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Objective: To provide a comprehensive review of intra-arterial cerebral

infusions of chemotherapeutics in glioblastoma multiforme treatment and

discuss potential research aims. We describe technical aspects of the intra-

arterial delivery, methods of blood-brain barrier disruption, the role of

intraoperative imaging and clinical trials involving intra-arterial cerebral

infusions of chemotherapeutics in the treatment of glioblastoma multiforme.

Method: 159 articles in English were reviewed and used as the foundation for

this paper. The Medline/Pubmed, Cochrane databases, Google Scholar, Scielo

and PEDro databases have been used to select the most relevant and influential

papers on the intra-arterial cerebral infusions of chemotherapeutics in the

treatment of glioblastoma multiforme. Additionally, we have included some

relevant clinical trials involving intra-arterial delivery of chemotherapeutics to

other than GBM brain tumours.

Conclusion: Considering that conventional treatments for glioblastoma

multiforme fall short of providing a significant therapeutic benefit, with a

majority of patients relapsing, the neuro-oncological community has

considered intra-arterial administration of chemotherapeutics as an

alternative to oral or intravenous administration. Numerous studies have

proven the safety of IA delivery of chemotherapy and its ability to ensure

higher drug concentrations in targeted areas, simultaneously limiting systemic

toxicity.Nonetheless, the scarcity of phase III trials prevents any declaration of a

therapeutic benefit. Given that the likelihood of a single therapeutic agent

which will be effective for the treatment of glioblastoma multiforme is

extremely low, it is paramount to establish an adequate multimodal therapy
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which will have a synergistic effect on the diverse pathogenesis of GBM. Precise

quantitative and spatial monitoring is necessary to guarantee the accurate

delivery of the therapeutic to the tumour. New and comprehensive

pharmacokinetic models, a more elaborate understanding of glioblastoma

biology and effective methods of diminishing treatment-related neurotoxicity

are paramount for intra-arterial cerebral infusion of chemotherapeutics to

become a mainstay treatment for glioblastoma multiforme. Additional use of

other imaging methods like MRI guidance during the procedure could have an

edge over X-ray alone and aid in selecting proper arteries as well as infusion

parameters of chemotherapeutics making the procedure safer and more

effective.
KEYWORDS

glioblastoma, IA chemotherapy, SIACI, glioblastoma chemotherapy, IA delivery,
bevacizumab in glioblastoma, cetuximab in glioblastoma
Introduction

Glioblastoma (GBM) multiforme is the most common type

of brain cancer, accounting for approximately 40% of all primary

malignant brain tumours (1–3).

This distinct pathological entity is known for its aggressive

progression and poor prognosis, with a median patient survival

duration of 14-17 months in the case of contemporary clinical

trials and ~12 months in population-based studies (1–3). Only

5% of patients manage to achieve a 5-year survival. Standard

therapy has consisted of surgical resection, external beam

radiation or both (4).

Since its publication in 2005, the Stupp protocol, consisting

of radiotherapy (2 Gy per/day x 30 days, 60 Gy total) and oral

temozolomide (75 mg/m2), has been the gold standard for the

treatment of glioblastoma multiforme (GBM) (5, 6).

Nonetheless, the majority of patients relapse after six months

(7). Consequently, despite the concerted efforts of the medical

community, available methods of treatment fall short of

providing any significant improvements, causing GBM to be

incurable. The failure of conventional chemotherapy to increase

overall survival is attributable to low penetration of the blood-

brain barrier and systemic toxicity (5–8). Consequently, aside

from intra-arterial delivery, researchers have been driven to

explore other drug delivery methods, such as intrathecal,

intracavitary and convection-enhanced delivery. However,

although preclinical studies demonstrated promising results,

these novel approaches to drug delivery require further clinical

investigation before they become the mainstay of treatment (8).

Intra-arterial chemotherapy of GBM is not a new concept, in

fact, it is one of the oldest treatments attempted for this deadly

disease, introduced in the 50s coincidently with the introduction

of radiotherapy for brain tumours (9). The underlying
02
hypothesis behind intra-arterial drug administration was that

achieving a higher concentration of the pharmaceutic in the

specified area of the tumour would lead to an increased

likelihood of tumour cell death. Furthermore, the possibility of

reducing the toxicity, so pronounced in the case of the systematic

approach, could also provide the opportunity of using higher

doses of chemotherapeutics (10). These potential advantages

resulted in a considerable body of literature reporting the use of

IA delivery in the 50s, 70s and 90s. Nonetheless, the significant

neurotoxicity of chemotherapeutics available at the time

eventually discouraged further research (10, 11).

As of now, approximately 3000 IA dd procedures have been

reported all over the world (12). This is attributable to the

growth of personalised oncology, improvement of imaging

techniques, and new endovascular tools. Developments like

dual lumen balloons, large-bore distal access catheters, and

soft microcatheters allow for modification of blood flow in the

brain vessels to an unprecedented degree. Intra-arterial infusions

do not require craniotomy, are easy to repeat, and in experienced

hands are safe and reproducible. Nonetheless, although the

intra-arterial route seems to be the most physiological way to

administer any drug to the brain, there is a substantial obstacle

in overcoming the blood-brain barrier, responsible for blocking

the majority of drugs from entering the brain tissue (13).

Although mannitol remains the widely-used method for

transient BBB disruption, there are numerous promising

techniques being developed. Almost all published intra-arterial

infusions were performed under X-ray guidance in cath labs

designed to treat pathologies of relatively big vessels in the brain.

X-ray angiography has a high spatial resolution, accurately

depicts the intracranial vessels, and allows for safe

microcatheter navigation into distal intracranial arteries.

However, the possibility to visualise parenchymal flow in brain
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tumours and surrounding tissue is limited. Real-time

monitoring of infusion has recently become possible in MRI

during the procedure. First such procedures were already

performed in humans. Moreover, combining interventional

MR with PET can even further expand the ability to monitor

chemical processes and labelled-drug accumulation in the brain

in a real-time manner.

A wide range of new therapeutics administered intra-

arterially may not only include chemotherapeutics but also

antibodies, cells (e.g. carTcells), modified viruses or

radiotherapeutics. Before we start composing new trials, we

should thoroughly know why our predecessors failed. Some

anecdotal, spectacular successes will also be analysed and

gathered in this review.
Methodological approach

Search strategy and selection criteria

A systematic literature review was carried out to review all

available relevant data. During the article selection process, the

authors followed the recommendations made by the Preferred

Reporting Items for Systematic Reviews and Meta-Analyses

(PRISMA). All authors independently have searched the

Medline/Pubmed, Cochrane databases, Google Scholar, Scielo

and PEDro databases by using the following keywords

“Glioblastoma”, “IA chemotherapy”, “SIACI”, “SSIACI”,

“glioblastoma treatment”, “glioblastoma chemotherapy”, “IA

delivery”, “bevacizumab in glioblastoma”, “cetuximab

in glioblastoma”.

Additional search has included the Scielo and PEDro

databases. The last search was conducted in May 2022. The

references of the publications of interest were also screened for

relevant papers.
Study selection and data extraction

All of the selected articles were read in full text. Only papers

written in English have been considered. Non-peer-reviewed

papers and records not available in the full text have not been

included. Also, studies were excluded if there was incomplete or

missing data. We have excluded conference abstracts. The

eligibility and quality of publications have been independently

evaluated by three reviewers. We have chosen articles for

inclusion on the grounds of study quality and design. The

primary selection had no limitations regarding the publication

date. We have included studies focusing on technical aspects of

IA delivery, established and new methods of blood-brain barrier

disruption, drugs used for intra-arterial cerebral infusions for the

treatment of glioblastoma multiforme and intraoperative

imaging. Additionally, we have described novel studies
Frontiers in Oncology 03
concerning gene and cell therapy. We have reviewed and

included selected preclinical and clinical studies concerning IA

therapy for glioblastoma multiforme. Some papers describing

emerging therapies for glioblastoma multiforme have also been

reviewed and added. The judgments concerning the risk of bias

were formed by a single reviewer and subsequently double-

checked by another reviewer
Results

A total of 3,294 papers were retrieved from The Medline/

Pubmed, Cochrane databases, Google Scholar, Scielo and PEDro

databases. Screening for duplicates and their removal resulted in a

total of 1846 articles. Subsequently, we have excluded 890 articles

due to language and study design. Titles or abstracts of 1068

articles were screened, obtaining 207 papers not meeting any

exclusion criterion. After full-text evaluation, we have excluded 48

papers. This has led to the inclusion of 159 articles. The flow

diagram represents our process of article selection (Figure 1).
Historical aspect

Intra-arterial delivery of chemotherapeutics has been

pioneered by Bierman et al. (14) and Klopp et al. (15) who

have designed techniques for the delivery of high-doses of

nitrogen mustard directly to the liver tumours via its arterial

blood supply (10). Multiple administrations of nitrogen mustard

responsible for tumour regression in rabbits with extracranial

xenografts have prompted Klopp et al., as well as inspired French

et al., to use IA delivery of chemotherapeutics in humans for

malignant progressive gliomas (15, 16). However, despite the

enthusiasm, nitrogen mustard delivery was associated with poor

therapeutic benefits and significant damage to the hematopoietic

system (15). In the 1970s, Eckmann had lent credence to

previous assumptions made by Wilson et al. and successfully

proved that IA delivery of chemotherapeutics allowed obtaining

higher drug concentrations in targeted tumours than that in

non-targeted tissues (17–19). Stanley Rapaport’s findings

concerning the fundamental role of tight junctions in BBB

permeability, as well as the demonstration that hyperosmolar

BBB disruption causes dehydration of endothelial cells and

subsequent disruption of tight junctions in a reversible

fashion, have laid the groundwork for Neuwelt research which

proved that hyperosmolar BBB disruption increased

concentrations of chemotherapies in targeted sites for central

nervous system lymphomas (20–25). In 1978, Levin et al.

reported that IA infusion offered a 2.5–5-fold increase in drug

delivery drug over IV infusion after comparing intravenous to

intracarotid artery (ICA) administration of 14C-labelled

carmustine in squirrel monkeys (26). Multiple studies

following have broadened the substantive scaffolding, further
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highlighting the efficacy of the intra-arterial delivery of

chemotherapeutics into the vessels supplying the brain (10,

21–25). Given that the chemotherapeutics available at the time

were associated with significant neurotoxicity, the interest in IA

delivery slowly began to fade (10, 11, 25–27). This, paradoxically,

has started to take place at the height of technological advances

in endovascular methods (10, 11). Although numerous

preclinical and clinical studies have proven the validity of that

is intra-arterial delivery of chemotherapeutics, not until the

development of new drugs and availability of new selective

microcatheters and other endovascular devices did the interest

of the IA once again awaken.
Blood-brain barrier disruption

The blood-brain barrier, responsible for the cellular and

molecular exchange between the blood vessels and brain

parenchyma, is highly selective, blocking the passage of ionised

molecules whose molecular weights are larger than 180 Da (11, 21,

28, 29). Given that most chemotherapeutics’ size is in the range of

200-1200 Da, the blood-brain barrier is a significant impediment

in the treatment of brain tumours (28). Even if some drugs
Frontiers in Oncology 04
manage to penetrate the BBB, they usually fail to reach effective

local concentrations (11). The poor prognosis of GBM is in large

part due to the lack of successful drug delivery through the blood-

brain tumour barrier (BBTB). The BBTB consists of already

existing and newly formed blood vessels, which are responsible

for the delivery of nutrients and oxygen to the tumour, as well as

the glioma cell migration to other parts of the brain (29). High

expression of VEGF and subsequent angiogenesis result in the

formation of abnormal vessels and a flawed BBTB (29). Although

the BBTB of high-grade gliomas is considered to be “leaky”, lower-

grade gliomas have an almost fully functional BBB, prompting the

passage of chemotherapeutics to be ineffective (29). Glioblastomas

are known to have different regions of BBTB integrity. Bulky

tumours are characterised by completely dysfunctional BBTB, less

invasive circumferential regions have a leaking BBTB, whereas

areas far from the tumour bulk can display a fully functional

BBTB (29). Overexpression of receptors that mediate ligand-

dependent drug delivery has been observed in brain tumour

capillaries. This could be exploited to selectively enhance drug

delivery to tumour tissues (29, 30). Extensive research over the last

decades has resulted in various methods of brain-barrier

disruption. This section will focus on describing available

methods as well as discuss the nearest future.
FIGURE 1

Flow Diagram represents our process of article selection.
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Osmotic blood-brain barrier disruption
Rapoport et al. were the first to demonstrate that an intra-

arterial infusion of a hyperosmotic solution of mannitol will

result in a temporary shrinkage of endothelial cells due to the

creation of an osmotic gradient and, consequently lead to the

opening of the tight junctions (20, 22). Reportedly, osmotic

disruption can increase the levels of successfully infused

chemotherapeutics by up to 90-fold (11). Non-selective

opening of the BBB results in an increase of brain fluid, as

well as in an influx of molecular compounds, which can lead to

neurological toxicity, aphasia and hemiparesis (29, 31). Thus,

using hypertonic solutions demands caution. Nonetheless,

studies have shown that osmotic disruption can be safe and of

therapeutic value in capable hands (31–37). Due to individual

factors, there is no exact dose and infusion time. Numerous

research has described osmotic BBB disruption by intra-arterial

infusion of 1.37 mmol/L mannitol (25%) (38–40). Boockvar et al.

report relying on the mannitol infusion rate of 0.083 mL/s for

120 seconds, whereas Siegal et al. infused at a rate of 3 to 11 ml/

second over 30 seconds (10, 31). Despite the staggering amount

of more than 4200 osmotic BBB disruption procedures having

been performed at multiple centres in more than 400 patients,

there is no consensus in regard to the maximum permeability

effect of osmotic BBB disruption (31). According to Siegal et al.,

the maximum effect in humans lasts up to 40 minutes which is

preceded by a rapid decline in permeability, with the normal

threshold restored between 6 and 8 hours after the osmotic

disruption (31). These findings differ from those of Zünkeler

et al. who used rubidium-82 to measure blood-to-tissue influx

and estimated that the mean half time for the return of

permeability to almost baseline values was only 8 minutes in

the normal brain (31, 36).

Bradykinin receptor-mediated BBTB opening
Bradykinin is a potent vasodilator, capable of increasing

capillary permeability (41). In 1986, Raymond et al.

demonstrated that high doses of bradykinin will result in the

breakdown of the normal blood-brain barrier (41). Inamura

et al. have successfully proved that low doses of bradykinin led to

the selective increase of the permeability of abnormal brain

tissue capillaries to low and high molecular weight

neuropharmaceuticals (42). This has brought about the clinical

development of bradykinin analogs such as Cereport or

labramidil (29). Research has demonstrated that using

synthetic bradykinin analogs to improve the delivery of IA

carboplatin is a safe method, allowing for a two-fold increase

in drug delivery. Nonetheless, there was no clear clinical benefit

demonstrated in the randomised, double-blind, placebo-

controlled phase II study of RMP-7 in combination with

carboplatin or in the Phase II trial of intravenous lobradimil

and carboplatin used in the treatment of childhood brain

tumours (29, 43, 44). This may be due to an inadequate dose
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level of RMP-7 of 300 ng/kg. However, there were no subsequent

studies with different doses, leaving this matter unsettled (29,

43, 44)

Magnetic-resonance- guided focused ultrasound
Magnetic-resonance- guided focused ultrasound

(MRgFUS) is a promising technology used for the treatment

of a variety of neurological disorders. Most importantly,

MRgFUS is also used for the opening of the blood-brain

barr ier (BBB) in combinat ion with intravenous ly

administered microbubbles (45–50). Regional contrast

extravasation on the MR images correlates with the amount

of delivered drug, thus allowing for precise targeting of BBB

disruption (47). According to research, pulsed ultrasound is

capable of safely opening the BBB and providing spatial and

temporal specificity (45–50). Ultrasound parameters like

intensity and sonication time, as well as the size and

concentration of intravenously administered microbubbles,

decide on the exact extent of BBB opening (45–50).

Reportedly, the possible BBB opening is temporary and

lasts for almost 4-6 hours after the treatment (47, 50).

Consequently, the transport of various chemotherapeutics

used for the treatment of brain tumours can be significantly

improved (10, 11).

Inhibition of drug efflux transporters
Studies have shown that some drugs have an improved brain

penetration once drug efflux transporters are absent (51).

Therefore, inhibition of such multidrug resistance efflux

transporters by specific inhibitors could be an effective method

of boosting drug penetration into the brain without altering the

integrity of the endothelial layer and tight junctions, which could

avoid the potential toxicity observed with BBBD. Pharmaceutical

companies aimed to reverse the multidrug resistance phenotype

of tumours by developing elacridar and tariquidar, which inhibit

ABCB1 and ABCG2. However, given that clinical trials in solid

tumours demonstrated failure, the interest in developing

inhibitors has waned (52). Nonetheless, the idea of

incorporating these reversal agents to enhance BBB drug

penetration is wholly different from using these agents to

block multidrug resistance in genomically unstable cancer

cells. The goal here would be to increase the accessibility of a

sanctuary site by targeting ABC transporters in genomically

stable endothelial cells. The ability to block drug efflux

transporters will strongly depend on finding a potent inhibitor

with proper systemic bioavailability and a ‘commuter’ agent with

moderate affinity for these efflux transporters.

Pardridge et al. have reported various receptor-mediated uptake

systems for improving the brain uptake of drugs and

radiopharmaceuticals (53). GRN1005 (formerly ANG1005) is a

conjugate of paclitaxel and the angiopep-2 peptide that targets the

lipoprotein receptor-related protein 1 (LRP1) and crosses the BBB
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by transcytosis (54). A Phase I study has demonstrated promising

results, which should be further evaluated by ongoing 3 phase II

clinical trials for glioma (Clintrials.gov: NCT01967810) and breast

cancer brain metastasis (NCT02048059 and NCT01480583). A

clinical trial has also shown similarly encouraging outcomes with

the use of 2B3-101 (Clintrial.gov ID: NCT01386580,

NCT01818713), which is a PEGylated liposome that is conjugated

with glutathione (GSH) (55).

One study has demonstrated that the docosahexaenoic

transporter Mfsd2a acts by suppressing transcytosis in CNS

endothelial cells (56). According to van Tellingen et al., by

interfering with its function or expression it could be possible

to enhance transcytosis and consequently enhance drug delivery

via this route (29).
Novel methods with potential

Laser interstitial thermal therapy (LITT) is an emerging

method of delivering targeted thermal therapy and has been

used in brain tumour ablations. Research suggests that

hyperthermia induced by LITT may result in the disruption

of BBB (57). Research on mice has shown that laser ablation is

capable of increasing BBB/BTB permeability, with peak

permeability occurring within 1 week and lasting up to 30

days after ablation. Furthermore, molecules as large as human

IgG (approximately 150 kDa) were able to pass the BBB after

LITT (57). Leuthardt et al. have reported increased serum

levels of brain-specific enolase, which is limited to the CNS,

after laser ablation in patients suffering from recurrent

glioblastoma (58). Authors have suggested that increased

permeability in the peritumoral region is attributable to LITT

and reaches its peak 1-2 weeks from ablation and returns to the

normal threshold by 4-6 weeks (58). The obtained time

window provides the potential for the enhancement of IA

drug delivery (58). Besides the therapeutic benefit, LITT

could also be associated with crucial immunological

consequences, given that immunoproteins are being

continuously released outside the CNS compartment and

could trigger an immune response (58). All of these factors

prompt LITT to be a highly interesting phenomenon, albeit

requiring much more research.

The advancements in nanotechnology could result in using

nanoparticles in intra-arterial administration. Nanoparticles

(NP) could be modified to cross the BBB through different

transport mechanisms and stay at the targeted area for a longer

time, allowing for a gradual release of loaded chemotherapy (59–

61). Studies have demonstrated the ability of NP to enhance the

half-life of the drug in circulation (59–61). According to Zhao

et al., the half-life of TMZ was increased to 13.4 h in comparison

to 1.8 h of the free drug by encapsulation in a chitosan-based

nanoparticle (61). Ongoing clinical trials involving nanoparticle-
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thus allowing for further development in NP-treatment.

Convection enhanced delivery relies on the direct and

continuous injection of a chemotherapeutic agent under positive

pressure by using stereotactically placed intraparenchymal

microcatheters, which allow the passage of molecules of

different charges and sizes to any part of the brain (62–65).

Although showing potential, neuro-oncological clinical trials

with CED have demonstrated poor drug distribution to more

peripheral areas of diffuse gliomas and drug reflux, leading to

complications and subtherapeutic drug concentrations within the

tumour target cells (66, 67). Also, CED has more disadvantages,

such as the lack of visualisation of the distribution of the infused

drug and unacceptable device-related adverse events (68).

Ongoing clinical and preclinical imaging studies may optimise

drug distribution via CED.

Lately, research has shown that by establishing a local positive

pressure gradient convection-enhanced delivery (CED) using

catheters stereotactically inserted into brain tumours is capable of

improving drug delivery into these tumours and surrounding brain

tissue (69, 70). Although a Phase I clinical trial evaluating CED of

carboplatin has offered a therapeutic benefit for glioblastomas

patients, there are numerous side effects resulting from the use of

CED, involving headache, seizure, fever, nausea, vomiting, fatigue,

erythema, and in some cases liver enzyme perturbations and

haematological changes, which are associated with the time and

location of the treatment (71–73). More research is required to

provide unequivocal evidence for a benefit of CED in

glioblastoma patients.

A study has found that TTFields improve membrane

permeability by increasing both the number and the size of

pores in the membrane of glioma cells (74, 75). Moreover, the

authors reported a substantial increase in the uptake of

membrane-associating reagents with a size of 20 kDa and no

larger than 50 kDa into glioma cells with TTFields that was

reversible, returning to normal within 24 of ceasing TTFields

treatment (74, 75). Another suggested that by transiently

disrupting the localisation of tight-junction proteins such as

claudin 5 and ZO-1, the TTFields therapy can interfere with the

integrity of the blood-brain barrier (76).

Mannitol continues to be the most effective method for

transient BBB disruption. Studies have demonstrated its safety

and good tolerance in combination with intra-arterial

chemotherapy. Nonetheless, mannitol mediated BBB

disruption may cause an unexpected increase in transcapillary

transport of anticancer drugs into healthy brain tissues (77).

High-frequency and high-amplitude electroencephalography

(EEG) signals suggest that an intra-arterial injection of

mannitol through the anterior circulation could have a direct

effect on the motor cortex, regardless of the chemotherapy

regimen or the size and location of the tumour (78). There are

numerous complications that could result from mannitol
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mediated BBB disruption, such as transient aphasia,

hemiparesis, or even oedema-induced intracranial herniation

(79). However, studies most often report tachycardia, increased

intracranial pressure, vomiting, nausea and headache (79).
Technical aspects of contemporary intra-
arterial drug delivery

The central concept behind intra-arterial drug administrations

was to achieve a higher concentration of the pharmaceutic in the

specified area of the tumour and, at the same time, reduce systemic

side effects. A Randomised Phase III study comparing intravenous

and intra-arterial administrations in newly diagnosed primary

glioblastomas patients has shown that intra-arterial delivery of

chemotherapeutics has the advantages of smaller toxicity, longer

total drug exposure and a higher peak concentration (80). IA

injection allows increasing local concentrations of

chemotherapeutics to brain tumours up to over 300 times more

than the intravenous approach (81). Another study relying on

positron emission tomography (PET) measurements has shown

that IA delivery had a 50-fold increase in brain tumour tissue

concentrations in comparison to IV injections (82). Thanks to the

osmotic opening of the blood-brain barrier, IA delivery provided a

300 times higher local concentration of chemotherapeutics to brain

tumours than the intravenous approach (81). Technological

progress has led to the emergence of selective intra-arterial

cerebral infusion (SIACI). This is a technique relying on state-of-

the-art microcatheters, which are inserted into the femoral artery

and subsequently navigated directly to the tumour supplying vessels

(10). This method has an edge over unselective IA infusions like

vertebral or carotid infusion as the volume of distribution (Vd) is

limited to the targeted area and adjacent tissue sharing the vascular

supply (11). Consequently, high selectiveness and reduced

neurotoxicity are provided. Microcatheter is navigated with the

use of guidewire assistance and road-mapping control in the

angiographic suite (10). As much as SIACI is a highly

advantageous technique, it is not ideal. To reduce neurotoxicity

and assure high drug levels in the corresponding brain region, it is

paramount to address the problem of inadequate dosing and

“streaming”. Gobin et al. have proposed using a spatial dose

fractionation algorithm that selects the proper dose on the basis

of cerebral vascular territories rather than weight or body surface

area (83). This algorithm relies on the vascular perfusion of the

vessel and thus may optimise IA drug delivery (83–85). Various

studies blame streaming for high neurotoxicity and unsuccessful

treatment (11, 83, 84). Streaming occurs when drugs delivered by

the IA method are distributed unequally to different areas of the

brain and is caused by the layering of blood flow in the arteries.

Some layers stream drugs favourably to one or two arterial branches

causing accumulation in supplied areas, while other branches of the

same artery do not receive drugs at all. This faulty distribution is
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attributable to the infusion rate being smaller than 20% of the

background blood flow (11, 83). Recognition of this phenomenon

has resulted in numerous techniques diminishing this effect. Among

them, we can distinguish the incorporation of catheters with side

ports, pulsatile injections at rates higher than 20% of the

background flow rate and injections during the diastole (11, 86).

Furthermore, the notion that tumours with low blood flow respond

better to chemotherapy resulted in the use of single or double-

balloon catheters to isolate proximal and distal arterial flow, thus

successfully maximising local delivery and reducing local and

regional complications (10, 11). Research done on computational

models and in preclinical settings has vividly shown that cerebral

hypoperfusion improves local drug delivery by lowering

hydrodynamic stress on the injected molecules and increasing

drug transit time through cerebral circulation. Consequently, the

pure drug is delivered to the vascular endothelium and opsonization

by serum proteins and blood cells is significantly decreased (10, 11,

87–90). As with any operative technique, there are associated risks.

These include complications resulting from vascular access and

subsequent catheter positioning, systemic toxicities associated with

chemotherapy, and, most importantly, the possibility of seizures

(33, 39). Reportedly, abnormally small carotid arteries or the

presence of two branches rather than three or more increases the

possibility of neurologic complications (84, 89, 91). Potential

complications associated with intra-arterial drug delivery of

chemotherapeutics in the treatment of glioblastoma are shown

in Figure 2.
Clinical IA drug deliveries in
glioblastoma patients

The more profound understanding of glioblastomas

multiforme, the technological improvements and promising

outcomes associated with IA chemotherapy in the treatment of

retinoblastoma (92), breast cancer (93), head and neck tumours

(94) and advanced liver cancers (95, 96) have propelled

researches to attest the efficacy of IA chemotherapy in the

treatment of glioblastoma multiforme. Table 1 summarises

completed clinical studies focusing on treating glioblastoma

multiforme and other brain entities with selective or

nonselective IA chemotherapeutic delivery (32, 80, 81, 83,

97–115)

Mannitol continues to be the prevalent BBBD agent,

although some recent studies relied on the bradykinin B2

receptor agonist Cereport. As of now (https://clinicaltrials.gov

last accessed on 1st of May), there are four clinical trials that

have been recently completed (NCT01180816, NCT01238237,

NCT00968240, NCT00870181), six are still recruiting

(NCT01269853, NCT05271240, NCT02285959, NCT02861898,

NCT01884740, NCT02800486), one is active but not recruiting

(NCT01811498), one has been suspended (NCT01386710), and
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one is of an unknown status (NCT03672721). Results available

from these trials have been described in detail in the following

parts of the review. Table 2 presents detailed information on

ongoing clinical trials relying on IA delivery for the treatment of

glioblastoma multiforme and other brain tumours.

Clinical IA trials of the last couple of decades tested the

efficacy and safety of IA delivery of platinum analogues (cisplatin

and carboplatin), methotrexate, vincristine, nitrosourea

derivatives, including carmustine (BCNU), nimustine (ACNU)

or 1-(2-hydroxyethyl) chloroethyl nitrosourea (HeCNU),

diaziquone, etoposide, and idarubicin. The most recent clinical

trials have focused on evaluating the role of new antibodies like

bevacizumab and cetuximab. Enrolled patients had surgery and

were in favourable clinical condition (10). Although certain

studies included patients who had a Karnofsky performance

scale score (KPS) of 20, the prevailing majority of clinical trials

required a KPS of a minimum of 60 (10).
Nitrosourea derivatives

First clinical studies of IA nitrosourea derivatives showed

encouraging results, but the resulting neurotoxicity quickly

diminished the enthusiasm (10, 116–118). In 1986, Feun and

colleagues demonstrated in a follow-up phase II trial that IA

BCNU may lead to severe leukoencephalopathy and blindness

(119). These suggestions were proven valid by Tonn et al. and

Kleinschmidt-DeMasters et al., who demonstrated in treated

patients a significant risk of local cerebral necrosis as well as

leukoencephalopathy (116, 120, 121). Follow-ups of patients have

shown that IA BNCUmay result in leukoencephalopathy, blindness

and increased risk of cerebral necrosis (10, 116, 118–121). The

interest in IA nitrosourea derivatives began to wane after a

randomised phase III trial comparing IA with IV BCNU showed

that IABCNUisunsafe and lacks effectiveness in regard to increasing

patientsurvival (121).Morerecently,Fauchonetal. evaluatedtherole

of intracarotidHeCNU(120mg/m2) in40patientsbefore the start of

irradiation (122). The authors reported a median TTP of 32 weeks,
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with an overall median survival of 48 weeks. Neurological toxicity

involved visual loss (15%) and leukoencephalopathy (10%) (122).
Platinum analogs

Ever since Follézou et al. demonstrated that IA of 400 mg/

m2 carboplatin led to a partial response in malignant glioma

patients, numerous studies evaluating the role of IA of platinum

analogs followed (10, 123). Gobin et al. reported the IA delivery

of up to 1400 mg/hemisphere of carboplatin in their dose-

escalation study based on cerebral blood flow, reporting

median survival of 39 weeks and a response rate of 70% (50%

SD and 20% PR) of 19 patients (124). In a more recent study,

Cloughesy et al. reported a median survival of 11 months (from

the time of beginning IA treatment) (111). The regimen involved

IA delivery of carboplatin conducted every four weeks for up to

12 cycles (111). Reported toxicity was manageable, with 8% of

patients demonstrating grade II neutropenia, 12% of grade II

thrombocytopenia and 7% of grade III thrombocytopenia. In

summary, the potential for visual loss seems to be greater for

patients undergoing IA carmustine and other nitrosoureas than

for patients receiving cisplatin or carboplatin.
Diaziquone, etoposide and idarubicin

Other drugs tested for single-agent IA chemotherapy of

recurrent gliomas are diaziquone, etoposide and idarubicin.

Greenberg et al. have studied IA diaziquone (10–30mg/m2) in

20 patients with recurrent astrocytomas (125). Two of 20

patients demonstrated partial responses of 5 and 8+ months,

respectively. Four patients showed disease stabilisation of 3, 4, 5,

and 8 months duration, respectively, and one of these patients

achieved tumour shrinkage (125). The reported toxicity was

similar to carmustine and cisplatin (125). According to the

authors, IA diaziquone was no more effective when using the

intravenous approach (125). Intracarotid etoposide (100–650
FIGURE 2

Potential complications associated with intra-arterial drug delivery of chemotherapeutics in the treatment of glioblastoma.
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TABLE 1 Summary of studies using intra-arterial delivery of chemotherapeutics for the treatment of GBM.

Study
(year)

Number
of
patients

Study type
and phase

Brain
tumors

Chemotherapeutic
agent
Dose

Method
of
delivery

BBBD
Agent

Outcome Neurotoxicity

Doolittle
et al. (2000)
(97)

221 MC,II GBM,
BSG, AO,
O, MET,
GCT,
PCNSL,
PNET

Carboplatin (200 mg/m2) nS Mannitol (79%) achieved SD or better Stroke (0.93%) and
Herniation (1,2%)

Chow et al.
(2000) (98)

46 SC,II RGBM,
AO, AAS

Carboplatin (600 mg/
hemisphere)

S Cereport
300 ng/kg

32% SD or better, PFS 2.9
months average, median OS 6.8
months (23/41) and 10.8
months (18/41)

US

Kochi et al.
(2001) (99)

42 MC,II† NGBM Nimustine (80 mg/m2) nS – Median survival time 17
months/16 months† and PFS 6
months/11 months†

Reversible vision
loss (2.4%)

Madajewicz
et al. (2000)
(100)

83 SC, II† GBM,AAS Etoposide (40) mg/m2 and
Cisplatin (60 mg/m2)

nS – 48% PR or better, Median
survival time 18 months

Blurred vision
(4.8%), Focal
seizures (6%)

Ashby and
Shapiro
(2001) (101)

25 SC, II RGBM,
AAS, AO,
AOA

Cisplatin (60 mg/m2) nS – 40% SD or better and PFS 4.5
months

Headache,
Increased Seizure
frequency, and
Encephalopathy
(45%)

Gobin et al.
(2001) (83)

113 SC, not stated GBM,
AAS,
MET,
other

Carboplatin 100–1400 mg/
hemisphere

S Cereport
300 ng/kg

– Seizures (7%),
Major Neurologic
deterioration
(<0.6%)

Qureshi
et al. (2001)
(102)

24 SC, not stated RGBM,
AAS,
MET,
mixed
glioma

Carboplatin 34–277 mg/m2 S Cereport
147–366
mg/m2

Decreased tumor size in 30%,
Median OS > 12 months
survival in 12 patients

Transient
neurologic deficits
(20%), Stroke (4%)

Newton
et al. (2002)
(103)

25 SC, II AAS,
AOA,
AO, O,
BSG, ME

Carboplatin (200 mg/m2/d) nS – 80% SD or better, PFS 6
months

Transient ischemic
attack (8%)

Silvani et al.
(2002) (104)

15 SC, II† NGBM Carboplatin 200 mg/m2 and
ACNU 100 mg/m20

nS – 78.6%/66% SD, PFS 5.2
months/5.8 months†

Seizures (6.6%),
Intracerebral
hemorrhage (6.6%)

Fortin et al.
(2005) (32)

72 SC, II GBM,
AAS,AO,
MET,
other

Carboplatin protocol
Carboplatin, 400 mg/m2 with
Cyclophosphamide, 330–660
mg/m2 IV Etoposide 400mg/
m2 IV
Methotrexate protocol
Methotrexate 5000 mg with
cyclophosphamide
500 mg/m2 IV andEtoposide
150 mg/m2 IV

nS Mannitol Median survival time 9.1
months, median PFS 4.1
months

Thrombocytopenia;
Neutropenia;
seizures; orbital
myositis

Hall et al.
(2006) (105)

8 MC,
Retrospective
analysis

Recurrent
DIPG

Carboplatin, 400 mg/m2
Cyclophosphamide, 660 mg/
m2 IV Etoposide 400 mg/m2

IV
Methotresxate, 5000 mg
Cyclophosphamide 1000 mg/
m2 IV Etoposide 400 mg/m2

IV

nS Mannitol
25% 4–10
cc/s for
30s

Median PFS 15 months,
Median OS 27 months

Thrombocytopenia,
Neutropenia,
infections,
neurological
disorientation;
hearing loss

(Continued)
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TABLE 1 Continued

Study
(year)

Number
of
patients

Study type
and phase

Brain
tumors

Chemotherapeutic
agent
Dose

Method
of
delivery

BBBD
Agent

Outcome Neurotoxicity

Imbesi et al.
(2006) (80)

17 SC, III† NGBM Nimustin (ACNU) 80–100
mg/m2

nS Mannitol
18% 250
ml

Median OS 17 months, Time to
progression was 6 months in
case of i.a. ACNU and 4
months for i.v.
ACNU

Stroke (5.6%)

Angelov
et al. (2009)
(106)

149 MC, analysis PCNSL Methotrexate not stated,
etoposide (150 mg/m2 IV) or
cyclophosphamide (15 mg/kg
IV and procarbazine (100 mg
orally d. Between 1994 and
2005, etoposide or etoposide
phosphate (150 mg/m2 IV
days) and cyclophosphamide
(500 mg/m2 IV) were used.

nS Mannitol
25%

Median overall survival was 3.1
years (25% estimated survival at
8.5 years). Median progression-
free survival (PFS) was 1.8
years, with 5-year PFS of 31%
and 7-year PFS of 25%

focal seizures
(9.2%)

Guillaume
et al. (2010)
(107)

13 SC, 1 AO,AOA Carboplatin (IA, 200 mg/
m2), etoposide phosphate
(IV, 200 mg/m2), and
melphalan (IA, dose
escalation) every 4 weeks, for
up to 1 year

nS Mannitol 77% SD or better, PFS 11
months

Speech impairment
(7.7%), Retinopathy
(7.7%)

Boockvar
et al. (2011)
(108)

30 SC, 1 RGBM,
AAS, AO

Bevacizumab 2–15 mg/kg S Mannitol
25%
1.4M

Naiüve group: 34.7% median
tumor volume reduction
Exposed group: 15.7% median
tumor volume reduction

Seizures (6.6%)

Shin et al.
(2012) (109)

3 SC, I/II RGBM Bevacizumab 13 mg/kg
Temozolomide 83mL
(199mg) + 22mL (53mg)
Cetuximab 100mg/m2

S Mannitol
25% 10
mL

Decreased tumor size a 1
month

Good tolerance

Jeon et al.
(2012) (110)

18 I,II RGBM Bevacizumab 2-15 mg/kg S Mannitol
10 mL
25% 1.4
mol/L

SD at 10 months in 11 patients,
PR in 5 patients, progression in
1 patient and mixed response
in 1 patient

Good tolerance

Fortin et al.
(2014) (111)

51 II RGBM Carboplatin 400 mg/m2
Melphalan 10mg/m2

nS – Median PFS 23 months,
Median OS 11 months, CR in 3
patients, PR in 22 patients, SD
in 14 patients, progression of
tumor in 12 patients

Hematological
complication

Chakraborty
et al. (2016)
(81)

15 I RGBM Cetuximab 100, 200, 250 mg/
m2

S Mannitol
20% 12,5
ml/120s

– Good tolerance

Galla et al.
(2017) (112)

65 I,II RGBM Bevacizumab 2-15 mg/kg S Mannitol
25% 1.4
M

41 patients survived less than 1
year
24 patients survived more than
1 year

–

Faltings
et al. (2019)
(113)

1 Case report RGBM Bevacizumab (15 mg/kg S Mannitol
20%
12.5 mL

OS was 24.1 months. Patient
with recurrent GBM who had
received treatment from 3
clinical trials, including a

Tolerable side
effects

(Continued)
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mg/m2) in 15 patients suffering from recurrent high-grade

primary brain tumours demonstrated ambiguous results as

some patients had a low objective response rate (7%), while

another 33% showed stabilisation of disease over 8–40 weeks

(126). More recently, Chehimi et al. have evaluated the efficacy

of IA idarubicin (12mg/m2) in two recurrent and progressive

GBM patients that had failed after temozolomide and

bevacizumab treatment (127). Prior to starting the treatment,

the authors tested idarubicin against four human GBM cell lines

and observed sensitivity to concentrations in the range of 3 mg/
mL of idarubicin (127). On the 3rd day after IA administration,

the first patient experienced a neurological event that involved

worsening left hemiparesis and severe cognitive impairment,

making additional treatment impossible. In contrast, the second

patient tolerated IA idarubicin, showing adverse events and a

stable follow-up on an MRI scan after 4 weeks (127).

Although the Stupp protocol remains a gold standard for the

treatment of GBM since its publication, the idea of IA delivery of

temozolomide (TMZ) has been abandoned once studies have

reported toxicities and decided that TMZ in its current formulation

is unsafe for IA infusion (11, 128). The low efficacy of IA delivery of

temozolomide is attributable to the fact that glioblastoma stem cells

(GSCs) were proven to be resistant to it (129). In comparison, IA

delivery of platinumanalogswas associatedwith a smaller amount of

cerebral side effects, especially after the incorporation of selective IA

infusion (10, 11, 98, 102). In summary, side effects were shown to be

reversible or manageable, proving the safety of IA delivery of

platinum analogs. More importantly, according to numerous

authors, IA delivery of platinum analogs may lead to a modest
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response rate and increased time to progression (10, 11, 98, 102,

103). Nonetheless, it is difficult to precisely evaluate the efficacy of

platinum analogs as they were used in combinationwith other drugs

(10, 11, 98, 102, 103). Consequently, the efficacy of IA delivery of

platinum analogs necessitates further examination (10, 11, 103).

Intra-arterial delivery of carboplatin, methotrexate,

cyclophosphamide and etoposide resulted in a high degree of

tumour response in chemotherapy-sensitive tumours, such as

primary central nervous system lymphoma (PCNSL), primitive

neuroectodermal tumour (PNET), germ cell tumour and cancer

metastasis to the brain (11, 97). According to a large, multi-

institutional study of 149 patients with newly diagnosed primary

CNS lymphoma, intracarotid or intra-vertebral IA delivery of

methotrexate with osmotic BBB disruption led to a 5-year PFS of

31%, 7-year PFS of 25%, and median OS of 14 years in low-risk

patients (11, 106). Nonetheless, results of IA delivery of the

aforementioned drugs fall short of providing a relevant benefit in

glioblastomas patients (11, 97). IA therapy of these drugs is not

superior to IV chemotherapy in the treatment of glioblastomas

(9). What could explain this phenomenon is glioblastomas’

significant resistance to various anticancer drugs or the fact

that some of these drugs have rapid transit through the CNS and,

thus, a limited dwell time (9, 11). Last but not least, the

inadequate mixing or streaming of the drug solution within

the artery may result in variable drug distribution within the

brain or the tumour after the intracarotid delivery (9, 11).

Besides ensuring a large patient group and adequate follow-up,

future clinical trials should approach these factors to allow for

precise evaluation of the efficacy of the given agent.
TABLE 1 Continued

Study
(year)

Number
of
patients

Study type
and phase

Brain
tumors

Chemotherapeutic
agent
Dose

Method
of
delivery

BBBD
Agent

Outcome Neurotoxicity

rechallenge with SIACI of
bevacizumab. After the third
trial, the MRI scan
demonstrated improvement
based on Response Assessment
In Neuro-Oncology criteria.

Patel et al.
(2021) (114)

23 I,II NGBM Bevacizumab (15 mg/kg) S Mannitol
20%
(12.5 ml
over 120
s)

Median PFS was 11.5 months
Median overall survival was
23.1 months

Tolerable side
effects

McCrea
et al. (2021)
(115)

13 I GBM,
DIPG

Bevacizumab (15 mg/kg)
with cetuximab (200 mg/m2)

S 12.5 ml
of 20%
mannitol

The mean overall survival for
the 10 DIPG patients treated
was 519 days. The ranges for
overall survival for the 3 non-
DIPG patients were 311–914
days.

epistaxis (2
patients) and grade
I rash (2 patients)
GBM, glioblastoma multiforme; NGBM, newly diagnosed glioblastoma multiforme; RGBM, recurrent glioblastoma multiforme;BSG, brain stem glioma; AO, anaplastic oligodendroglioma;
O, oligodendroglioma;AAS, anaplastic astrocytoma; AS, astrocytoma; OA, oligoastrocytoma; AOA, anaplastic oligoastrocytoma;MET, metastasis; PCNSL, primary CNS lymphoma; PNET,
primitive neuroepithelial tumor; GCT, germ cell tumor; ME, malignant ependymoma; US, unspecified; S, selective;nS, not selective; SD, stable diseases; PR, partial response; PFS,
progression free survival; † comparison of intra-arterial/intravenous delivery; SC, single center; MC, multi-center; IA, intra-arterial; IV,intravenous; CR, complete response; DIPG, diffuse
intrinsic pontine glioma.
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TABLE 2 Current clinical trials concerning the use of IA for the treatment of GBM.

Study title Location Status Brain
tumour

Estimated
enrollment

Method
of

delivery

Chemotherapeutic,
dose

Mannitol
dose

Phase

Repeated Super-selective
Intraarterial Cerebral Infusion Of
Bevacizumab Plus Carboplatin For
Treatment Of Relapsed/Refractory
GBM And Anaplastic Astrocytoma

Lenox Hill
Brain Tumor
Center

Suspended Glioblastoma
Multiforme
Anaplastic
Astrocytoma

54 SSIACI Bevacizumab Up to 15
mg/kg Carboplatin 150
mg/m2

NS 1
2

Super-Selective Intraarterial Cerebral
Infusion Of Temozolomide
(Temodar) For Treatment Of Newly
Diagnosed GBM And AA

Lenox Hill
Brain Tumor
Center

Completed Glioblastoma
Multiforme
Anaplastic
Astrocytoma

21 SSIACI Temozolomide 75–250
mg/m2

NS 1

Repeated Super-selective
Intraarterial Cerebral Infusion of
Bevacizumab (Avastin) for
Treatment of Relapsed GBM and
AA

Lenox Hill
Brain Tumor
Center

Recruiting Glioblastoma
Multiforme
Anaplastic
Astrocytoma

54 SSIACI Bevacizumab 15 mg/kg 20% 12.5
mL/s

1
2

Super-Selective Intraarterial
Intracranial Infusion of Avastin
(Bevacizumab)

Lenox Hill
Brain Tumor
Center

Completed Glioblastoma
Multiforme
Anaplastic
Astrocytoma

30 SSIACI Bevacizumab 2–10 mg/kg NS 1

Super-Selective Intraarterial Cerebral
Infusion of Cetuximab (Erbitux) for
Treatment of Relapsed/Refractory
GBM and AA

Lenox Hill
Brain Tumor
Center

Completed Glioblastoma
Multiforme
Anaplastic
Astrocytoma

15 SSIACI Cetuximab 100–500 mg/
m2

25% 3–10
mL

1

Super Selective Intra-arterial
Repeated Infusion of Cetuximab
(Erbitux) With Reirradiation for
Treatment of Relapsed/Refractory
GBM, AA, and AOA

Lenox Hill
Brain Tumor
Center

Recruiting Glioblastoma
Multiforme
Anaplastic
Astrocytoma
Anaplastic
Oligoastrocytoma

37 SSIACI Cetuximab 250 mg/m2 20% 12,5 mL 2

Super-Selective Intraarterial
Intracranial Infusion of
Bevacizumab (Avastin) for
Glioblastoma Multiforme

Global
Neurosciences
Institute

Recruiting Glioblastoma
Multiforme

30 SSIACI Bevacizumab 15 mg/kg NS 1

Repeated Super-Selective
Intraarterial Cerebral Infusion of
Bevacizumab (Avastin) for
Treatment of Newly Diagnosed
GBM

Lenox Hill
Brain Tumor
Center

Active,
not
recruiting

Glioblastoma
Multiforme
Anaplastic
Astrocytoma

25 SSIACI Temozolomide 75–250
mg/m2

NS 1
2

IA Carboplatin + Radiotherapy in
Relapsing GBM

Université de
Sherbrooke

Unknown Glioblastoma
Multiforme

35 IA Carboplatin 400 mg/m2 NA 1
2

Super-selective Intra-arterial
Repeated Infusion of Cetuximab for
the Treatment of Newly Diagnosed
Glioblastoma

Lenox Hill
Brain Tumor
Center

Recruiting Glioblastoma
Multiforme

33 SSIACI Cetuximab 250 mg/m2 20% 12.5 mL 1
2

ADV-TK Improves Outcome of
Recurrent High-Grade Glioma
(HGG-01)

Huazhong
University of
Science and
Technology

Completed Glioblastoma
Multiforme

47 IA Replication-deficient
adenovirus mutant ADV-
TK, a total of 1 × 1012

viral administered in the
clinical trial

25% 1.4 M
mannitol

2

Oncolytic Adenovirus DNX-2401 in
Treating Patients With Recurrent
High-Grade Glioma

M.D.
Anderson
Cancer Center

Recruiting Anaplastic
Astrocytoma
Glioblastoma
Multiforme
Recurrent
Gliosarcoma
Recurrent
Malignant
Glioma

36 IA Oncolytic Adenovirus
Ad5-DNX-2401, dose not
stated

NS 1

(Continued)
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Monoclonal antibodies in IA for the
treatment of GBM

Bevacizumab
Vascular endothelial growth factor A (VEGF-A) is the most

overexpressed mediator of angiogenesis in glioblastomas

multiforme, leading to poorer prognosis (11, 129). This

provided rationale for the use of bevacizumab, a monoclonal

antibody that blocks the binding of VEGF-A to its receptors in

the perivascular niche, which is rich in GSCs and located

externally to the luminal side of the vessel (11, 112). The

pharmacological mechanism of catheter delivered bevacizumab

in the treatment of glioblastoma has been illustrated in Figure 3.

Results coming from studies, as well as clinical series, have

shown that bevacizumab effectively inhibits the formation of

new blood vessels and affects the existing brain vasculature

leading to vascular normalisation, reduced permeability, and

an increase in blood flow velocity (2, 130). This may aid in

restoring the normal structure and function of blood vessels as

well as decrease tumour-related oedema (130). Although

bevacizumab has demonstrated highly encouraging results in

patients with newly diagnosed and recurrent GBM by improving

6-month progression-free survival, there are no improvements

in terms of overall survival (11, 37, 131, 132). According to

Baumgarten, bevacizumab produces different dose-dependent
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effects on glioma blood vessels and tumour cells (2). Low doses

result in a substantial reduction of the total vascular volume

without affecting tumour cell viability or the overall tumour

growth rates, whereas medium and high doses, besides providing

a similar vascular regression, also significantly decrease tumour

growth by inhibiting the ability of GSCs to self-renew (2, 10).

Furthermore, bevacizumab inhibits the transformation of GSCs

into endothelial cell progenitors, which subsequently grow into

mature endothelial cells (10, 132). Nonetheless, despite the

reasonable response rate during the first few months after

bevacizumab treatment, patient survival does not improve as

patients still progress and require salvage therapy (10, 108, 133).

This may be attributable to the insufficient delivery of

bevacizumab through the BBB. Considering that the pore size

of BBB is approximately 12nm, bevacizumab, with its size of

15nm, is too big to efficiently penetrate through the BBB (10,

134). Boockvar et al. hypothesised that increasing the

concentration of bevacizumab in the perivascular niche could

increase the efficacy of inhibiting GCSs, consequently providing

better therapeutic results (10). Research focusing on SSIACI of

bevacizumab after hyperosmolar BBB disruption for recurrent

GBM has evaluated that 15mg/kg is the maximum tolerated dose

(MTD) (10, 11, 108). IA treatment of bevacizumab has an edge

over IV treatment, given that studies reported a median PFS of

3.9 months in case of IA bevacizumab and median PFS from
TABLE 2 Continued

Study title Location Status Brain
tumour

Estimated
enrollment

Method
of

delivery

Chemotherapeutic,
dose

Mannitol
dose

Phase

Intraarterial Infusion Of Erbitux and
Bevacizumab For Relapsed/
Refractory Intracranial Glioma In
Patients Under 22

Weill Medical
College of
Cornell
University

Recruiting Glioblastoma
Multiforme
Anaplastic
Astrocytoma
Diffuse Intrinsic
Pontine Glioma

30 SSIACI Erbitux 200 m/m2

Bevacizumab 15 mg/kg
Mannitol
25% 10 mL

1
2

frontie
NS, not specified; SIACI, super-selective intra arterial cerebral infusion.
FIGURE 3

The pharmacological mechanism of catheter delivered bevacizumab in the treatment of glioblastoma.
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3.3 to 3.7 months in case of IV treatment (11, 135, 136).

Chakraborty et al. have evaluated that a single SIACI of BV at

15mg/kg after BBD with mannitol allowed obtaining similar or

better PFS in comparison to a biweekly IV infusion of

bevacizumab at 10mg/kg (137). Zawadzki et al. have performed

three intra-arterial deliveries of bevacizumab under real-time

MRI guidance in a patient with butterfly-shaped recurrent

glioblastoma as a sole treatment (138). The patient managed to

survive 6 months after MRI detection of aggressive regrowth

(138). All administrations were safe and uneventful. According to

the authors, the therapeutic effects of intra-arterial bevacizumab

offered reproducible symptomatic relief which lasted 7-

8weeks (138).

It remains unclear if repeated SIACI of bevacizumab after

BBBD with mannitol have a long term therapeutic effect, but

ongoing clinical trials (Table 2) should provide answers (11).

Cetuximab
Epidermal growth factor receptor (EGFR) is a potent

oncogene, frequently amplified and mutated in high-grade

gliomas, prompting diagnosis to be unfavourable (11, 139).

Cetuximab is a chimeric human monoclonal antibody that

binds and competitively inhibits EGFR, thus reducing signal

transduction. Tumour growth is inhibited, and the ultimate

result is cell death (81, 139). Given that cetuximab diminishes

angiogenesis, combined therapy of cetuximab with bevacizumab

could have a synergistic effect on angiogenesis (140). Studies have

demonstrated that cetuximab increases activity with radiotherapy

and chemotherapy and is capable of mediating antibody-

dependent cell-mediated cytotoxicity (81, 140). Phase I study of

SIACI of cetuximab after BBBD with mannitol in patients with

malignant glioma has estimated that MTD of 250 mg/m is safe

and well-tolerated (64). Reported complications included

tolerable rash (2 patients), anaphylaxis (1 patient), isolated

seizure (1 patient) and seizure with cerebral edema (1 patient)

(81). There is an ongoing phase II study aiming at estimating the

efficacy of repeated infusion of cetuximab with reirradiation in

patients with relapsed/refractory glioblastoma (NCT02800486).

Recently, a phase I trial of 13 paediatric patients with refractory

diffuse intrinsic pontine glioma (DIPG) and glioblastoma has

shown that super-selective intra-arterial cerebral infusion (SIACI)

of bevacizumab (15 mg/kg) and cetuximab (200 mg/m2) is well-

tolerated (115). The mean overall survival for the 10 DIPG patients

treated was 519 days, whereas the ranges for overall survival for the

3 non-DIPG patients were 311–914 days (115).
Emerging potential therapeutic approaches

Researchers have been actively evaluating and looking for

potential therapeutic agents that could increase the survival of

glioblastoma patients. Greenberg et al. have shown that catheter
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injection of anaerobic radiosensitizer such as bromodeoxyuridine

into the external carotid artery led not only to an increased

susceptibility of glioma cells to radiotherapy but also to

increased survival time of GBM patients (141). Subsequently,

research on animal models demonstrated that intra-carotid

injection of recombinant human TNF and lymphotoxin allows

producing significant anti-tumour effects in C6 and T9 gliomas

(142). Yoshida et al. reported a 20% response rate after a non-

selective administration of recombinant human tumour necrosis

factor-a in malignant glioma patients (143).

Tumour-treating fields (TTFields) have been hypothesised

as yet another potential treatment for recurrent as well as newly

diagnosed glioblastoma. By delivering low-intensity (1-3 V/cm),

intermediate-frequency (100-300 kHz) alternating electric fields

via transducer arrays applied to the scalp, TTFields lead to

mitotic arrest and apoptosis of quickly dividing cells. A

randomised Phase III clinical trial involving 237 patients with

recurrent glioblastoma, in whom prior therapy had failed,

compared the TTFields as a monotherapy to chemotherapy

(144). Even though there was no statistically significant

difference in regard to survival, TTFields demonstrated efficacy

and activity similar to the chemotherapy regimens, with lesser

toxicity and overall improvement in quality of life (144). A 2009

Phase 3 clinical trial involving patients with newly diagnosed

glioblastoma found that adding TTFields to maintenance

temozolomide chemotherapy resulted in statistically significant

improvement in survival (6.7 months vs 4.0 months) (145)

Gene therapy
Animal studies have shown the potential therapeutic benefits

associated with gene therapy. The growth of Gli36 glioblastoma

tissue carrying a missense-mutated p53 gene can be impeded by

intra-arterial delivery of a p53-containing adenoviral vector,

whereas intra-arterial administration of a plasmid encoding

anti-angiogenic endostatin resulted in decreasing tumour

vascular density, perfusion, and permeability, consequently

allowing to prolong survival time in the rat 9L gliosarcoma

model (69, 146, 147). A Phase II clinical trial evaluated an intra-

arterial delivery of ganciclovir combined with replication-

deficient adenovirus mutant thymidine kinase. Results

demonstrated a significant improvement in 6-month

progression-free survival, overall progression-free survival, and

overall survival in patients suffering from recurrent high-grade

gliomas (69, 148).

Cell therapy
A concerted effort in the development of new glioblastoma

treatments has led to animal studies evaluating the role of cell

therapy (69). Goerger and colleagues have shown that early-

stage intracarotid delivery of a human cytotoxic T-cell line

(TALL-104) in the 9L glioblastoma model significantly

increased survival rates (149). A study on animal models has
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shown that injection of a murine colon cancer cell line (CT-26)

overexpressing interleukin-4 (IL- 4) or hemagglutinin antigen

resulted in systemic immunity against liver and lung metastases

but not against brain metastases (150).

Recently, the interest has shifted towards genetic engineering

of T cells to express chimeric antigen receptors (CARs) directed

against specific antigens (151). Once the tumour-associated

antigen is identified, CAR T cells specific to that antigen can

induce antitumor responses in a human leukocyte antigen

(HLA)-independent manner (151). Early results of systemic

delivery have shown safety and optimistic results in regard to

efficacy (151). However, intra-arterial delivery has been only

evaluated in studies with liver metastases due to colorectal

cancer, demonstrating safety and encouraging results (152,

153). Nonetheless, the possibility of any therapeutic

applications is strongly limited by the scarcity of research and

lack of clinical trials.
What lays ahead

As much as the renewed interest brought new advancements

and progress with IA therapies to neuro-oncology, there is still

massive room for improvement. Glioblastomas multiforme

constitute a highly heterogeneous entity, both functional and

morphologic (129, 154). Although in vitro all clones demonstrate

neuronal precursor phenotype, individual clone-derived

populations overexpress various different GBM markers (such as

EGFR, EGFRvIII, and PTEN) and characterise by a dissimilar

response to a variety of drugs (129). Considering this, the likelihood

of a single therapeutic agentwhichwill be effective for the treatment

of glioblastomamultiforme is extremely low. Thus, it is paramount

to establish an adequate multimodal therapy, which will have a

synergistic effect on the diverse pathogenesis of GBM (11, 129).

Other approaches include a personalised choice of intra-arterial

therapy based on tumour genetic phenotype and in-vitro testing.

There are multiple mechanisms underlying the drug resistance of

glioblastomas, depending on both tumour-intrinsic factors and

tumour microenvironment-dependent factors. Effective treatment

for glioblastoma demands obtaining detailed pathological,

genomic, transcriptomic, and epigenetic data to precisely

determine the source of drug resistance (7). Considering that

there are numerous mechanisms of resistance and the high intra-

tumour heterogeneity of glioblastoma, precision medicine will

undoubtedly have to rely on multiple drugs leading to a

synergistic effect (7).

As much as hyperosmolar disruption of the BBB is an

effect ive and popular technique, a more profound

understanding of the pharmacological kinetics of BBB will

allow estimating the most effective dose for a specific agent

(11, 29). In order to obtain the best results possible with SIACI,

technical aspects such as the selection of cerebral vessels,

incorporation of catheters with balloons, flow arrest, or
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pulsatile injections have to be adequately incorporated (11).

Recent preclinical and clinical studies have demonstrated that

adding MRI to guide IA infusion rather than relying solely on X-

ray is highly advantageous (155, 156). Considering the low

sensitivity of contrast agents, angiography demands a rapid

bolus infusion of contrast, which significantly limits the

visualisation of the smallest intracranial vessels (156).

However, MRI contrast agents have a high sensitivity that

allows detection of the smallest concentrations of contrast,

particularly at the microcirculation level (156). MRI guidance

provides the unique possibility of showing the territory of the

brain parenchyma supplied by the catheter, which tends to be

extremely dynamic and variable. Furthermore, MRI guidance

permits modification of the infusion rate and catheter tip so that

the infusion can be limited to the targeted.

Zawadzki et al. have reported the first-in-man targeted intra-

arterial cerebral infusion under real-time MRI guidance to be

technically feasible and safe (156). Real-time MRI guidance

during microcatheter infusions offered essential quantification

of the degree of overlap between the transcatheter perfusion

territory and the enhancing mass, greatly helping in the selection

of the faster infusion rate (156). The difference between fast and

slow infusion rates and their influence on drug delivery has been

illustrated in Figure 4. Given the variable vascularity of

glioblastoma, angiography may fall short of localising the exact

vascular supply of GBM (156, 157). According to Chen et al.,

who reported the first use of perfusion guidance during the

infusion of mesenchymal stem cells loaded with Delta-24 (MSC-

24) in the treatment of glioblastoma, the combination of

preoperative anatomic MR images with real-time perfusion

images from super-selective injection during angiography

allows for accurate identification the vascular supply,

consequently facilitating more effective intra-arterial delivery

of chemotherapeutics (157) . Cone-beam computed

tomography (CBCT), being an inherent part of planning IA

injection and determining the area of infusion, allows for

generating perfusion maps, which greatly optimise the

accuracy of IA delivery, limiting exposition of healthy brain

parenchyma to delivered chemotherapeutics (157).

Furthermore, uncomplicated determination of the perfusion

volume facilitates the calculation of the adequate dose.

However, what is still a limitation of this technique is the high

dose of radiation during each cone-beam CT acquisition and the

lack of real-time visualisation of administered drug distribution (157).

Impressive advancements in artificial intelligence throughout

the last decade have resulted in the use of deep learning approaches,

known as convolutional neural networks (CNNs), in glioma

patients (158). Besides using MR data to grade gliomas and

predict overall survival, different CNNs are used to predict the

genetics of glioma on pre-operative MR images. According to a

recent review, CNNs are effective in tumour grading and prediction

of IDH mutation, 1p19q codeletion, MGMT promoter status, and

OS, with accuracies of prediction reaching 80% to 90% (158).
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There is a need for new robust pharmacokineticmodels which

will take into consideration hydrodynamic factors. It has been

established that hydrodynamic factors such as the background

blood flow, injection characteristics and vascular geometry have a

significant role in determining tissue concentrations after IA drug

injections (86). The advent of nanotechnology should also be

taken into consideration, as smaller particles are subjected to

substantially smaller hydrodynamic forces (86). Real-time

tracking of tissue drug distribution and concentrations such as

PET could significantly help in establishing reliable models (11,

86) Likewise, real-time monitoring of BBB disruption is essential

for the improvement of IA cerebra l in fus ions of

chemotherapeutics in the treatment of glioblastoma multiforme.

A c c o r d i n g t o K i v i n i em i e t a l . , d i r e c t - c u r r e n t

electroencephalography (DC-EEG) can be used to monitor the

induced transient BBBD in anaesthetized human patients

undergoing chemotherapy for PCNSL (13). DC-EEG allows for

characterization of the spatiotemporal behaviour of scalp-

recorded slow electrical signals during blood-brain barrier

opening (13). The authors also monitored the patients with

near-infrared spectroscopy (NIRS) in order to obtain

information on cerebral hemodynamics that has a role in DC-

EEG signal generation (13). Future clinical trials using IA delivery
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of chemotherapeutics in glioblastoma patients should try

evaluating the use of DC-EEG for real-time monitoring of BBBD.
Conclusions

It is widely recognized that the intra-arterial route of

administration ensures higher drug concentrations in targeted

areas, limits systemic toxicity and is safe in experienced hands.

However, although the results coming from various phase I studies

are promising, due to the lack of phase III clinical trials, with only

single-phase 1/phase 2 study reporting outcomes so far, it is

impossible to declare the efficacy of IA delivery of

chemotherapeutics in the treatment of glioblastoma multiforme.

There are numerous areas of improvement necessary for the

optimization of this technique and the treatment of GMB. These

include: establishing an adequate multimodal therapy, which will

have a synergistic effect on the diverse pathogenesis of GBM; relying

on the combination of preoperative anatomicMR images with real-

time perfusion images from super-selective injection during

angiography to accurately identify the vascular supply; conducting

precise quantitative and spatial monitoring necessary to

guarantee the accurate delivery of the therapeutic to the tumour
FIGURE 4

The difference between fast and slow infusion rates and their influence on drug delivery. Courtesy of the Society of Image guided
Neurointerventions (SIGN).
frontiersin.org

https://doi.org/10.3389/fonc.2022.950167
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Pinkiewicz et al. 10.3389/fonc.2022.950167
andestimating the most effective dose of a specific

agent for hyperosmolar BBB disruption. Considering the

significant heterogeneity of GBM, treatment should be

individualised to each patient after obtaining detailed pathological,

genomic, transcriptomic, and epigenetic data. Quantum leaps in

intrathecal, intracavitary and convection-enhanced delivery, or

pharmacological advancements leading to the development of

nanoparticles capable of effectively passing BBB, all could

potentially challenge the whole premise of intra-arterial delivery.

Nonetheless, we believe that the idea of IA infusion for the treatment

of malignant brain tumours guided by the fusion of pre-procedural

brain MRI to intra-procedural CBCT will not be abandoned for the

sake of other methods of drug delivery. It is because controlled and

highly precise catheter infusions are not only extremely effective at

ensuring high local concentrations of the chemotherapeutic but are

safe in experienced hands. With the development of effective agents

against glioblastoma, intra-arterial cerebral infusions have the

potential to become the mainstay of glioblastoma treatment and

offer patients a chance at longer survival.
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