt a jump to 70% sensitivity. 100%
sensitivity was reached at 63.65% specificity. We also report
the ROC curve of test S in Figure 5.

Our system is not intended to be provided to the public as
a yes/no diagnostic tool; it yields a risk index in the following
way. Two classifiers, one tuned at high sensitivity, the other
at fairly good specificity, give their response; if they agree
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Figure 5: The ROC curve of the single-set S test.

Table 2: Hit ratio of risk index computation.

Naevus Uncertain Melanoma

Low risk 87.11 51.76 0

Middle risk 10.82 38.82 4.76

High risk 2.06 9.41 95.24

Table 3: ELM: Epiluminescence diagnosis (Dermatologists); Clin:
Clinical diagnosis (Dermatologists); GP: Clinical diagnosis by
General Practitioners; ADAM: our system.

ELM Clin GP ADAM

Sensitivity 75 74 81 84

Specificity 80 83 73 72

to classify the lesion as a naevus (resp., a melanoma) then
a low (resp., high) risk is stated; if they disagree, the output
is of middle risk. A comparison has been done between the
output of this compound classifier and the judgement of
an expert dermatologist, who had classified the lesions as
sure melanomas, sure naevi and uncertain. The percentages
reported in Table 2 refer to the fractions of the three classes
(as classified by the human expert) labeled by the machine
with the three risk levels.

7. Comparison

A true comparison with other research group is problematic.
As stressed in [5], there are quite different selection criteria,
melanomas/naevi ratios, data set sizes, analysis methods.
Instead of reporting selected results of competitors, we refer
to Table 1 of that thorough paper. We just would like to
comment on very high sensitivity scores (over 95%). With
the noticeable exception of Seidenari et al. [4], such scores
seem to have been attained either with very small data sets,
or with high melanoma percentages, so in situations which
appear to be rather far from real-world ones.

Even counting them, the result of our cross-validated test
R1 is placed in the top third of the reported scores. Of course,
the single-set test S places us at an even higher rank.

It would be interesting to compare—as suggested by a
referee—the asymmetry assessment given by our method
with the one given by an expert dermatologist. This is
unfortunately not possible, since our evaluation does not
consist of a single measure, but of 66 (see Section 5),
what compelled us to use Support Vector Machines for
classification.

In [15] a comparison of the performance of our system
and of human operators (three Dermatologists and three
General Practictioners) was carried out on a smaller data
set of 31 melanomas and 103 naevi. We report the results in
Table 3.

8. Conclusions

The true novelty of the presented method consists in
the use of a qualitative but objective mathematical tool,
the Size Functions, to evaluate asymmetry (of boundary,
color, and mass distribution). Three experiments with
977 lesions, carried out under cross-validation, show very
good performances. Are the results sufficient to make our
method definitely preferable to others? No! But its good hit
ratio, together with the complete independence from the
competitors’ tools, make our method a tempting candidate
for integration. In this line of thought, comparison aimed to
integration should maybe prevail over competition.
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