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Quantifying the spreading 
resistance of an anisotropic thin 
film conductor
Kazuhiko Seki1 ✉, Toshitaka Kubo1, Nan Ye2 & Tetsuo Shimizu1

Recently, highly anisotropic conductors, such as multilayer graphene, have been attracting much 
attention. The local resistivity can be determined by measuring the contact resistance; however, the 
theoretical expressions of contact resistance have been developed for isotropic slabs but have not 
been well developed for highly anisotropic film conductors. We obtain theoretical expressions of the 
spreading resistance below the circular contact for a highly anisotropic film on a bulk slab. The film 
spreading resistance of isotropic conductors deviates from the bulk spreading resistance when the 
film thickness is smaller than the contact radius. Nevertheless, the spreading resistance of anisotropic 
conducting films can be approximated by that of the bulk slabs even when the film thickness is smaller 
than the contact radius if the in-plane electrical conductivity is larger than the out-of-plane electrical 
conductivity. Owing to the high in-plane conductivity, the spreading resistance of anisotropic bulk 
conductors can be lowered from that predicted by the Holm’s equation obtained using the out-of-plane 
conductivity and the contact radius. We show that these characteristics are beneficial to use the highly 
anisotropic film as a cover layer when the in-plane conductivity of the film is high and the conductivity 
of the base slab is low.

Recently, coating by multilayer graphene is receiving increasing attention owing to its high electrical conductivity, 
resistance to corrosion, low friction, and optical transparency1–8. Though the in-plane electrical conductivity of 
graphene is high, the out-of-plane electrical conductivity is low; hence, the electrical conductivity is highly aniso-
tropic. The local resistivity can be determined by measuring the contact resistance. The electrical contact resist-
ance between a disc electrode and a conductor slab has been attracting attention for many years. For an infinite 
isotropic conductor, the theoretical ideal resistance in the conductor directly under the contact is known as the 
spreading resistance and is expressed by Holm’s equation9, σ=R a1/(4 ), where R represents the spreading resist-
ance, a is the radius of the disc electrode and σ is the isotropic electrical conductivity of the conductor slab. For 
anisotropic materials, such as multi-graphene, Holm’s equation should be amended to relate the local resistance 
and the anisotropic electrical conductivities. The spreading resistance for anisotropic electrical conductors has 
been developed for bulk slabs but not thoroughly studied for thin films10,11. In this paper, we derive the spreading 
resistance for anisotropic electrical conducting films. We then show that multi-layer graphene could be beneficial 
for collecting spreading currents below the multi-layer graphene under a certain condition. Anisotropy in electri-
cal conductivity is common in other materials such as nano-composites, layered chalcogenides, and per-
ovskites12–18. Some of the results in this paper may also applicable to systems other than multi-layer graphene.

Spreading resistance of anisotropic conductor
As shown in Fig. 1, we consider the spreading resistance for the current passing through the circular domain on 
an anisotropic conductor. With this setting, the spreading resistance has been investigated experimentally10,11. We 
first give a brief derivation of the spreading resistance for an anisotropic bulk conductors denoted by ∞R . Then, 
the results are generalized for thin films and cover layers. The spreading resistance is denoted by R0 when the film 
thickness is smaller than any other length scales of interest. We show that the spreading resistance of the cover 
layer can be lowered from the spreading resistance of the bulk base slab alone denoted by Rb under some 
conditions.
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The contact radius is denoted by a. The electrostatic potential at the circular domain is denoted by V0. The 
electrical conductivity in the direction parallel to the surface of the circular domain is denoted by σ  and that in 
the direction perpendicular to the surface is denoted by σ⊥. The z-axis is defined in the direction perpendicular to 
the surface and the circular domain surface is located at =z 0, and the anisotropic conductor is located at the 
negative values of the z-coordinate. We introduce x and y coordinates in the direction parallel to the surface. The 
current in the anisotropic conductor is denoted by j→. The current obeys the continuity equation in the steady 
state, =

→j0 div , and Ohm’s law σ
→

=
→

j Ex x, σ
→

=
→

j Ey y and σ
→

=
→

⊥j Ez z, where the electric field is related to the 
electrostatic potential V  by 

→
= −E Vgrad . By using the above equations, we can show that V satisfies the aniso-

tropic Laplace equation given by

σ σ∇ + ∇ =⊥ ⊥V V 0, (1)
2 2

where we define x y/( ) /( )2 2 2 2 2∇ = ∂ ∂ + ∂ ∂  and ∇ = ∂ ∂⊥ z/2 2 2. A similar potential function has been used to 
obtain electric voltage change but not to calculate the spreading resistance12–16.

The electric potential inside the circular domain of radius a is V0 and the potential far below =z 0 is set to 019. 
Another boundary condition is that the current outside the circular domain is zero. The solution can be expressed as

∫π
σ σ=

∞

⊥V r z V dk
k

ka J kr kz( , ) 2 sin( ) ( )exp( / ), (2)
0

0
0

where R denotes the distance from the center of the circular domain at =z 0 and J z( )m  indicates the Bessel func-
tion of the first kind20. One can confirm that the boundary conditions are satisfied by using19,20.

∫π = ≤ ≤ <
∞

V dk
k

ka J kr V r a a(2 / ) sin( ) ( ) if 0 and 0 (3)0
0

0 0

∫ = > .
∞

ka J kr dk r asin( ) ( ) 0 if (4)0
0

The z-component of the electric field at =z 0 is obtained from = −∇E r z V r z( , ) ( , )z z  as

∫π

σ

σ
= = − .

⊥

∞
E r z V dk ka J kr( , 0) 2 sin( ) ( )

(5)
z

0
0

0

The current flowing through the circular disk in the z-direction is given by σ= = =⊥j r z E r z( , 0) ( , 0)z z .  
We can calculate the total current by ∫π= =j rdrj r z2 ( , 0)T

a
z0

 using ∫ =dr rJ kr a k J ka( ) ( / ) ( )a
0 0 1  and 

∫ =
∞ dk k ka J ka( / )sin( ) ( ) 1

0 1
20. The spreading resistance is obtained from − =V RjT0  as10,11

σ σ σ
= =∞

⊥ ⊥
R

a a
1

4
1

4
,

(6)eff

where we defined the effective radius of the circular spot by10,11

σ σ= .⊥a a / (7)eff

Equations (6) and (7) are known and have been thoroughly studied experimentally10,11. These will be further 
generalized below for thin films and cover layers.

Figure 1.  Schematic of a circular contact to a conductor.
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Spreading resistance of anisotropic thin layer on an equipotential surface
To investigate spreading resistance of an anisotropic thin layer, we consider a circular contact to a thin layer con-
ductor of thickness h (see Fig. 2). One side faces the circular contact and the other side faces a metal conductor. 
For the metal contact with a high electrical conductivity (an equipotential contact interface), we assume a con-
stant potential. Because we are interested in the electrostatic potential difference between the circular contact and 
the other side, the electrostatic potential inside the circular disk is held at a constant V0 and that at the opposite 
side is held at zero potential, which can be expressed as − =V r h( , ) 021. The electrostatic potential can be 
expressed as

V r z dk
k

C k J kr kz k z h( , ) ( ) ( ) exp exp ( 2 ) ,
(8)0

1 0∫
σ

σ

σ

σ
=
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
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−





− +













∞

⊥ ⊥

where C k( )1  is determined from the boundary conditions given by

= ≤V r V r a( , 0) if (9)0

= = >( )j r z r a, 0 0 if , (10)z

where the current flowing through the circular disk in the z-direction is given by σ= = =j r z E r z( , 0) ( , 0)z z  
and = −∇E r z V r z( , ) ( , )z z . C k( )1  can be approximately obtained using Eqs. (3) and (9) as

π
σ σ

=
− −

.
⊥

C k V ka
kh

( ) (2 / )sin( )
1 exp( 2 / ) (11)

1
0

Strictly speaking, C k( )1  does not satisfy Eq. (4) if h is kept finite22–24. We will show later that the deviation from 
the exact result is within a few percent. We also show the numerical result which satisfies both boundary condi-
tions given by Eqs. (9) and (10); the improvement is within a few percent. The final result requires numerically 
solving an integral equation (see also Fig. 3) which satisfies both boundary conditions given by Eqs. (9) and (10); 
the derivation of the integral equation is shown in the Appendix A. The derivation is based on a method of solving 
mixed boundary value problems25,26.

The z-component of the electric field is given by

E r V dk ka J kr kh( , 0) 2 sin( ) ( )coth( / )
(12)

z
0

0
0∫π

σ

σ
σ σ= −

⊥

∞

⊥

and the spreading resistance can be obtained as

∫σ σ
λ

λ
λ λ λ σ σ=


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







.
⊥

∞

⊥

−
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d J h a1
4

sin( ) ( )coth( ( / ) / )
(13)0

1

1

In the limit of h a( / ) / 1σ σ >⊥ , Eq. (13) reproduces the exact result for an infinite depth of anisotropic con-
ductors given by Eq. (6). In the opposite limit of h a( / ) / 1σ σ <⊥ , Eq. (13) reduces to the reasonable limiting 
expression given by

σ π= ⊥R h a/( ), (14)0
2

where we have used d Jsin( ) ( )/ /4
0 1

2∫ λ λ λ λ π=
∞ 20. R0 represents the resistance of the cylinder with radius a and 

length h. In this limit, the current spreading beyond the circular edge can be ignored. Equation (13) interpolates 
between the correct limiting expressions. For isotropic systems, Eq. (13) reduces to the approximate result derived 
previously27–29.

Figure 2.  Schematic of a circular contact to a conductor of thickness h.
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The commonly used empirical equation of the spreading resistance for isotropic materials with the electrical 
conductivity σ is given by πσ=R h a aarctan(2 / )/(2 )30. Because the anisotropic Laplace equation given by Eq. (1) 
can be transformed to the isotropic Laplace equation by rescaling x with σx/ , y with σy/ , and z with σ⊥z/ , 
h/a in the expression of R should be transformed into h a( / ) /σ σ⊥  for anisotropic conductors. In the limit of 

→ ∞h , the expression of R should reproduce Eq. (6) using π→xarctan( ) /2 ( → ∞x ). Therefore, the empirical 
equation should be generalized to

π σ σ

σ

σ
=









⊥ ⊥

R
a

h
a

1
2

arctan 2 ,
(15)

when the electrical conductivities are anisotropic.
In Fig. 3, we show R∞/R as a function of h/a, where R∞ is defined by Eq. (6). As explained above, R∞/R of an 

anisotropic material can be obtained from that of an isotropic material by replacing h/a with σ σ⊥( )h a/ / . The 
accuracy of the approximate expression given by Eq. (13) and the empirical expression given by Eq. (15) can be 
examined by comparison with R∞/R obtained from the finite element method for isotropic materials24. Small 
deviation from the numerical result can be observed between h/a ~ 0.5 and 3 but the errors are within a few per-
cent. In the same figure, we also show the results of Eq. (14). Equation (14) represents the result when the current 
spreading beyond the circular edge can be ignored. Judging from Fig. 3, the contact resistance is affected by the 
currents spreading beyond the circular edge when σ σ> > .⊥h a5 ( / ) / 0 5. The same figure also shows that the 
spreading resistance can be approximately expressed by Eq. (6) when h a( / ) / 5σ σ >⊥ .

According to the material parameters of multilayer graphene, we have σ σ = .⊥/ 0 0005 and the current spreads 
if > .h a/ 0 01 holds. The spreading resistance can be approximately expressed by R∞ given by Eq. (6) when 

> .h a/ 0 1. In the opposite limit of σ σ =⊥/ 2000, the current spreads when >h a/ 23; the spreading resistance is 
approximately given by Eq. (14) when <h a/ 23. In both limits, the overall dependence of the spreading resistance 
on h a/  can be obtained from Eq. (15) when the bottom surface of the layer is equipotential. The importance of the 
bottom boundary condition to the value of the spreading resistance of thin films has been pointed out by studying 
theoretically an isotropic conducting layer of finite width on an insulating base slab, where currents injected from 
the sides of the layer flow parallel to the bottom surface31–33. In our case, components of electrical currents flowing 
parallel to the bottom surface increase by lowering the electrical conductivity of the base slab shown in Fig. 4. 
Below, we study the effect of the electrical conductivity of the base slab on the spreading resistance of the aniso-
tropic conducting layer.

Spreading resistance of anisotropic cover layer
A possible application of a thin anisotropic layer is as a cover layer for collecting the spreading currents below 
the cover layer. If the base slab under the cover layer is isotropic and the spreading resistivity is large for this 
material, the spreading resistivity can be lowered by inserting a thin layer with a high in-plane electrical conduc-
tivity between the circular contact and the base slab to collect the spreading currents in the base slab. The overall 
resistivity can be lowered by covering the anisotropic conductor with a high in-plane electrical conductivity by 
collecting currents below the cover layer, though the series resistance caused by inserting the thin layer should 

Figure 3.  R∞/R plotted as a function of h/a. The solid lines are obtained using R given by Eq. (13). The dashed-
dotted lines are obtained using Eq. (14). The short dashed lines are obtained using Eq. (15). The lower (red) lines 
indicate the case when σ σ = .⊥/ 0 0005. The middle (blue) lines indicate the isotropic case of σ σ= ⊥. The higher 
(black) lines indicate the case when σ σ =⊥/ 2000. The dots for the case of σ σ= ⊥ indicate the results calculated 
by the finite element method24. The open circles indicate the numerically exact results obtained by the method 
described in the Appendix A.
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be taken into account with care. We estimate the gaining condition of the spreading resistance by inserting an 
anisotropic conductor arising from increasing the effective area despite the increase in the series resistance. First, 
we show a hand-waving argument. Later, we give a more precise derivation on the condition.

As shown in Fig. 4, we consider a circular contact to a conductor of thickness h above the base slab with the 
electrical conductivity σb. When σ σ⊥

 holds, the spreading resistance can be approximated by R∞ defined by 

Eq. (6) as long as h exceeds σ σ⊥a / , which is much smaller than a. In this case, the spreading resistance in the 
cover layer can be approximately given by σ= ⊥R a1/(4 )eff . If the spreading resistance is reduced by inserting the 
cover layer, the gaining condition of the spreading resistance by inserting the cover layer can be approximately 
expressed as σ σ σ> + ⊥a a a1/(4 ) 1/(4 ) 1/(4 )b beffb eff , where aeff is defined by Eq. (7) and aeffb indicates the effective 
contact radius of the base slab, which could be larger than aeff owing to a spreading of the currents in the cover 
layer. The above inequality holds, if >a aeffb eff  and σ σ σ> + ⊥a a a1/(4 ) 1/(4 ) 1/(4 )b beff eff  hold. By rearrangement, 
we obtain σ σ σ σ< −⊥ ⊥b  and

σ σ σ< ⊥ (16)b

in the limit of σ σ⊥
. Equation (16) is the condition that the spreading resistance of the slab base can be lowered 

by the cover layer for collecting spreading currents, though the insertion of the cover layer may be regarded as 
adding series resistance. The effective spreading resistance is decreased by the large effective radius of the contact 
area of the anisotropic conductor with a high parallel conductivity.

The more precise condition can be derived as shown in the Appendix B34,35. The spreading resistance is 
approximately obtained as [See the Appendix B for the derivation].

σ σ
=

⊥
R

a C
1
4

1 1 ,
(17)F

and the inverse correction factor is given by

∫
λ

λ
λ λ

σ σ λ σ σ σ σ σ λ

σ σ λ σ σ σ σ σ λ
=







+ 











+ 




.

∞ ⊥ ⊥ ⊥

⊥ ⊥ ⊥

C d J
h a h a

h a h a
sin( ) ( )

sinh / ( / ) ( / )cosh / ( / )

cosh / ( / ) ( / )sinh / ( / ) (18)
F

b

b
0

1

For isotropic systems, Eqs. (17) and (18) reduce to the approximate expression obtained from the relation 
between the current and the applied potential in27. In the limit of → ∞h , Eq. (18) reproduces R∞ given by  
Eq. (6). In the opposite limit of →h 0, Eq. (18) reduces to σ=R a1/(4 )b b , which is the spreading resistance of the 
base slab below the cover layer. In the limit of σ → ∞b , Eq. (18) reproduces the spreading resistance of the layer 
on a highly conductive metal slab (an equipotential contact interface) given by Eq. (13). In the limit of σ → 0b ,  
Eq. (18) should represent the spreading resistance of a layer on an insulator. Although we obtain

∫
λ

λ
λ λ σ σ λ= 





∞

⊥C d J h asin( ) ( ) tanh / ( / )
(19)F

0
1

in this limit, the larger error is found when h a/ 1 compared to the case of the cover layer on a metal as indi-
cated in Fig. 5. When the cover layer is on an insulator, the method described in the Appendix B below Eq. (64) is 
required to take into account the spreading currents flow in the horizontal direction; in this limit, the electrical 
currents flow into the layer from the horizontal direction and the current is non-zero despite the absence of ver-
tical electrical currents from the insulator base slab. By comparing Eqs. (13) to (17) with Eq. (19), the spreading 
resistance of the thin layer is increased on the insulator substitute compared with that on the conductor. If we take 
the limit of →h 0 in Eq. (19), R given by Eq. (17) diverges. The reason is that the current flow above the base slab 
is parallel to the interface between the cover layer and the base slab, hence the cross section area of the current 
flow tends to vanish as →h 036.

Figure 4.  Schematic of a circular contact to a conductor of thickness h above the base slab with the electrical 
conductivity σb.
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In Fig. 5, we show the inverse correction factor as a function of h a/  calculated using the numerically exact 
method described in the Appendix B below Eq. (64). The red dots indicate the limit of the highly conductive base 
slab (an equipotential contact interface). The qualitative features are preserved by the corresponding approximate 
results obtained from Eq. (18) shown in the inset. By decreasing the values of σb, the inverse correction factor 
decreases when σ σ <⊥h a( / ) / 1 holds. When σ σ σ =⊥/ 1b , the inverse correction factor is close to one and the 
resistance is virtually equal to the case of → ∞h . By further decreasing the values of σb, the inverse correction 
factor decreases below 1 when h a( / ) / 1σ σ <⊥  holds.

In Fig. 6, we show Rb/R as a function of h a/  when σ σ = .⊥/ 0 0005. The ratio is larger than 1 when σ σ σ = .⊥/ 0 1b . 
The results indicate that the conductance is increased by inserting the cover layer. The ratio given by R R/b  
increases by increasing h a/  and saturates when h a/  is increased over the threshold value given by σ σ= ⊥h a/ / . 
In the opposite case, when σ σ σ =⊥/ 10b , the conductance is decreased by inserting the cover layer. The ratio 
given by R R/b  decreases by increasing h a/  and saturates again when h a/  is increased over the threshold value given 
by σ σ= ⊥h a/ / . When σ σ σ =⊥/ 1b , Rb/R is virtually independent of the values of h/a; the spreading resistance 
is not influenced by a cover layer of any thickness. These results obtained using Eq. (18) are further corroborated 
by using the numerically exact results obtained from the method described in the Appendix B below Eq. (64); the 
qualitative feature is not altered. However, a quantitative deviation can be seen when σ σ σ <⊥/ 1b  and 

σ σ <⊥h a( / ) / 1. When σ σ σ <⊥/ 1b , the direction of the electric field in the anisotropic layer just above the base 
slab tends to be parallel to the interface surface and still influences the field direction around the circular contact 
region if σ σ <⊥h a( / ) / 1 holds. In the approximate expression given by Eq. (18), such an effect is not fully taken 
into account because the boundary condition imposed for the current at the circular contact region is not satis-
fied. By applying the numerical method described in the Appendix B below Eq. (64), the change in the field lines 
can be followed accurately.

In Fig. 6, >R R/ 1b  if the spreading resistance on the cover layer is lower than the spreading resistance of the 
base slab alone. The red dashed-dotted line indicates >R R/ 1b  when / 0 1bσ σ σ = .⊥ ; R decreases by the presence 
of the top layer and by increasing the layer thickness denoted by h when the electrical conductivity of the base slab 
is low. The results correlate well with experimental findings, where graphene layers are immobilized by polyami-
nophenylene (PAP) and the contact resistance is measured by conducting prove atomic force microscopy 
(CP-AFM)37. Though PAP is electrically resistive, the contact resistance values are lowered by the presence of 
graphene layers and smaller for the larger number of graphene layers.

Conclusion
As a highly anisotropic conductor, we consider multi-layer graphene. For a given sheet resistance (R□) and verti-
cal distance between layers (ds), the parallel (in-plane) electrical conductivity can be obtained from σ = 1/(R□ds). 
However, the vertical (out of plane) electrical conductivity can be directly obtained from the vertical  
resistivity (ρ⊥) as σ ρ= ⊥1/ . By substituting the parameter values of graphene (R□ = 500 Ω□, = .d 0 3 nms , 
ρ = ×⊥ 3 104 μΩcm)38–40, we find σ σ ρ= ≈ . ×⊥ ⊥R d1/ 1 5 10s

3 S/cm and σ σ ρ= ≈ .⊥ ⊥R d/ / 0 0005s . These 
values were used to draw the figures. Though the specific values relevant to multilayer graphene are used for 
drawing figures, the theoretical results might apply to the spreading resistance of other anisotropic materials such 

Figure 5.  R∞/R plotted as a function of h/a when σ σ = .⊥/ 0 0005. The red dots indicate the limiting case of the 
equipotential interface below a conductive layer. The dashed line, thin solid line, thick solid line and dashed-
dotted line indicate the results of σ σ σ =⊥/ 100b , 10, 1, and 0.1, respectively. These lines are obtained using the 
numerical exact method shown in the Appendix B below Eq. (64). The insert shows the corresponding 
approximate results, where R is obtained from Eq. (17) with the inverse correction factor given by Eq. (18) for 
the black lines and by Eq. (13) for the red dots.
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as conducting polymers, Bi2Te3 films, and composite materials41–45. We show that the effect of the parallel electri-
cal conductivity on the spreading resistance is through the modification of the true area radius a by the effective 
area radius σ σ⊥a /  as shown in Eq. (7). For thin anisotropic conductors, further amendment is required for the 
normalized film thickness h/a by σ σ⊥h a( / ) /  as discussed above Eq. (15). These quantities are beneficial to the 
highly anisotropic film as a cover layer when the in-plane electrical conductivity of the film is high and the elec-
trical conductivity of the base slab denoted by ρb is low; the condition can be written as σ σ σ< ⊥b . Under the 
condition, the contact resistance decreases by increasing the layer thickness of the anisotropic conductor; the 
results correlate well with experimental findings and corroborate the conclusion that the measurement of spread-
ing resistance could be useful in discriminating graphene layers of different thickness37.

So far, the transmission line model has been used to obtain the sheet resistance29,46–51. For a rectangular con-
tact area of width L and W , the total resistance calculated from the transmission line model for the current flow-
ing in the parallel layer and that extracted by the metal contact is given in terms of the sheet resistance (R□) and 
the specific contact resistivity (ρc) as ρ ρR w L R( / )coth( / )c c 

52,53. The boundary conditions are different from 
our model. If the sheet resistance can be obtained by applying the transmission line model, the vertical electrical 
conductivity (σ⊥) can be estimated from the spreading resistance using our theoretical results. In this sense, our 
model is complementary to the transmission line model.

Appendix A: Evaluation of the correction to Eq. (13)
According to Eq. (8), the electrostatic potential inside the cover layer can be expressed as

∫ σ σ σ σ= 


− − 


∞

⊥ ⊥( ) ( )V r z dk
k

J kr C k kz C k kz( , ) ( ) ( )exp / ( )exp / , (20)a
A A

0
0 1

( )
2
( )

and

( ) ( )E r z dkJ kr C k kz C k kz( , ) ( ) ( )exp / ( )exp / , (21)z
A A

0
0 1

( )
2
( )∫ σ σ σ σ= − 


+ − 


∞

⊥ ⊥

which is valid for − ≥ ≥h z 0. The boundary conditions at the surface facing the circular contact are given by 
Eqs. (9) and (10). These boundary conditions can be expressed as the dual integral equations,

∫ − = ≤
∞ dk

k
C k C k J kr V r a[ ( ) ( )] ( ) for (22)

A A

0
1
( )

2
( )

0 0

∫ + = > .
∞

C k C k J kr dk r a[ ( ) ( )] ( ) 0 for (23)
A A

0
1
( )

2
( )

0

Figure 6.  Rb/R plotted as a function of h/a when σ σ = .⊥/ 0 0005. σ=R a1/(4 )b b  and indicates the spreading 
resistance of the base slab alone. The (black) dashed-dotted line, the (black) thick solid line and the (black) thin 
solid line indicate σ σ σ = .⊥/ 0 1b , 1, and 10, respectively. These lines are obtained using R with the inverse 
correction factor given by Eq. (18). Numerically exact results obtained by the method described in the 
Appendix B below Eq. (64) are shown by the corresponding lines in red. [The results for σ σ σ =⊥/ 1b  overlap 
with the approximate values and are not shown in red].
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To satisfy both boundary conditions, −C k C k( ) ( )A A
1
( )

2
( )  should satisfy

C k C k V
dtf t

dtf t kt( ) ( ) 2
( )

( )sin( ),
(24)

A A

a
a

1
( )

2
( ) 0 ∫∫π

− = ∞

∞

where we determine f(t) below. By using19,20,25,26

∫ π= ≤ ≤ <
∞ dk

k
kt J kr r t tsin( ) ( ) /2 if 0 and 0 (25)0

0

and noting that ≤ ≤r a t, we show that Eq. (22) is satisfied. In other words, −C k C k( ) ( )
A A

1
( )

2
( )  defined by Eq. (24) 

satisfies one of the boundary conditions given by Eq. (22). We define B(k) as

B k C k C k
C k C k

( ) ( ) ( )
( ) ( ) (26)

A A

A A
1
( )

2
( )

1
( )

2
( )=

+

−

and rewritten +C k C k( ) ( )A A
1
( )

2
( )  using Eq. (24) as

∫∫π
+ = .∞

∞
C k C k V

dtf t
B k dtf t kt( ) ( ) 2

( )
( ) ( )sin( )

(27)

A A

a
a

1
( )

2
( ) 0

By substituting Eq. (27), the other boundary condition given by Eq. (23) can be rewritten as

dk dt J kr B k f t kt r a2 ( ) ( ) ( )sin( ) 0 for (28)a0
0∫ ∫π

= > .
∞ ∞

We first note

∫ η
η η

η
−

∂
∂ −

=
∞

r
d J k

r
kr( ) sin( )

(29)r
0
2 2

obtained from

d J k

r
kr k( ) cos( )/

(30)r
0
2 2∫ η

η η

η −
= .

∞

The boundary condition given by Eq. (28) can be rewritten using Eq. (30) as

r
d

r
dk dtf t kt J k B k r a2 ( ) sin( ) ( ) ( ) 0 for ,

(31)r a2 2 0
0∫ ∫ ∫π

η
η

η
η−

∂
∂ −

= >
∞ ∞ ∞

which is satisfied when

dk dtf t kt kr B k r a2 ( )sin( )sin( ) ( ) 0 for (32)a0∫ ∫π
= >

∞ ∞

holds.
From the equipotential boundary condition at the bottom surface given by − =V r h( , ) 0, we obtain

C k C k kh( ) ( )exp( 2 / ) (33)
A A

2
( )

1
( ) σ σ= − ⊥

using Eq. (20). By substituting Eq. (33) into Eq. (24), we obtain C k( )A
1
( ) . Using C k( )A

1
( )  and C k( )A

2
( )  thus deter-

mined, B(k) in Eq. (26) can be expressed as

B k kh( ) coth( / ) (34)σ σ= .⊥

The lowest order expression of the contact resistance for finite h is obtained by substituting f t c t a( ) ( )δ= −∞ ∞  
into Eq. (24) and the result is given by Eq. (13). c∞ can be arbitrary set because of the normalization factor in  
Eq. (24). For convenience, we chose c∞ to satisfy ∫ δ − =∞

∞c dt t a( ) 1
a

. The result satisfies the boundary condi-
tion given by Eq. (32) in the limit of → ∞h ; in the limit of → ∞h , we have →khcoth( ) 1 and Eq. (32) is con-
firmed by using

∫π
δ= −

∞
dk kt kr t r2 sin( )sin( ) ( ) (35)0

and =∞f t( ) 0 for >t a according to the definition of the delta function.
The correction term for finite h can be studied by introducing f r f r f r( ) ( ) ( )δ= +∞  and evaluate δf r( ). 

Equation (32) can be rewritten as
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f r dk dtf t k t k r B k r a( ) 2 ( )sin( )sin( )[1 ( )] 0 for , (36)a0
1 1 1 1∫ ∫δ

π
− − = >

∞ ∞

where we have used Eq. (35) and δ=f r f r( ) ( ) for >r a according to the definition of the delta function in ∞f r( ). 
By applying sin(kr) on both sides of Eq. (36) and integrating over r, we obtain

ˆ ˆf k dr kr dk f k k r B k( ) 2 sin( ) ( )sin( )[1 ( )] 0, (37)a 0
1 1 1 1∫ ∫δ

π
− − =

∞ ∞

where we defined

∫ ∫δ δ= = .
∞ ∞

f k dr kr f r f k dr kr f r( ) sin( ) ( ) and ( ) sin( ) ( ) (38)a a
ˆ ˆ

The double integral in Eq. (37) can be simplified by introducing

dr kr k r dr kr k r dr kr k r

k k k k a ka k ka k a
k k

sin( )sin( ) sin( )sin( ) sin( )sin( )

2
( ) cos( )sin( ) cos( )sin( )

a

a
1

0
1

0
1

1
1 1 1

2
1
2

∫ ∫ ∫
π δ

= −

= − −
−

−
.

∞ ∞

As a result, the integral equation is expressed by a single integral,

∫δ
π

+ −

×
−

−
= .

∞
^ ^f k B k dk f k B k

k k a ka k ka k a
k k

( ) ( ) 2 ( )[1 ( )]

cos( ) sin( ) cos( ) sin( ) 0
(39)

0
1 1 1

1 1 1
2

1
2

We note − − =→ ( )k k k k k k k klim [ cos( )sin( ) cos( )sin( )]/ 0k k 1 1 1
2

1
2

1
. By substituting δ= +∞

ˆ ˆ ˆf k f k f k( ) ( ) ( )1 1 1 , 
where ∫= =∞

∞
∞

ˆ ( ) ( )f k dr k r f r k asin( ) ( ) sin
a1 1 1  into Eq. (39), we finally obtain

∫δ
π

δ+ − =
∞ˆ ˆf k B k dk f k B k K k k F k( ) ( ) 2 ( )[1 ( )] ( , ) ( ), (40)0

1 1 1 1 r

where the right-hand side is given by

∫π
= − − −

∞
F k ka B k dk k a B k K k k( ) sin( )[1 ( )] 2 sin( )[1 ( )] ( , ), (41)r

0
1 1 1 1

and the kernel is given by

=
−

−
.K k k k k a ka k ka k a

k k
( , ) cos( )sin( ) cos( )sin( )

(42)
1

1 1 1
2

1
2

Equation (40) with Eqs. (41) and (42) is the Fredholm integral equation of the second kind which needs to be 
numerically solved.

The contact resistance is defined by = −R V j/ T0 , where jT indicates the total current given by 
∫ ∫π πσ= = = =⊥j rdrj r z rdrE r z2 ( , 0) 2 ( , 0)T

a
z

a
z0 0

; the current flowing through the circular disk in the 
z-direction obeys Ohm’s law given by

j r z E r z( , 0) ( , 0), (43)z zσ= = =⊥

and the electric field is given by Eq. (21). The contact resistance can be expressed as

∫π σ=






+




⊥

∞
R V a dk

k
C k C k J ka/ 2 [ ( ) ( )] ( ) ,

(44)0
0

1 2 1

where ∫ =dr rJ kr a k J ka( ) ( / ) ( )a

0 0 1  is used. Using Eq. (27), the contact resistance can be expressed as

ˆ ˆ∫ ∫π
δ σ=





+












∞

⊥

∞/R dk
k

ka f k a dk
k
J ka B k f k1 2 cos( ) ( ) 4 ( ) ( ) ( ) ,

(45)0 0
1

where we have introduced

∫ ∫ ∫π δ= +
∞ ∞ ∞

dt f t dt dk kt f k( ) 1 (2/ ) sin( ) ( ) (46)a a 0
ˆ

obtained from

ˆdt f t dt dk kt f k( ) (2/ ) sin( ) ( ) (47)a a 0∫ ∫ ∫δ π δ=
∞ ∞ ∞
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and Eq. (35). The contact resistance can be evaluated by using f k ka f k( ) sin( ) ( )δ= +ˆ ˆ , where δf k( )ˆ  can be 
numerically calculated from Eqs. (40)–(42) by substituting B(k) defined by Eq. (34).

According to Eq. (40), f k( )δ ˆ  is an oscillating function whose frequency increases by increasing k. Rapidly 
oscillating ˆδf k( ) in Eq. (45) will give a negligible contribution to the value of the contact resistance. Numerical 
investigation of Eq. (40) indicates that the amplitude of δf̂ k( ) also decreases rapidly by increasing k when >ka 1, 
where ˆ ˆδ= +f k ka f k( ) sin( ) ( ) is dominated by sin(ka). The largest deviation of f̂ k( ) from kasin( ) is obtained 
when ka is around 1. We truncate the upper-limit of the integration in Eq. (40) by 100/a and solve the equation by 
the standard discretization scheme. The results are shown in Fig. 3.

Appendix B: Derivation of Eqs. (17) and (18) and the evaluation of the correction to 
these equations
The electrostatic potential inside the cover layer can be expressed as

V r z dk
k

J kr C k kz C k kz( , ) ( ) ( )exp( / ) ( )exp( / ) , (48)a
B B

0
0 1

( )
2
( )∫ σ σ σ σ= 


− − 


∞

⊥ ⊥

and the z-component of the electric field is obtained from = −∇E r z V r z( , ) ( , )z z  as

∫ σ σ σ σ= − 


+ − 


∞

⊥ ⊥E r z dkJ kr C k kz C k kz( , ) ( ) ( )exp( / ) ( )exp( / ) , (49)z
B B

0
0 1

( )
2
( )

which is valid for − ≥ ≥h z 0. C k( )1  and C k( )2  are unknown constants to be determined from the boundary con-
ditions. The electrostatic potential inside the base slab can be expressed as

∫=
∞

V r z dk
k

J kr C k kz( , ) ( ) ( )exp( ), (50)b
0

0 3

which is valid for ≤ −z h, and C k( )3  is another unknown constant to be determined from the boundary condi-
tions. Continuity of electrostatic potential can be expressed as34,35

− = − .V r h V r h( , ) ( , ) (51)a b

Current continuity can be expressed as34,35

σ σ
∂

∂
=

∂
∂

.⊥
=− =−

V r z
z

V r z
z

( , ) ( , )

(52)
a

z h
b

b

z h

The continuity conditions can be explicitly written as

C k kh C kh C k kh( )exp( / ) exp( / ) ( )exp( ), (53)
B B

1
( )

2
( )

3σ σ σ σ− − = −⊥ ⊥

σ σ σ σ
σ
σ σ

− + = − .⊥ ⊥
⊥

C k kh C kh C k kh( )exp( / ) exp( / ) ( )exp( )
(54)

B B b
1
( )

2
( )

3

Using the boundary condition for the electrostatic potential at the circular contact surface given by

∫π = <
∞

V ka J kr dk k V r a(2 / ) sin( ) ( ) / if , (55)0
0

0 0

we also obtain

C k C k V ka( ) ( ) 2 sin( ) (56)
B B

1
( )

2
( ) 0

π
− = .

Since we have 3 equations, Eqs. (53), (54) and (56), for 3 unknowns, C k( )
B

1
( ) , C k( )

B
2
( )  and C k( )3  can be deter-

mined. These are given by

π

σ σ σ σ σ

σ σ σ σ σ σ σ
=

+







+ 





⊥ ⊥

⊥ ⊥ ⊥

C k V ka kh

kh kh
( )

sin( )exp( / )(1 / )

cosh / ( / )sinh /
,

(57)

B b

b
1
( ) 0

π

σ σ σ σ σ

σ σ σ σ σ σ σ
= −

− −







+ 





⊥ ⊥

⊥ ⊥ ⊥

C k V ka kh

kh kh
( )

sin( )exp( / )(1 / )

cosh / ( / )sinh /
,

(58)

B b

b
2
( ) 0

C k V ka kh

kh kh
( ) 2sin( )exp( )

cosh / ( / )sinh / (59)b
3

0

π σ σ σ σ σ σ σ
=







+ 




.

⊥ ⊥ ⊥

By substituting C k( )B
1
( ) , C k( )B

2
( )  and C k( )3  into Eq. (48), we find
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V r z V dk
k

ka J kr

k z h k z h

kh kh

( , ) 2 sin( ) ( )

cosh ( ) / ( / )sinh ( ) /

cosh / ( / )sinh / (60)

a

b

b

0
0

0∫π

σ σ σ σ σ σ σ

σ σ σ σ σ σ σ

=

×



+ 


+ 


+ 








+ 





.

∞

⊥ ⊥ ⊥

⊥ ⊥ ⊥

The electric field in the direction perpendicular to the circular contact surface is obtained from 
= −∇E r z V r z( , ) ( , )z z a  as

∫π

σ

σ
= −

⊥

∞
E r V dk ka J kr B k( , 0) 2 sin( ) ( ) ( ),

(61)
z

0
0

0

where B(k) is given by

σ σ σ σ σ σ σ

σ σ σ σ σ σ σ
=







+ 











+ 




.

⊥ ⊥ ⊥

⊥ ⊥ ⊥

( )
( )

B k
kh kh

kh kh
( )

sinh / / cosh /

cosh / / sinh / (62)

b

b

The current =( )j r z, 0z  obeys Ohm’s law given by Eq. (43) and the total current is given by 
∫π= =( )j rdrj r z2 , 0T

a
z0

. The spreading resistance is obtained from − =V RjT0  as

σ σ
=

⊥
R

a C
1
4

1 1 ,
(63)F

and the correction factor is given by

∫
λ

λ
λ λ λ= .

∞
C d J B asin( ) ( ) ( / )

(64)F
0

1

A correction to Eq. (63) can be obtained from Eq. (45) using δ= +ˆ ˆf k ka f k( ) sin( ) ( ), where δf̂ k( ) can be 
numerically calculated from Eqs. (40)–(42) by substituting B(k) defined by Eq. (62). B(k) thus defined can be also 
found from Eq. (26) by substituting C k( )

B
1
( )  and C k( )

B
2
( )  for C k( )

A
1
( )  and C k( )

A
2
( ) , respectively. This is the reason 

behind the use of Eqs. (40)–(42) with Eq. (62).
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