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Abstract: Production of exopolysaccharides (EPS) is one of the unique features of Lactobacillus genus.
EPS not only have many physiological roles such as in stress tolerance, quorum sensing and biofilm
formation, but also have numerous applications in the food and pharmaceutical industries. In this
study, we identified and compared EPS biosynthesis gene clusters in 106 sequenced Lactobacillus
genomes representing 27 species. Of the 146 identified clusters, only 41 showed the typical generic
organization of genes as reported earlier. Hierarchical clustering showed highly varied nature of the
clusters in terms of the gene composition; nonetheless, habitat-wise grouping was observed for the
gene clusters from host-adapted and nomadic strains. Of the core genes required for EPS biosynthesis,
epsA, B, C, D and E showed higher conservation, whereas gt, wzx and wzy showed high variability in
terms of the number and composition of the protein families. Analysis of the distribution pattern
of the protein families indicated a higher proportion of mutually exclusive families in clusters from
host-adapted and nomadic strains, whereas those from the free-living group had very few unique
families. Taken together, this analysis highlights high variability in the EPS gene clusters amongst
Lactobacillus with some of their properties correlated to the habitats.

Keywords: heteropolysaccharides; Wzy-dependent pathway; PATRIC; lactic acid bacteria; ecological
niche; hierarchical clustering

1. Introduction

Lactobacillus represents one of the most astonishing genera of bacteria. Members of this genus are
associated with many fermented food products, are considered to be probiotic offering numerous health
benefits to the host, have industrial applications for the production of chemicals such as lactic acid and
have GRAS (generally recognized as safe) status [1,2]. Many of these useful properties and applications
of lactobacilli are because of their peculiar features including production of exopolysaccharides (EPS),
lactic acid, short chain fatty acids and antibacterial peptides, and ability to tolerate low pH and bile
and to attach to the mammalian intestinal epithelial cells [3]. Thus, understanding the biochemical and
genetic basis of these processes is important for further exploitation of these bacteria.

Numerous studies have reported the production of EPS by lactobacilli [4–9]. While the exact
physiological function of EPS is not clearly understood, they appear to be involved in resistance
towards various environmental stresses such as desiccation, bacteriophages, toxic compounds like
metal ions, antibiotics, hydrolyzing enzymes, bile salt, high salt concentrations and varying pH [10–13].
In addition, EPS are involved in the attachment of lactobacilli to the intestinal cells in the host,
disallowing the attachment of competing pathogenic bacteria to the host cells and promoting the
growth of beneficial bacteria [14,15]. EPS are also an important component of biofilms produced
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by lactobacilli, which assist in keeping the bacterial cells in close proximity with each other further
helping in horizontal gene transfer and developing synergistic microconsortia [10,16]. Considering all
these functions of the EPS, mostly associated with the environmental interactions of lactobacilli, the
properties of enzymes involved in their biosynthesis and their regulatory mechanisms are likely to be
correlated to the environment where the producer lactobacilli are found.

EPS produced by lactobacilli also have technically useful properties and biological activities.
In dairy products, EPS have a direct influence on the texture and rheological properties [17,18].
Many of the EPS also display immunomodulatory, antimicrobial, antioxidant, antibiofilm, antitumor,
flocculating and emulsifying activities [19–22]. EPS also find food and cosmetic-related as well as
clinical applications [23,24].

The EPS produced by Lactobacillus strains include both homo- and heteropolysaccharides.
Biosynthesis of the former requires fewer enzymes, whereas that of the latter occurring via the
Wzy-dependent pathway is conferred by gene clusters encoding the enzymes and other proteins
involved in the assembly and transport of these polymers as well as the regulation of this process [25].
Gene organization and functional properties of the EPS gene clusters have been studied in some
lactobacilli, such as L. delbreuckii [4], L. helveticus [26], L. johnsonii [8,10,27], L. paraplantarum [28], L.
plantarum [29–31] and L. rhamnosus [6,32]. These studies have highlighted some common features of EPS
gene clusters in Lactobacillus such as the presence of the regulatory genes on the 5’end, polymerization
and export-related genes on the 3’end and glycosyltransferase (gt) genes at the center of the cluster
(reviewed by Zeidan et al., 2017) [24]. Many differences in the EPS gene clusters of various species are
also reported. Some species such as L. johnsonii and L. helveticus harbor a single cluster [8,10,26,27],
whereas few species such as L. plantarum and L. paraplantarum have multiple clusters [28–31]. At the
5’end, the first five genes of the clusters including a transcriptional regulator, epsA; a phosphoregulatory
module, epsBCD; and a priming glycosyltransferase, epsE are usually conserved and present in a
specific order often referred to as epsABCDE stretch in generic EPS clusters [8,10,24,26,27]. In a few
other clusters, only a few of these five genes are conserved at the same location, whereas in some
clusters, the organization of genes in the clusters is mosaic [6]. Furthermore, EPS clusters were also
found to be one of the most variable regions across the genomes of 54 strains of L. plantarum [33].
Collectively, these facts indicate a great extent of variation in the gene composition and organization of
Lactobacillus EPS clusters.

Complete genome sequences for numerous Lactobacillus strains have recently become available.
Considering this, and that the above-mentioned studies highlight some commonalities and discrepancies
in the EPS gene clusters across various lactobacilli, as well as the importance of EPS, a comprehensive
understanding of the diversity in the EPS clusters in Lactobacillus becomes important and feasible.
In this study, we have analyzed the composition and diversity of EPS gene clusters in 106 strains of
Lactobacillus for which complete genome sequences were available in the public databases.

2. Materials and Methods

Genome sequence and the information on the open reading frames in these genomes were obtained
from the NCBI and PATRIC databases. Initially, protein sequences encoded by highly conserved genes
reported in the characterized EPS clusters in Lactobacillus were used as a query for tblastn against
the genome of the selected Lactobacillus strains for which the complete genome was available on
the NCBI as well as PATRIC databases. The query sequences used include transcriptional regulator
(EpsA), tyrosine kinase modulator (EpsB), tyrosine kinase (EpsC), phosphotyrosine phosphatase (EpsD)
and priming glycosyltransferase (EpsE) and from L. delbrueckii subsp bulgaricus Lfi5, L. rhamnosus
GG, L. johnsonii FI9785 and L. plantarum WCFS1. The genomic environments of the obtained hits
were manually evaluated for the presence of EPS biosynthesis-related genes. This was achieved by
evaluating the annotation of the adjoining genes in both the databases as well as subjecting them to
BLAST (identity > 30%, E-value < 1e-15). This resulted in identification of the whole gene clusters.
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The nucleotide sequences of the identified gene clusters were downloaded from the NCBI database
in Genbank format and used for building the gene cluster using EasyFig program [34]. Information on
the families (PLFam and PGFam) of the proteins predicted from the gene sequences was obtained from
the PATRIC database, whereas that on the habitats of various Lactobacillus species was from Duar et al.,
2017 [35]. Glycosyltransferase (GT) proteins were classified with the help of dbCAN2 server [36]. Of
the three search tools implemented in this strategy, HMMER search against dbCAN HMM database,
DIAMOND search against the CAZy database and Hotpep search against the conserved CAZyme
short peptide sequence database, the classification of gts was considered valid if consistent across
at least two tools [36]. Prediction of the transmembrane domains was carried out using TMHMM
Server v. 2.0 [37].

All-against-all bi-directional BLASTP was carried out on the whole set of putative proteins
with cut-off of at least 50% identity and 50% query coverage. The blast output was used to group
the proteins based on their function using Markov clustering (MCL) in the mclblastine v12-0678
pipeline [38]. Further hierarchical clustering was computed in TM4 MeV Suite, version 4.9 based on
the presence/absence of the protein families in the EPS clusters [39]. An HCL tree was visualized in
Interactive Tree of life [40] by importing a Newick tree from TM4 MeV Suite [39].

3. Results and Discussion

3.1. Number of Clusters and Gene Composition

With the aim of understanding the diversity in the gene clusters encoding the proteins required
for EPS biosynthesis in several lactobacilli genomes, we identified EPS gene clusters in 100 sequenced
Lactobacillus genomes. Further, their gene composition and diversity in the putative proteins encoded
by these genes were analyzed by a homology-based approach. Lactobacillus species are broadly
classified into three main lifestyles, viz., host-adapted, nomadic and free-living based on factors such
as frequency of isolation from specific sources, metabolic characteristics and stress resistance [35].
The genomic features of lactobacilli such as genome size, GC content and the presence and absence
of certain genes have been shown to be correlated to these habitats [35]. Considering this and the
established physiological roles of the EPS in the environmental interactions, it was hypothesized that
gene composition of the EPS clusters is correlated with the above-mentioned lifestyles. To test this,
an attempt was also made to analyze the correlation of the organization of an EPS cluster as well as
the gene composition of the clusters with these lifestyles. These results are discussed in the following
sections wherever relevant.

A total of 146 EPS gene clusters were detected in the genomes of 100 of the total 106 Lactobacillus
strains examined belonging to 27 species (Figure S1, Tables S1 and S2). Only three EPS gene clusters
from L. plantarum 16, L. buchneri CD034 and L. buchneri NRRL B-30929 were found to be located on
the plasmids, whereas the rest were encoded by the chromosomal genome. The number of clusters in
the strains were one (65 strains), two (25 strains), three (9 strains) or four (1 strain). EPS biosynthesis,
transport and regulation in LAB have been shown to require a set of a few essential genes, which
are usually present within the EPS clusters [24]. The essential genes in the clusters include priming
glycosyltransferase (epsE), glycosyltransferase (gt), flippase (wzx), polysaccharide polymerase (wzy),
tyrosine kinase (epsC) and tyrosine kinase modulator (epsB). Other genes which are often present
as a part of some of the EPS clusters but which are either considered to be dispensable or were
reported earlier to be present elsewhere in the genome include LytR transcriptional regulator (epsA),
phosphotyrosine phosphatase (epsD), genes involved in the generation of activated sugar precursors
and acetyl- and pyruvyl transferase involved in the chemical decoration of the EPS [24]. Detailed
analysis of only the essential genes as mentioned above was further conducted.

The GC contents of gt, wzx and wzy were relatively lower whereas those of epsA, B, C, D and E
were similar to the whole genome GC content (Figure S2). This is consistent with earlier studies in
Streptococcus pneumoniae [41], wherein it was shown that the GC content of epsA, B, C and D was similar
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to that of the whole genome and that of wzx and wzy was much lower. Several EPS clusters were also
found to have transposable elements. Amongst all the genes, the highest proportion of wzx genes
(9.5%) had the transpose element present within or adjoining them. These proportions were 3.7–6.7%
for epsE, gt, wzy and the precursor biosynthesis genes and 1% for epsD. This observation along with
the lower GC content suggests that at least wzx, wzy and gt might have been acquired by horizontal
gene transfer (HGT). This speculation is also in agreement with the earlier studies on S. pneumoniae,
L. delbreuckii and S. thermophilus, as well as in gram-negative bacteria [41,42].

Some of the clusters did not have all the above-mentioned genes which are essential for EPS
biosynthesis. In such incomplete clusters, polysaccharide polymerase (wzy) was the most common
missing gene or pseudogene (absent in 42 clusters), followed by phosphoregulatory module (epsB and
C or both, absent in 33 clusters), flippase (wzx, absent in 18 clusters) and priming glycosyltransferase
(epsE, absent in 10 clusters) (Table 1). In the strains having multiple clusters, such lack of the crucial
genes is likely to be compensated by the genes from the other clusters. Such dependency of the
EPS clusters on one another was demonstrated in L. plantarum WCFS1. Deletion of one cluster
caused reduction in the molecular weight of the EPS, whereas knockout of others resulted either in
changed monosaccharide composition or reduced EPS yield [31]. Notably, two of these four clusters
in L. plantarum WCFS1 were incomplete. In the present study, some of strains having incomplete
clusters also had multiple clusters. Thus, it is possible that this incompleteness in some clusters is
complemented by the other clusters in the same strain.
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Table 1. Details of the essential genes in the Lactobacillus EPS gene clusters and families of the encoded putative proteins.

Genes Abbreviation
Total

Number of
Genes

Number of
PLFams

Number of
Clusters not

Having the Gene

Number of
PGFams

Proteins:
PLFams

PLFams:
PGFams

% of
Singleton
Families #

Number of Clusters
Having Multicopy

Genes

For Clusters Having >2
Copies of Gene, Average

Number of Those

Genes Families #

1 LytR-transcriptional
regulator epsA 78 8 74 2 9.8 4 12.5 5 2.2 1

2 Tyrosine kinase
modulator epsB 130 29 25 15 4.4 1.9 37.9 9 2 2

3 Tyrosine kinase epsC 125 25 30 10 5 2.5 28 8 2 2

4 Phosphotyrosine
phosphatase epsD 97 11 49 1 8.8 11 9.1 0 - -

5 Priming
glycosyltransferase epsE 140 24 10 8 5.8 3 33.3 4 2 1.8

6 Glycosyltransferase gt 670 343 0 246 1.9 1.4 66.6 140 4.6 4.3

7 Flippase wzx 147 39 18 16 3.8 2.4 46.2 17 2.17 2

8 Polysaccharide
polymerase wzy 103 50 42 42 2 1.2 73.8 2 2 2

# PGFams were considered for GT and Wzy, while PLFams were considered for all other proteins.
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3.2. Organization of Genes in the Clusters

In the most common form of organization of the genes in the EPS clusters, a stretch of the first
five genes on the 5’end, epsABCDE, is highly conserved and such organization has been referred to
as “generic” [24,43,44]. In our study, we found many clusters wherein epsABCDE stretch was absent,
either because of absence of some genes from this stretch or placement of the one or more of these five
genes somewhere else in the EPS cluster. We named such clusters “non-generic”. In this way, only 41
of the total 146 clusters were found to be generic (Figure 1). None of the clusters from the nomadic
were generic which was because of the complete absence of epsA in them. On the other hand, a large
proportion (65%) of the clusters from host-adapted group was generic.
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Figure 1. Examples of generic and non-generic EPS gene clusters (A) and their proportions in various
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database. A negative sign in parentheses at the end of strain names indicates that the clusters were
encoded by the negative strand.

In general, in the generic clusters, the epsABCDE region was followed by several gt genes and
subsequently by wzx and wzy (Figure 1). The pattern of organization of genes within each non-generic
cluster appeared to be mosaic and was also highly variable amongst these non-generic clusters. The
only common factor in all the clusters was that, wherever present, epsB and C were always in tandem
with each other (Table S2). Considering such high variability observed in the EPS clusters across the
strains and to get insights into the similarity of the EPS clusters with each other in terms of the gene
content, all-against-all BLASTP was performed for all the coding sequences present in the EPS gene
clusters followed by Markov clustering (MCL) analysis which depicted the presence of 233 families
representing all the genes in the EPS gene clusters (data not shown). This analysis showed that some
protein families were common across many EPS clusters, whereas a few others were specific to certain
EPS clusters (Figure 2A). HCL analysis showed the presence of eight distinct groups of EPS clusters in
the tree (Figure 2B,C). The majority of the EPS clusters from the host-adapted and nomadic habitats
were found in the mutually exclusive groups, 1 to 2 and 3 to 7, respectively. On the other hand, EPS
clusters from the free-living habitats, in spite of being small in numbers (8) were found across four
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groups, viz., 1, 2, 3 and 6, which were shared with the clusters from host-adapted and nomadic strains.
These observations suggest the EPS clusters from the host-adapted and nomadic habitats are distinct
from each other in terms of the gene content, whereas some of the clusters from the free living strains
are similar to host adapted, while few others are similar to the nomadic strains. This speculation is
consistent with the fact that free-living lactobacilli are considered to be ancestral and are phyletically
broadly distributed, whereas host-adapted and nomadic species are considered to have evolved from
the free-living ancestors [35]. L. plantarum represented the most diverse species in terms of having its
EPS clusters present across the highest number of groups (five groups, 3 to 7). This finding is consistent
with the earlier report stating that EPS clusters are the most varied regions amongst the genomes of
several L. plantarum strains [33].

3.3. Variation in the Number of Protein Families across Various Gene Functionalities

To get insights into the variations in each of the essential genes in the EPS clusters across various
EPS gene clusters, families of the putative proteins encoded by them were analyzed by the PATtyFams
approach [45]. In this approach, functions are assigned to the putative proteins encoded by genes
based on the k-mer signatures [45]. Within a genus, proteins with similar functions are pooled into
a single local genus-level family (PLFam) and similar pooling across genera gives rise to the global
families (PGFams). Thus, PLFams represent subtypes of PGFams and both have been used to get
insights into diversity in the putative proteins encoded by bacterial genomes [46–49]. The classification
of the putative proteins encoded by the identified EPS clusters into these families already available at
PATRIC database was used to decipher the closeness of the homologous genes.

GT, Wzx and Wzy had the highest number of PLFams as well as PGFams, the highest proportion
of singleton families and the lowest average number of proteins per family (Table 1). On the other
hand, EpsA, EpsD and EpsE had the lowest total number of families as well as proportion of singleton
families and highest number of proteins per family. Similar values were observed for EpsB and C.
These trends indicate low variation in EpsA, B, C, D and E and high diversity in GT, Wzx and Wzy
across Lactobacillus EPS clusters. These observations are consistent with earlier reports in which it has
been shown that genes encoding EpsA, B, C, D and E are conserved not only in Lactobacillus, but across
various LAB genera [24]. The high degree of variation observed in GT, Wzx and Wzy is also consistent
with the studies on gram-positive bacteria such as S. pneuminae and Oenococcus oeni and gram-negative
bacteria such as Acinetobacter, Salmonella and Yersinia [41,50,51]. Indeed, in many of these bacteria, GT,
Wzx and Wzy were found to be serotype-specific proteins in contrast to the other proteins encoded by
the polysaccharide biosynthesis clusters.

Some clusters also had more than one copy of some genes except epsD which was always present
in one copy or absent in some clusters (Table 1). Most of such multi-copy genes within a cluster, except
epsA, belonged to the different protein families as indicated by the ratio of number of such multicopy
gene within a cluster: protein family, which was in the range of 1-1.3 (Table 1). This possibly indicates
non-redundant function of the multi-copy genes in EPS gene clusters. In the following sections, we
discuss unique results observed for each of the putative proteins encoded by the EPS clusters.
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3.4. EpsA

Two largest PLFams of EpsA (PLF_1578_00001102 and PLF_1578_00003813) were also most widely
distributed across highest number of species (Table S2). EPS clusters of all the strains of any given
species had gene encoding EpsA belonging to the same PLFam, except L. delbreuckii, in which two
families were found. None of the EPS clusters in L. plantarum had epsA associated with them. Highly
diverse molecular functions have till now been ascribed to EpsA. In several gram-positive bacteria,
EpsA has been shown to be required for the attachment of capsular polysaccharides (CPS) to the cell
wall [52,53]. In a few others, it has been shown as a positive regulator of EPS biosynthesis [54–56] and
in some cases as a transcriptional attenuator [57]. The presence of epsA has been shown to be highly
essential for EPS production in L. johnsonii [58]. On the other hand, in S. pneumoniae, the deletion of
cps2A (similar to Lactobacillus epsA) caused only the lowering of CPS production [59]. Considering
this, the lack of epsA in L. plantarum clusters remains intriguing. In L. plantarum WCFS1, a related ORF,
lp_1000, similar to epsA was present at a distant location from EPS clusters and has been shown to
be involved in biofilm formation [60,61]. It is possible that the protein encoded by this gene might
function as EpsA in L. plantarum.

3.5. Phosphoregulatory Module: EpsB, C and D

Of the 146 clusters, 95 contained all the three genes (epsB, C and D) of the phosphoregulatory
module, 21 lacked all three genes, 17 lacked only epsD, 2 lacked only epsC and 11 clusters contained
only one of these three genes. Absence of epsD across relatively larger proportion of EPS gene
clusters (Table 1) supports the earlier observation in S. thermophilus that epsD is dispensable for EPS
biosynthesis [62]. It was also shown that epsD mutants of Bacillus subtilis had similar EPS production
as that of wild-type and the phosphorylated state of the tyrosine kinase (epsC) was considered to
be regulated by proteolysis rather than dephosphorylation [63]. Furthermore, the presence of only
one PGFam and a very low number of PLFam across all the analyzed Lactobacillus EPS clusters, the
presence of only one PLFam in each species except L. plantarum and the absence of multiple copies of
epsD in each cluster points towards highly conserved nature of epsD across Lactobacillus EPS clusters
analyzed in the present study.

For EpsB and EpsC, the highest numbers of PLFams as well as the biggest PLFams
(PLF_1578_00005921 and PLF_1578_00008784, respectively) were found in L. plantarum (Table S2)
However, the most widely distributed PLFams of EpsB and EpsC (PLF_1578_00003923 and
PLF_1578_00002999, respectively) (found across several species) did not have their members in
L. plantarum. Similarly, PGFams of the majority of the genes of EpsB, C and D were mutually exclusive
between L. plantarum and other species (Figure 3). This fact probably suggests a unique nature of the
phosporegulatory module and the associated mechanism of EPS regulation in L. plantarum. Based on
some of earlier studies, EpsA and the phosphoregulatory proteins appear to modulate each other’s
activities. In S. agalactiae, CpsC (similar to Lactobacillus EpsB) was shown to physically interact with
and regulate the activity of CpsA (similar to Lactobacillus EpsA) of attaching the polysaccharide to the
cell wall [64]. Furthermore, in S. pneumoniae, a decreased level of tyrosine-phosphorylated Cps2D
(similar to Lactobacillus EpsC) was observed upon deletion of cps2A [59]. These observations indicate
that physical crosstalks of EpsA with the phosphoregulatory module are possible in Lactobacillus also.
This might explain the unique nature of EpsB and C in L. plantarum, wherein epsA was completely
absent from the EPS clusters.
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3.6. EpsE

L. plantarum, L. casei and L. fermentum were the most diverse species in terms of having the highest
number of PLFams of EpsE. While the majority of the EpsE had the size 209–241 amino acids, a different
type of EpsE having 466 amino acids and belonging to PLF_1578_00002511 was found in 10 clusters
from L. paracasei, L. rhamnosus and L. casei (Table S2). EpsE of the longer length (455 amino acids) has
also been reported earlier in S. salivarius [65]. However, this protein showed very low (<30%) sequence
identity with the above-mentioned Lactobacillus EpsE (data not shown).

Very few EpsE proteins have been functionally characterized in Lactobacillus. EpsE from
L. rhamnosus GG has been shown to be a galactosyl-1-P transferase [6]. In the present study, this
protein was found to belong to the PLF_1578_00034667, which was the fourth largest and the most
widespread PLFam with 14 members found across eight species (Table S2). Similarly, EpsE from
L. johnsonii FI9785 has been characterized as a galactosyltransferase [8]. We found that this protein
belonged to PLF_1578_00003576, which was the second largest as well as the second most widely
distributed PLFam. Only one EpsE has till now been characterized as a glucosyltransferase in
Lactobacillus [26]. In the current dataset, PLFam of this EpsE was the fifth largest with 10 members of
which nine were restricted to L. delbreuckii. Based on these observations, it can be surmised that priming
galactosyltransferase might be dominant over the glucosyltransferase in Lactobacillus EPS clusters.
However, EpsE proteins with considerable sequence homology were shown to have different substrate
specificities [24], suggesting that the functional characterization of diverse EpsE in Lactobacillus would
be required to conclude anything about the substrate specificity determining factors.

3.7. GTs

GTs represented the largest and most diverse group of proteins encoded by the Lactobacillus
EPS gene clusters and belonged to numerous PLFams, many of which were singletons. Considering
this, we used the dbCAN2 server, which classifies GTs into several classes based on amino acid
sequence similarity linked to the specificity of enzyme and its 3D structure information [66]. In
this way, of the 670 GTs, 469 could be classified into 8 CAZy families with number of members
ranging from 1 to 232, whereas 200 could not be annotated to any family. GT2 and GT4 were the
largest families accounting together for more than 60% of all the GT proteins. Interestingly, GT14
and GT32 were mutually exclusive in all the clusters except the one found in L. salivarius UCC118
(Figure 4). Furthermore, genes for the GT14 family were absent in all-but-one clusters from the nomadic
group. It is challenging to speculate on the reasons for this mutual exclusion as only one GT32 has
been functionally characterized in gram-positive bacteria [67], whereas no bacterial GT14 have been
characterized till date to the best of our knowledge. The characterized GT32 from S. pneumoniae was
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shown to transfer α-N-acetylglucosamine as well as α-glucose [67]. On the other hand, enzymes
belonging to GT14 from the other organisms are of an inverting type with N-acetylglucosamine as
one of the most common sugars transferred by both the families [66]. Based on these observations,
it is tempting to speculate that Lactobacillus EPS with N-acetylglucosamine can have it either in α or
β linkage but not both. However, GTs are known to be highly promiscuous in nature [24], which in
addition to very scarce studies on their functional characterization in LAB makes it difficult to predict
their substrate specificity.Microorganisms 2019, 7, x FOR PEER REVIEW 6 of 21 
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Figure 4. The distribution of various families of GTs encoded by the Lactobacillus EPS gene clusters
identified using the dbCAN2 web server [36]. Each row represents a single EPS gene cluster and each
column a family. The lightest shade across the columns indicates the presence of a single member
of that family in that cluster while darker shades denote multiple members. The unknown column
indicates GTs for which no information could be obtained using dbCAN2 database.
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3.8. Wzx and Wzy

Seventeen EPS clusters contained multiple copies of genes encoding Wzx (Table 1). This was the
second highest number of multi-copy genes after gt. Sixteen of these clusters belonged to L. plantarum
and half of them also had multiple copies of phosphoregulatory module, gt and precursor biosynthesis
genes. This probably suggests that such clusters might be responsible for the biosynthesis of two
types of EPS. All Wzx and Wzy proteins were predicted to be transmembrane proteins with 10 to 14
(mode 14) and 8 to 12 (mode 10) transmembrane helices, respectively (Figure 5). These numbers are
in slight disagreement with the earlier reported numbers of 12 and 10–14 for Pseudomonas and other
gram-negative bacteria [68] pointing towards the possibly unique nature of the Lactobacillus Wzx and
Wzy. For more than 90% of both Wzx and Wzy proteins, N-terminal was predicted to be present inside
the cytoplasm. Of these, the majority of Wzx and Wzy had their C-terminals inside and outside of
the cytoplasm, respectively. A lack in the knowledge about the structure–function relationships of
the Wzx and Wzy with the EPS biosynthesis in gram-positive bacteria along with high variation in
these proteins within Lactobacillus limits our scope of concluding anything about these observations.
No correlation of the number of transmembrane helices in Wzx and Wzy with the habitats or type of
clusters (generic or non-generic) was observed (data not shown).
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Figure 5. Number of transmembrane helices predicted using the TMHMM server v. 2.0 [37] to be
present in the putative Wzx and Wzy proteins encoded by the Lactobacillus EPS gene clusters.

3.9. Precursor Biosynthesis

Some of the clusters also contained genes involved in the biosynthesis of the nucleotide sugar
precursors. Within this category, UDP-galactopyranose mutase was the most common gene found
across 66 EPS gene cluster (Figure 6). This is consistent with the occurrence of galactofuranose in many
Lactobacillus EPS [13,24,69].

UDP-glucose 4-epimerase (GalE) was the next most abundant precursor biosynthesis
gene found across 54 EPS clusters. GalE has been shown to interconvert either hexoses
(glucose/galactose) or N-acetylhexosamines (N-acetylglucosamine/N-acetylgalactosamine) or both [70].
GalE from L. plantarum WCFS1 (NP_784866) belongs to the phylogenetic cluster of GalE which
prefers N-acetylhexosamine as the substrate [70]. We found that NP_784866 belongs to one
(PLF_1578_00057321) of the two largest families of GalE which had almost all its members limited
to L. plantarum EPS clusters. Thus, the presence of N-acetylglucosamine in the L. plantarum WCFS1
EPS [31], which is likely because of NP_784866, is possibly conserved across other L. plantarum
EPS. While GalE was encoded by only one EPS cluster from the host-adapted group, the product
of the similar enzyme encoded by the housekeeping gene can be used for the incorporation of the
corresponding sugar in EPS (see below).
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Figure 6. The distribution of the most abundant sugar nucleotide precursor biosynthesis
genes in the EPS gene clusters in Lactobacillus species from various habitats. Other precursor
biosynthesis genes detected in the clusters (and their numbers) were UTP-glucose-1-phosphate
uridylyltransferase (6), UDP-glucose 6-dehydrogenase (3), UDP-N-acetylglucosamine 4-epimerase (2),
UDP-phosphate galactose phosphotransferase (1), galactofuransyltransferase (1), mannose-1-phosphate
guanylyltransferase (1), UDP-N-acetylglucosamine 4,6-dehydratase (1), phosphomannomutase
(1), 4-keto-6-deoxy-N-acetyl-D-hexosaminyl-(lipid carrier) aminotransferase (1), UDP-glucuronate
4-epimerase (1) and UDP-N-acetylgalactosaminyltransferase (1).

Twenty-four clusters contained a set of all four genes usually referred to as rmlA, B, C and D
required for the biosynthesis of dTDP-L-rhamnose [71]. These genes encode for glucose-1-phosphate
thymidylyltransferase, dTDP-glucose 4,6-dehydratase, dTDP-4-dehydrorhamnose 3,5-epimerase and
dTDP-4-dehydrorhamnose reductase, respectively. In some cases, rmlABCD operon was not present
within the EPS cluster but downstream from the cluster after a gap of a few unrelated genes (data not
shown). Indeed, it is well known that the genes outside EPS clusters also contribute to the biosynthesis of
activated nucleotide sugar precursors. Six (including N-acetylgalactosamine, galactose and rhamnose)
of about 11 sugars commonly reported in LAB EPS have been estimated to be supplied by the
housekeeping pathways [24]. Thus, while the presence of certain precursor biosynthesis genes in the
EPS cluster indicates the presence of that sugar in the EPS, absence of the genes cannot be taken as an
indicator of absence of that sugar in the EPS.

Genes encoding UDP-N-acetylglucosamine-2-epimerase, which is responsible for the presence
of N-acetyl-mannosamine or N-acetyl-mannosaminuronic acid in the EPS, was found across 24 EPS
clusters. This was an unexpected finding, as very few strains of Lactobacillus have till now been shown
to have these sugars as a constituent of their EPS [24,50].

3.10. Other Genes

Some of the clusters from L. plantarum, including WCFS1, belonging to groups 4, 5 and 6 in
the MCL tree (Figure 2) also had other types of transcriptional regulators annotated to belong to
MarR and AraC families (Table S1). In L. plantarum WCFS1, the MarR family transcription factor
encoded by lp_1230 has been proposed to be involved in the transcription of the immediately upstream
gene, mannose-specific adhesin [72], which was also present in many other EPS clusters. Notably, in
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Sinorhizobium meliloti, ExpG, which is another MarR family transcriptional regulator, as well as an AraC
family transcriptional regulator, has been shown to be involved in the production of EPS [73,74]. In
light of this fact, the possibility of the potential involvement of MarR and AraC family transcription
factors in EPS production by L. plantarum strains remains to be explored.

Some of the clusters also had genes that have been annotated to encode for polysaccharide
biosynthesis proteins, lipopolysaccharide biosynthesis protein and hypothetical proteins. These genes
showed no or very low similarity to the core genes required for EPS biosynthesis (data not shown);
nevertheless, they might have some uncharacterized function in the EPS biosynthesis. As a subset of
these genes also had several transmembrane helices, it is possible that they might encode for novel
Wzx and Wzy and can compensate for the missing well-annotated wzx and wzy in some such clusters.
Apart from Lactobacillus, the presence of such genes, for which the functions in EPS biosynthesis are
not clearly annotated, has also been reported in EPS gene clusters of O. oeni [50].

3.11. Sharing of Protein Families Across Various Habitats

To understand if the distribution of the families of the proteins (PLFams and PGFams) encoded by
EPS clusters in Lactobacillus is dependent on the habitat in which these strains are found, grouping of
the protein families according to the habitats was analyzed. EpsA was found in very few clusters from
nomadic groups and the only family found in nomadic groups was shared with free-living groups. For
EpsB, C and D, families from host-adapted and nomadic groups were completely mutually exclusive,
whereas one and two families of EpsC and EpsD, each from free-living groups, were shared with
nomadic and host-adapted groups, respectively. For EpsE, GT, Wzx and Wzy, many families in the
host-adapted and nomadic groups were mutually exclusive to one another (Figure 7). However, no
family with multiple members was unique to the free-living group. Taken together, the least sharing
of protein families was observed between host-adapted and nomadic strains, whereas families from
free-living strains were highly shared with two other habitats. This observation is consistent with the
MCL analysis showing distinct grouping in the EPS clusters from host-adapted and nomadic habitats
and supports the postulated ancestral nature of lactobacilli from the free-living habitat [35].
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Figure 7. The sharing of PATtyFams families of various proteins encoded by the EPS gene clusters
in Lactobacillus species from various habitats. PLFams were considered for all the proteins except GT
and Wzy for which PGFams were analyzed. Families and gene clusters from unknown habitats were
excluded. Area-proportional Venn diagrams were drawn for families with more than one member using
BioVenn program [75] and area-proportional circles were manually added for the singleton families.
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In B. subtilis, EpsA and B (homologues of Lactobacillus EpsB and C, respectively) have been shown
to function in auto-regulation of the EPS production and this phenomenon has been postulated to be
conserved across other bacteria as well [63]. Since EPS appear to have many roles in the environmental
interactions in lactobacilli, the presence of habitat-specific families, at least in the case of EpsB, C
and D, suggests that the mechanisms of such auto-regulation of the EPS biosynthesis mediated by
these genes might be habitat-specific. Host-adapted lactobacilli live under very high bacterial cell
densities in the vertebrate intestine and also have reduced genome sizes because of the nutrient-rich
environment [35,76]. The nomadic lactobacilli, however, can be found under diverse environments
and thus have higher metabolic flexibility [33,35]. Such varying environmental conditions thus might
demand different ways of regulation of EPS via the phosphoregulatory module, which can account for
the distinct natures of EpsB, C and D in nomadic and host-adapted habitats. While many habitat-specific
families of other proteins such as EpsE, GT, Wzx and Wzy which decide the composition of EPS were
found, no obvious differences in the EPS composition of the lactobacilli belonging to different niches
has been reported. This could be justified by the fact that in B. subtilis, at least EpsE is further regulated
by phosphorylation mediated by EpsA and B [63]. Thus, habitat-specific families of these proteins
might not govern the habitat-specific EPS composition but might be involved in regulating the EPS
biosynthesis based on the environment-specific signals.

4. Conclusions

In summary, this study highlights the immense diversity in the EPS biosynthesis gene clusters in
Lactobacillus. Some of the striking observations regarding habitat-wise properties of the EPS clusters
and genes need further investigation. These include the absence of epsA in nomadic strains, mosaic
arrangement of genes in many clusters and the mutual exclusion of the families of many proteins
such as EpsA, B and C and GT between host-adapted and nomadic habitats. The much higher
variation observed in GT, Wzx and Wzy further demands undertaking a humongous task of functional
characterization of this massively diverse pool of enzymes and correlating their properties with EPS
biosynthesis and regulation.
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