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Abstract: Cellulases have been used to extract bioactive ingredients from medical plants; however,
the poor enzymatic properties of current cellulases significantly limit their application. Two strategies
are expected to address this concern: (1) new cellulase gene mining strategies have been promoted,
optimized, and integrated, thanks to the improvement of gene sequencing, genomic data, and
algorithm optimization, and (2) known cellulases are being modified, thanks to the development
of protein engineering, crystal structure data, and computing power. Here, we focus on mining
strategies and provide a systemic overview of two approaches based on sequencing and function.
Strategies based on protein structure modification, such as introducing disulfide bonds, proline,
salt bridges, N-glycosylation modification, and truncation of loop structures, have already been
summarized. This review discusses four aspects of cellulase-assisted extraction. Initially, cellulase
alone was used to extract bioactive substances, and later, mixed enzyme systems were developed.
Physical methods such as ultrasound, microwave, and high hydrostatic pressure have assisted in
improving extraction efficiency. Cellulase changes the structure of biomolecules during the extraction
process to convert them into effective ingredients with better activity and bioavailability. The
combination of cellulase with other enzymes and physical technologies is a promising strategy for
future extraction applications.
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1. Introduction

Cellulose is a macromolecular polysaccharide linked by glucose via a β-1,4-glycosidic
bond, is insoluble in water and organic solvents, and forms the plant cell wall together
with hemicellulose, pectin, and lignin [1]. Cellulases are a group of enzymes that can
hydrolyze the glycosidic bonds of cellulose to produce glucose, and the members of this
group include exoglucanase, endoglucanase, and β-glucosidase. The synergistic action of
these enzymes can break down cellulose into glucose. Endoglucanase cuts randomly at
the cellulose polysaccharide chain’s internal sites to generate oligosaccharides of various
lengths and new chain ends, exoglucanase acts on the reducing or nonreducing ends
of the cellulose polysaccharide chain to release glucose or cellobiose, and β-glucosidase
hydrolyzes cellobiose to form glucose [2]. Cellulases are already widely used in various
biological industries, including food, wine, animal feed, laundry, pulp, and agriculture.
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In the food industry, cellulase can be used to extract fruit and vegetable juice, produce
nectar and fruit puree, etc. The use of cellulase in the wine industry can decompose starch
and cellulose into sugar and increase the wine yield. Cellulase is also a feed additive,
which can reduce the nutrient loss of feed and promote digestion and absorption. Cellulase
can also be added to washing powder to enhance the performance of detergents, remove
small and fuzzy fibrils on the surface of the fabric, and improve appearance and color
brightness. Cellulase can improve the drainage, beating, and running properties of paper
mills. The mixture and separated components of cellulase, hemicellulose, and pectinase
have potential applications in agriculture, and can be used to control plant diseases and
promote plant growth and development [3]. Due to the continuous consumption of fossil
fuels, the shortage of energy has become a global problem, accompanied by serious envi-
ronmental pollution and global warming. There is therefore an urgent need to develop
alternative energy sources to reduce dependence on fossil fuels and ease environmental
stress. The biochemical conversion of biomass mainly includes three steps: first remove
lignin and hemicellulose, then decompose cellulose into glucose, and finally ferment with
glucose to produce ethanol. Cellulases and other enzymes can be used to transform natural
renewable biomass (such as agricultural and forestry waste) into biofuel [4]. Cellulases can
also be used to extract bioactive ingredients for natural medicines. Traditional methods for
extracting and separating bioactive ingredients, such as decoction, dipping, percolation,
and reflux, all have their shortcomings. Low extraction rate, high impurity content, energy
consumption, and long production cycles directly restrict the development of the phar-
maceutical industry. Alongside the rapid development of modern industrial engineering
technology, novel technologies have been continuously applied to natural medicine produc-
tion to improve extraction efficiency [5]. Enzymes have been used since the mid-1990s to
extract and separate traditional natural medicines. Although enzyme use in the traditional
natural medicine pharmaceutical industry started late, it has since been shown to have
unique advantages and broad application prospects [6]. Cellulases are widely used in
the extraction of natural medicine because they can destroy plant cell walls and facilitate
bioactive ingredient extraction. The catalytic activity of any cellulase depends on its spatial
structure and is often affected by any physical and chemical factors that can lead to denat-
uration and inactivation. Although research on cellulase-assisted extraction technology
has made rapid progress, its focus is mainly on the exploration of process conditions using
existing enzymes. The lack of cellulases with new functional properties has become the
bottleneck in cellulase-assisted extraction of natural active substances. Current research fo-
cuses on finding new and efficient cellulases suitable for economical industrial production.
This review discusses the strategies to obtain novel cellulases based on sequence alignment
and gene function screening, methods to improve cellulases performance through protein
engineering, and the application of cellulase in bioactive substance extraction (Figure 1).
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Figure 1 
  Figure 1. Strategies for obtaining high-performance cellulase and its application in natural
medicine extraction.
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2. Methods to Optimize Cellulase Performance
2.1. Cellulase Gene Mining

The traditional gene mining method is based on culturing environmental samples in a
medium and then selecting a single colony to make a pure culture. The enzyme activity of
the single colony is verified, and the enzyme gene is cloned into a commonly used host for
expression [7]. Since most microorganisms (over 99%) in environmental samples cannot
be obtained using traditional isolation and culture methods, a large amount of genetic
information in the environment is ignored by this approach [8]. With the development of
sequencing technology, metagenomics (the genomic analysis of microorganisms by directly
extracting and cloning DNA from an assemblage of microorganisms, also referred to as
environmental and community genomics) is applied in gene mining to overcome these
shortcomings [9]. At present, there are two main metagenomics methods for finding new
enzyme genes in environmental samples [10] (Table 1).

Table 1. Methods for mining new cellulase-producing strains or cellulase gene fragments.

Gene Source Sample Type Types of Enzymes Method of
Mining Genes Year Reference

Thalassobacillus sp. LY18 saline soil of Yuncheng Salt
Lake, China

alkaline
endoglucanase pure culture 2012 [11]

Bacillus licheniformis
AMF-07 Kerman hot spring cellulase pure culture 2016 [12]

Paenibacillus sp. CKS1 soil cellulase pure culture 2016 [13]
Trichoderma harzianum

LZ117
surface of bryophyte on a

stone in Tibet cellulase pure culture 2019 [14]

unknown source soil endoglucanase
(Cel5A)

functional
metagenomics 2006 [15]

unknown source
biogas plant cellulase

(CelA2, CelA3)
functional

metagenomics 2012 [16]

elephant feces cellulase
(CelA84)

unknown source Ascophyllum nodosum from the
foreshore in Roscoff

cellulase
(CellMM5.1)

functional
metagenomics 2014 [17]

unknown source soil endoglucanase
(Cel5Rα)

functional
metagenomics 2016 [18]

unknown source outflow of a hot spring in
Grensdalur, Iceland cellulase (CelDZ1) shotgun

metagenomics 2016 [19]

unknown source anaerobic beer lees cellulase (cel7482,
cel3623, cel36)

shotgun
metagenomics 2016 [20]

unknown source Black Slug Arion ater from
North Cheshire β-glucosidase shotgun

metagenomics 2017 [21]

unknown source hepatopancreas of a female
Cherax quadricarinatus endoglucanase PCR 1999 [22]

2.1.1. Sequence Alignment-Based Methods

With shotgun metagenomic sequencing, all genes from the total DNA obtained in
environmental samples are sequenced then annotated according to the existing database,
such as Nr, KEGG, and EggNOG [23]. Any novel functional genes with a certain degree of
similarity to existing annotated cellulase genes are expressed by transforming them into
E. coli and then verifying whether they have cellulase activity. This method significantly
improves the efficiency of mining new enzyme genes [24].

There are also PCR-based gene mining methods. First, degenerate primers based on
the conserved regions of amino acid sequences of known cellulase are designed. Then, the
total DNA from the sample is used as a template to perform PCR to obtain target genes
with similarity to the known sequence. These genes are then transformed into E. coli or
other hosts for expression and to verify whether they have cellulase activity [25].
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Chemical synthesis can be also used to synthesize unverified genes in existing databases,
and then functional verification can be performed [26]. Other methods include the transposon-
aided capture method to capture novel plasmid in the total DNA of a sample and designing
primers based on the integron conserved sequences to obtain novel genes from integron-gene
cassettes [27].

2.1.2. Gene Function Screening-Based Methods

Many genes that have been sequenced cannot be accurately annotated due to the
limited specific information in existing databases. Novel gene mining methods based on
gene function do not rely on existing databases and can therefore discover new genes
and/or gene functions. This method needs a metagenomic library to be constructed. The
general process involves digestion of the environment’s total DNA to obtain certain lengths
of DNA fragments, connecting them with a suitable vector, and then transferring them into
a selected host for gene expression and cellulase activity verification [28].

Although some new cellulase genes, such as Cel5A, CelA2, and CelA3, have been
successfully screened this way, it is difficult to meet the rapidly growing industrial demand
due to the high workload and low success rate of library construction. A method based on
metagenomic sequencing and subsequent expression verification can significantly improve
new gene mining efficiency, and the continued development of this technology provides
new ideas for mining novel genes in extreme environments [29].

2.2. Rational Design to Improve Cellulase Thermostability (and Specific Activity)

Enzyme reaction conditions are relatively mild and high temperatures will denature
the enzyme and render it inactive. Bioactive substance extraction is mostly carried out in
higher temperature conditions, which limits enzyme usage to a certain extent. It is therefore
necessary to explore strategies to improve the thermal stability of the enzyme [30]. Com-
mon strategies include enzyme immobilization [31], addition of stabilizers [32], chemical
modification [33,34], and protein engineering [35]. Protein engineering involves modifying
proteins at the molecular level and includes rational design, semirational design, and
irrational evolution [36]. Of these, rational design, with its high efficiency and strong versa-
tility, has attracted more attention from researchers. To improve enzyme thermostability
through rational design it is necessary to analyze the enzyme structure and determine the
regions related to the thermostability. If the selected area is not appropriate, it may damage
the structure after modification, thereby affecting enzyme activity or even reducing the
thermostability. By comparing the structures, thermophilic enzymes were found to be more
rigid than mesophilic enzymes, which may be due to the presence of more hydrogen bonds,
disulfide bonds, salt bridges, or hydrophobic interactions [37,38]. Similarly, in comparisons
of mesophilic and psychrophilic enzymes, it was found that psychrophilic enzymes are
more flexible to allow the easy transformation of substrates at low energies [39]. As the
highly flexible region of the protein is the first to unfold at high temperatures, flexibility can
be used as an indicator to determine potential areas for modifying and improving enzyme
thermal stability. Most current studies use site-directed mutations in flexible regions to
increase protein rigidity and thermal stability [40].

2.2.1. Prediction of Flexible Regions in Cellulase

The flexible regions of proteins can be predicted either through experimental (such
as nuclear magnetic resonance spectroscopy) or bioinformatics methods [41]. With the
advances in computational experimental data acquisition and analysis, algorithm opti-
mization, and computing power, researchers have developed a range of bioinformatics
software to analyze protein structure and predict flexible regions. Some programs used for
predicting protein flexibility are listed in Table 2, and the most common approaches use
molecular dynamics simulation and B-FITTER.
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Table 2. Common methods for predicting flexible regions in proteins.

Method Instructions Way to Obtain

molecular dynamics
simulation

Examine the flexibility of protein at the atomic
level. Gromacs software

B-FITTER
Calculate the B-factor value of all atoms in an

amino acid, and then take the average to obtain the
B-factor value of this residue.

http://www.kofo.mpg.de/en/research/organic-
synthesis

(accessed on 2 July 2021)

FoldUnfold
Calculate the number of interaction forces

involved in each amino acid residue to determine
whether a region is in a folded or unfolded state.

http://bioinfo.protres.ru/ogu/
(accessed on 2 July 2021)

PredyFlexy
Combine B-factor with the movement state of

amino acid residues during molecular dynamics
simulation to analyze.

http://www.dsimb.inserm.fr/dsimb_tools/
predyflexy/

(accessed on 2 July 2021)

FlexPred Use algorithm SVM to predict the flexibility of
residues.

http://flexpred.rit.albany.edu
(accessed on 2 July 2021)

HINGEprot Predict the hinge region of a protein. http://bioinfo3d.cs.tau.ac.il/HingeProt/
(accessed on 2 July 2021)

2.2.2. Methods for Stiffening Flexible Regions

After identifying flexible regions, several strategies can be used to rigidize the region
and improve thermostability. These include the introduction of disulfide bonds, proline, or
salt bridges; N-glycosylation modification; and the truncation of flexible regions of loop
structures (Table 3).

Table 3. Methods for stiffening flexible regions.

Type of
Enzyme Gene Source Influencing

Factor Software Methods to Improve
Thermal Stability Year Reference

cellulase
(TaCel45)

Thielavia
arenaria XZ7

disulfide
bond

Introduction of disulfide
bonds into flexible regions
can stiffen it and improve
protein thermostability.

2018 [42]

endoglucanase
(PvCel5A)

Penicillium
verruculosum proline

RosettaDesign, HotSpot
Wizard, PopMuSiC,

UniProt

Introduction of proline can
reduce the conformational
entropy of main chain and
improve protein thermal

stability.

2019 [43]

1,4-α-glucan
branching

enzyme

C-terminal
flexible area

Shortening the flexible area
can increase its rigidity and

protein thermal stability.

2018 [44]

mannanase
(Man1312)

Bacillus
subtilis B23

N-terminal
flexible area

SWISS-MODE, Protein
Structure Validation
Software, PyMOL23

Swiss-PdbViewer,
POODLE

2016 [45]

alkaline,
mesophilic
endo-1,4-β-
glucanase

Bacillus sp.
strain KSM-64 salt bridge InsightII/Discover

software package

Introduction of salt bridges
can increase protein thermal

stability.
2001 [46]

cellobiohydrolase
(Cel7A)

Trichoderma
reesei

(anamorph
Hypocrea
jecorina)

N-
glycosylation

Glycosylated proteins are
less likely to aggregate and

prevent hinges or links from
being affected and their
thermal stability can be

improved.

2017 [47]

cellulase
(GtCel5)

Gloeophyllum
trabeum CBS

900.73
loop structure

BLAST, GENSCAN Web
Server, SignalP 3.0,

NetNGlyc 1.0 Server
Vector NTI Suite 10.0,

MEGA 4.0

Directed mutations in a
flexible loop can improve
protein thermal stability.

2018 [48]

http://www.kofo.mpg.de/en/research/organic-synthesis
http://www.kofo.mpg.de/en/research/organic-synthesis
http://bioinfo.protres.ru/ogu/
http://www.dsimb.inserm.fr/dsimb_tools/predyflexy/
http://www.dsimb.inserm.fr/dsimb_tools/predyflexy/
http://flexpred.rit.albany.edu
http://bioinfo3d.cs.tau.ac.il/HingeProt/
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The sulfhydryl groups (-SH) in two cysteines can be oxidized to form a disulfide
bond which could increase thermostability by reducing the conformational entropy in
the unfolded state of the protein and increasing the free energy. Introduction of disulfide
bonds into flexible regions can stiffen it and improve protein thermostability [49]. Similarly,
proline introduction is another strategy to improve thermostability based on “entropy
stabilization” [50]. Of the 20 naturally occurring amino acids, proline has the most robust
rigidity, and therefore, during protein unfolding, it will simultaneously reduce the con-
formational entropy of the main chain and increase the thermal stability [51]. Reducing
conformational entropy can also be achieved by truncating the flexible region, which may
also lead to an increase in thermal stability [52,53]. Flexible regions are usually located at
the N- and C-terminal ends of a protein, or in the random coil structure. Several studies
have shown that salt bridges play an essential role in protein thermal stability and that the
numbers of bridges are positively related to thermostability [54]. During protein synthesis,
post-translational modifications are crucial, and different modification processes will have
different effects on proteins. More than half the proteins in nature are glycosylated [55].
Protein glycosylation is where one or more sugar chains are linked to the protein through
covalent interaction. Glycosylation modifications are generally divided into two categories
based on the sugar chain connection site: N- [56] and C-glycosylation [57]. N-glycosylation
modification accounts for over 75% of modifications. Glycosylated proteins are less likely
to aggregate and prevent hinges or links from being affected, and their thermal stability
can be improved. Compared with conventional secondary structures, such as α-helix and
β-sheet, loops contain fewer hydrogen bonds, resulting in a more flexible region. To explore
the relationship between loop structure and protein thermostability, researchers compared
the structures of thermophilic enzymes and mesophilic homologs. Studies indicated that
the loop structure of thermophilic enzymes may be obtained by truncating part of the
loop structure in mesophilic homologs [58]. It was shown that loop length was negatively
correlated with thermal stability [59]. In 1999, Thompson proposed that truncating the loop
structure of a protein would reduce its conformational entropy and increase stability [60].
At present, some studies introduce site-directed mutations into the flexible loop structure
to improve the thermal stability of proteins (Figure 2). 

2 

 

Figure 2 Figure 2. PubMed citation count of cellulase research by year.
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3. Cellulase Use in Extraction of Natural Active Substances

Many plants contain various bioactive components with medicinal value. The key to
scientific research and effective use of these bioactive substances is to develop effective
extraction methods. The limitations of traditional extraction and separation methods, such
as low extraction efficiency, low impurity removal rate, high energy consumption, and long
production cycle, directly restrict pharmaceutical industry development. Solvent extraction
is the most widely used traditional method. However, several components are challenging
to effectively extract this way since some bioactive substances are acidic or alkaline, have
poor solubility, or interact with other bioactive ingredients [61]. Previous studies have
shown that with traditional solvent extraction methods, appropriate addition of acids,
bases, surfactants, enzymes, or other extraction aids can improve extraction efficiency and
increase extracted component solubility. Some impurities can also be removed or reduced,
and preparation stability can be increased [62].

Plant cell walls are dense structures composed of cellulose, hemicellulose, pectin, and
lignin. Most bioactive ingredients in plants exist in cells, with a small amount found in
the intercellular space. Enzymatic extraction selects enzymes with high specificity based
on cell wall composition to directly target the cell wall and destroy its structure. This
method can fully expose, dissolve, or suspend the bioactive ingredients in the solvent,
thereby extracting bioactive ingredients from plant cells. Enzyme-assisted extraction
improves the extraction efficiency, shortens the extraction time, can reduce the destruction
of pharmaceutical ingredients, and is suitable for extracting heat-sensitive and unstable
chemical components. Maintaining enzyme activity requires strict reaction conditions such
as temperature and pH to avoid enzyme inactivation during the extraction process. During
enzyme-assisted extraction, the type and amount of enzyme, extraction temperature, time,
and pH will all have different degrees of influence on extraction efficiency. The ratio of
different enzymes is another important factor when using complex enzymes for extraction.
It is therefore necessary to research and select the appropriate technology and conditions.

3.1. Structural Modification of Bioactive Ingredients Using Cellulase

The poor water solubility, permeability, or stability of some bioactive ingredients
lead to their low bioavailability and poor therapeutic effect, so their application in food
and medicine is limited. Enzymes can be used to transform the structure of bioactive
ingredients while improving physical and chemical properties and bioavailability. For
example, hydrolase can hydrolyze the glycosidic bonds of flavonoid glycosides, and
glycosyltransferase and glycosidase can add sugar groups to flavonoids. A single enzyme,
or the entire microbe, can be used for biocatalytic oxygenation to hydroxylate flavonoids.
The utilization of enzyme modification and promotion of cell wall degradation provides a
new method for extracting natural compounds from plants.

Chang et al. optimized conversion of ginseng saponin glycosides to 20(S)-ginsenoside
Rg 3 using the response surface methodology (RSM) and found that cellulase-12T was the
most efficient at producing 20(S)-ginsenoside Rg 3. The results indicate that white ginseng
extract (WGE) (1.67%) treated with Cellulase-12T (3.67%) for 72 h had 4 times quantity
of 20(S)-ginsenoside Rg 3 compared to commercial white ginseng extract [63]. Winota-
pun et al. developed a method to directly produce Genipin (an iridoid aglycone) from
gardenia fruit relying on cellulases to destroy plant cells and cleave off sugar molecules,
thereby enhancing the release of intracellular iridoids and converting geniposide into
Genipin. Experiments showed that after the crude gardenia fruit was incubated with
cellulase (10 mg/mL) at pH 4 for 24 h at 50 ◦C, in-situ extraction of Genipin with a yield
of 58.83 mg/g could be obtained. Compared to the yield obtained by methods that do
not require enzymes or in situ extraction, this is an increase of 12.38 and 1.72 times [64].
Chen et al. reported a new method to improve flavonoid extraction from ginkgo leaves
using Penicillium decumbens cellulase, a commercial cell wall degrading enzyme with
high transglycosylation activity which results in better extractions than Trichoderma reesei
cellulase and Aspergillus niger pectinase, and can transglycosylate flavonoid aglycones
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into more polar glucosides. Transglycosylation has similar optimal conditions to the
enzyme-assisted extraction for the three main flavonoids in Pseudomonas ginkgo. The
final extraction yield was 28.3 mg/g dry weight (dw), 31% higher than the pre-optimized
conditions and 102% higher than enzyme-free conditions [65]. Palaniyandi et al. combined
high hydrostatic pressure (HHP) and enzymes to develop a simultaneous extraction and
transformation process, to increase the yield of ginsenoside Rd. They found that under
the following conditions; pH 4.8, 45 ◦C, enzyme combination of cellulase (2 U/mL) and
cellobiase (4 U/mL), and at HHP (100 Mpa) for 24 h, the ginsenoside Rd content was
3.47 ± 0.35 mg/g fresh ginseng. This yield is 2.1 times that of the same enzyme treatment
under atmospheric pressure conditions (AP, 0.1 Mpa). This simultaneous extraction and
transformation process can be used to prepare Rd-rich ginseng beverages without using
dangerous organic solvents [66] (Table 4).

Table 4. Structural modification of bioactive components by cellulase during extraction.

Types of Enzymes Physical
Technology Substrate Product Year Reference

cellulase-12T WGE convert ginsenoside Rb1 to Rg3 2009 [63]

cellulase fruit of Gardenia
jasminoides Ellis convert geniposide to genipin 2013 [64]

penicillium,
decumbens, cellulase Ginkgo biloba leaves transglycosylate flavonol

aglycones into glucosides 2011 [65]

cellulase, cellobiase HHP Panax ginseng transform major ginsenosides
into ginsenoside Rd 2015 [66]

3.2. Extracting Bioactive Ingredients Using Cellulase Alone

Cellulase is widely used to degrade the cellulose in the cell wall, thereby destroying
its structure and fully extracting the effective ingredients in the cell. Pan et al. optimized
the enzyme-assisted extraction technology of Dendrobium chrysostom polysaccharides (DCP)
and studied the physical, chemical, and functional properties of DCP-E obtained by enzyme-
assisted extraction and DCP-H obtained by hot water extraction. The best conditions for
DCP-E extraction are pH 5.5, 40 ◦C, cellulase at 10 g/L, extraction time of 3.0 h, and a solid–
liquid ratio of 1:25. Under these conditions, the DCP-E yield is 8.41 g/100 g dw, 1.25 times
that of DCP-H. Compared with DCP-H, DCP-E had a higher purity and cell proliferation
rate and a lower molecular weight and relative viscosity [67]. Liu et al. proposed a new
method for enzyme-assisted extraction of chlorogenic acid from Eucommia ulmoides in an
ionic liquid aqueous medium. Compared to other conventional extraction techniques, this
method provided advantages in terms of yield and efficiency. Scanning electron microscopy
of plant samples showed that cell wall treatment with cellulase in an ionic liquid solution
achieved a higher extraction efficiency by reducing mass transfer barriers [68]. Zhang et al.
used Congo red staining to identify three Angelica endophytes with higher cellulase activity,
of which, No.Lut1201 increased Z-ligustilide extraction 2-fold compared to commercially
available cellulase (Ningxia Sunson) using a cellulase-assisted extraction method. The
cellulase extracted from endophytes enhances cell wall polysaccharide degradation as well
as Z-ligustilide extraction from Radix Angelica sinensis [69]. Cao et al. used a cellulase-
assisted method to extract crude Astragalus polysaccharide (APS) from Astragalus and
analyzed the monosaccharide components of deproteinized APS. Compared with the water
extraction method, the cellulase-assisted extraction increased crude APS yields to 154%
and polysaccharide content to 121%. The monosaccharide composition of the APS was
changed and the galacturonic acid content increased significantly [70]. Park et al. used
Bacillus amylolus DL-3 cellulase to extract reducing sugars from the fruit of Hovenia dulcis,
which increased sugar release and reduced extraction temperature and time. The yield of
reducing sugar was 1.43 times higher with cellulase than without [71].

When using cellulose-rich plant roots, stems, bark, etc. as raw materials, proper use of
cellulase treatment can change the cell wall to varying degrees, such as softening, swelling,
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and collapse. It can improve the permeability of the cell wall, which is conducive to the
dissolution of bioactive ingredients, thereby increasing the yield. Mild cellulase hydrolysis
conditions reduce the difficulty of subsequent solvent extraction, help maintain the original
properties of the bioactive ingredients, and improve the purity (Table 5).

Table 5. Application of cellulase in the extraction of bioactive components.

Type of Enzyme Substrate Product Year Reference

cellulase flos lonicerae chlorogenic acid 2002 [72]
cellulase Eucommia ulmoides Oliv. phenolic compounds 2009 [73]
cellulase Taxus chinensis paclitaxel and related compounds 2009 [74]
cellulase Hypericum perforatum L. naphthodianthrones and pseudohypericin 2012 [75]
cellulase Eucommia ulmoides leaves aucubin 2012 [76]
cellulase Dendrobium chrysotoxum polysaccharides 2015 [67]
cellulase Eucommia ulmoides chlorogenic acid 2016 [68]
cellulase Radix Angelica sinensis Z-ligustilide 2017 [69]
cellulase Astragalus APS 2019 [70]
cellulase Hovenia dulcis reducing sugars 2019 [71]

3.3. Extraction of Bioactive Ingredients Using Complex Enzymes

Extraction methods using complex enzymes (made by mixing different types of en-
zymes such as cellulase, pectinase, and protease, in appropriate ratios) have been recently
used to extract bioactive ingredients from medicinal plants. Research into optimal condi-
tions such as enzyme ratio and quantity, temperature, and pH is generally performed by
orthogonal experiments or RSM based on the optimal conditions of a single enzyme. The
advantage of complex enzyme extraction is that it can simultaneously degrade different
cell wall components and improve extraction efficiency. Its use has been reported in the
extraction of polyphenols, polysaccharides, saponins, and other components. Su et al.,
evaluated the efficiency of different enzymes (protease and cellulase) to extract rosmarinic
acid from Salvia miltiorrhiza leaves using an aqua-enzymatic method. Their results showed
that a mixture of cellulase A and Protamex (1:1, w/w) was effective in extracting rosmarinic
acid (final yield of 28.23 ± 0.41 mg/g) under the following conditions: enzyme loading rate
of 4.49%, water/sample ratio of 25.76 mL/g, 54.3 °C, and extraction time of 2 h [77]. Chen
et al. used RSM and orthogonal experiments to optimize the conditions for extracting APS
with combined enzyme extraction. They found that the best extraction conditions were a
mix of cellulase (1.5%), pectinase (1%), and papain (0.5%) and an extraction time of 94.5 min
at 49.9 °C and pH 5.1. Under these conditions, the APS extraction rate was 3.8%, an increase
of 52% compared to reflux extraction. The combined enzymatic hydrolysis also reduced
the molecular weight of APS, increasing its antioxidant activity [78]. Olivares-Molina et al.,
used two extraction methods, enzymatic (cellulase and α-amylase) and conventional (im-
pregnation), to maximize extraction yields from three brown seaweeds, Lessonia nigrescens
(in two stages of development), Macrocystis pyrifera, and Durvillaea antarctica. The extracts
were evaluated as a natural inhibitor of angiotensin I converting enzyme, and the one
produced by macerating extraction was a less effective inhibitor than that produced by
enzymatic extraction [79]. Zhao et al. optimized enzyme-assisted extraction conditions of
polysaccharides from Lentinus edodes (LEPs) using cellulase, papain, and pectinase at 15, 20,
and 15 g/kg, respectively. They used Box–Behnken design to evaluate and optimize the
impact of extraction conditions and found that the highest polysaccharide yield (15.65%)
occurred under the following conditions: 54 ◦C, pH 5.0, for 93 min with a liquid/material
ratio of 29:1 mL/g [80]. Lei et al., studied the effects of cellulase, pectinase, and xylanase on
the yield of polysaccharides through single-factor experiments and determined the optimal
conditions for extracting polysaccharides from white hyacinth beans. They showed that pH
(p = 0.0599), cellulose (p = 0.0756), and water-to-substance ratio (p = 0.0951) are important
factors for extracting polysaccharides. Other factors affecting polysaccharide yield are
cellulose, pectinase, xylanase, water-to-material ratio, extraction temperature, time, and
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pH. They showed that the optimal conditions for polysaccharide extraction are pH 7.8,
cellulose content of 2.7%, and a water-to-material ratio of 62. Under these conditions,
the polysaccharide yield was 3.23% [81]. Song et al. used enzymes to assist in extracting
functional polysaccharides from Korean ginseng (Panax ginseng Meyer) and studied its
physical, chemical, and biological properties. The polysaccharide extracted with cellulase
and α-amylase contained a higher proportion of pectin polysaccharides with enhanced
immunostimulatory properties [82]. Yasutaka et al. studied the method of extracting
essential oils from menthol with three polysaccharide degrading enzymes (cellulase A
“Amano” 3, cellulase T “Amano” 4, and hemicellulase “Amano” 90). Compared to enzyme-
free extraction, 2 wt% cellulase T and 2 wt% hemicellulase 90 for 3 h increased the amount
of essential oil extracted from 2.2 to 3.0 mL [83]. Nguyen et al. reported a novel targeted
enzyme-assisted method for extracting fucoidan from brown algae involving the combined
use of cellulase and alginate lyase from Sphingomonas sp. at pH 6.0 and 40 ◦C, with the
removal of non-fucoidan polysaccharides by Ca2+ precipitation and ethanol precipitation
of crude fucoidan [84] (Table 6).

Table 6. Application of mixed enzymes (containing cellulase) in the extraction of bioactive ingredients.

Types of Enzymes Substrate Product Year Reference

protease, cellulase Salvia miltiorrhiza rosmarinic acid 2020 [77]
cellulase, pectinase, papain Agaricus blazei Murrill polysaccharides 2013 [85]

cellulase, pectinase licorice glycyrrhizinate 2013 [86]
cellulase, pectase, papain Astragalus membranaceus APS 2015 [78]

cellulase, α-amylase brown seaweeds phlorotannins 2016 [79]
cellulase, papain, pectinase Lentinus edodes polysaccharides 2016 [80]

cellulase, pectinase, xylanase white hyacinth bean polysaccharide 2016 [81]
cellulase, lysozyme microalgae protein 2017 [87]

viscozyme, termamyl, cellulase Panax notoginseng ginsenoside Rb1 and Rg3 2018 [88]
cellulase, α-amylase Panax ginseng Meyer polysaccharides 2018 [82]
proteases, cellulase pumpkin seeds pumpkin seed oil 2019 [89]
cellulase, xylanase Echinacea angustifolia L. polysaccharides and antioxidants 2019 [90]

cellulase, hemicellulase Mentha arvensis L. essential oil 2020 [83]
cellulase, alginate lyase brown seaweeds fucoidans 2020 [84]

3.4. Combination of Enzymes with Other Technologies

Chemat et al. put forward the concept of “green extraction of natural products” in 2012:
“Green Extraction is based on the discovery and design of extraction processes that will
reduce energy consumption, allow the use of alternative solvents and renewable natural
products, and ensure safety and high quality extracts/products”. The green extraction
technologies can complete the extraction in a short time with high reproducibility, reduced
solvent consumption, simplified operations, high purity, elimination of wastewater post-
treatment, and low energy consumption [91]. To further improve the efficiency and quality
of traditional medicine extraction, some studies have combined enzyme-assisted extraction
with green extraction technologies such as membrane separation, ultrasonic extraction,
microwave, and macroporous resin separation.

Radio frequency (RF) is a rapid heating method (3 kHz to 300 MHz) that can deeply
penetrate materials without leaving chemical residues. Jiang et al. proposed a novel RF
heating-assisted enzymatic extraction method and determined that the optimal extraction
conditions were equimolar amounts of cellulase and pectinase at an enzyme concentration
of 1.0%, 50% ethanol, a liquid–solid ratio of 50 mL/g, and pH 4, with a radiofrequency
pretreatment at 40 ◦C for 10 min with an electrode gap of 5 cm. The results show that
the crude product (26.55%) and anthocyanin yields (50.87 mg cyanidin-3-O-glucoside
equivalents/100 g) were higher compared to hot water, acidified ethanol, and enzyme
(pectinase and cellulase) extraction [92].

The principle of the microwave extraction method is to use the huge penetration
of electromagnetic waves (300 MHz to 300 GHz) to increase the internal pressure of the
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cell above its ability to withstand so that the effective ingredients flow out of the cell. In
this extraction process, both the extraction solvent and material have varying degrees
of influence on the dielectric constant and loss factor that affect the extraction efficiency.
Microwave extraction can quickly heat up, shorten extraction time, and improve efficiency,
and it meets environmental protection requirements. Combining enzymatic and microwave
extraction can improve extraction efficiency and rate under mild conditions. Yang et al.,
evaluated the efficiency of microwave-assisted enzyme extraction in extracting corilagin
(CG) and geraniin (GE). They found that after 9 min of treatment with cellulase (3600 U/g)
and irradiation (500 Mpa) at pH 5.2 and 33 ◦C, extraction yields of CG and GE were
increased by 64.01% and 72.95%, achieving 6.79 and 19.82 mg/g, respectively [93].

Ultrasonic extraction uses the mechanical, cavitation, and thermal effects of ultrasonic
vibration to improve the diffusion of solvents and accelerate the dissolution of effective
ingredients. Enzymatic hydrolysis–ultrasonic coupling is an emerging technology with
a high extraction rate and efficiency, saving both time and energy during the auxiliary
extraction of natural active substances, and can effectively increase the extraction rate
of various bioactive substances. Huang et al. optimized a cellulase–ultrasonic-assisted
method to extract flavonoids from laver residue. They found that the optimal extraction
conditions were 51.14% ethanol and a liquid–solid ratio of 20.52 mL/g at a constant 45 ◦C.
An ultrasonic treatment time of 60 min with enzymatic hydrolysis at pH 5.303 for 2 h
using 70 mg/g of enzyme and a crushed mesh size of 0.355–0.85 mm gave a maximum
yield of 14.76% [94]. Hua et al. studied the extraction of Panax notoginseng saponin (PNS)
and its antioxidant activity. PNS was extracted by enzymatic hydrolysis and ultrasonic
treatment. The results showed that the best ultrasonic treatment parameter was a 1:15 ratio
of material to liquid, 70% ethanol, and 35 min ultrasonic time. The optimal conditions for
enzymatic hydrolysis were 60 min at 40 ◦C and pH 4.0 with 2.2% cellulase. Under these
conditions, PNS extraction reached 1.795% [95]. Guo et al. studied the cellulase–ultrasonic
wave method for extracting polysaccharides from Lenzites betulina and optimized extraction
conditions by RSM. They found that after 180 min of reaction in 0.8% cellulase with a pH of
4.5 at 60 ◦C and ultrasonic treatment (300 W) at 45 ◦C for 20 min, the maximum extraction
yield of L. betulina polysaccharides was 13.64 ± 0.09% [96].

HHP-assisted enzyme extraction uses pressure to enhance enzyme activity and im-
prove wall-breaking efficiency. It can also be used to intensify the mass transfer process,
increase the mass transfer rate, promote the dissolution of polysaccharides, and shorten the
extraction time, thereby increasing polysaccharide yields. Compared to other extraction
technologies, its advantages are high extraction efficiency, mild conditions, low cost, and
easy continuous operation. Sunwoo et al. evaluated the effect of HHP combined with
enzymatic hydrolysis to extract ginsenoside from fresh ginseng root (Panax ginseng CA
Myer). Ginseng roots were decomposed by cellulase or β-amylase with HHP (100 MPa)
at 50 ◦C for 12 h, which increased the production of total saponins, panaxadiols, and
metabolites. The total saponin production in HHP-EH with cellulase was 40.2 mg/mL,
which was significantly higher than that with β-amylase (36.1 mg/mL) (p < 0.05) [97].
Palaniyandi et al. used a combination of polysaccharide hydrolase and HHP to extract
ginsenosides rich in ginsenosides Rg1 and Rb1. Their study showed that the combined
treatment of cellulase, amylase, and pectinase for 12 h at a pressure of 100 MPa, pH 4.8,
and 45 ◦C can increase the levels of Rg1 and Rb1 in the extract [98].

It is also possible to combine enzyme-assisted extraction with multiple physical tech-
nologies to further optimize the extraction effect. Li et al. proposed a continuous process
combining ultrasonic, microwave, and enzymatic hydrolysis to assist the extraction of genipin
from Eucommia ulmoides bark. A mixture of dry bark powder and deionized water was irradi-
ated under a 500 W microwave for 10 min and then was incubated in a 0.5 mg/mL cellulase
solution (pH 4.0) for 24 h at 40 ◦C. Ultrasound was performed for 30 min after the addition
of ethanol, and the final genipin yield could reach 1.71 µmol/g [99].

At present, ultrasonic- and microwave-assisted extraction and other ultra-new tech-
nologies are widely used to extract bioactive ingredients. Compared with the traditional
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extraction process, they have unique application characteristics and advantages. On this ba-
sis, combined with the damaging effect of cellulase on the cell wall barrier, the biologically
active ingredients can be dissolved more easily. At present, there are relatively few studies
on extraction methods that combine cellulase-assisted extraction and various physical tech-
nologies. For this type of method, the complex extraction conditions need to be determined
through experiments, and expensive equipment is required. Therefore, it is limited to
laboratory research and lacks in-depth research and transformational applications (Table 7).

Table 7. Combined application of cellulase or mixed enzymes and physical techniques in the extraction of
bioactive ingredients.

Types of Enzymes Physical Technology Substrate Product Year Reference

cellulase microwave Geranium sibiricum Linne CG, GE 2010 [93]
cellulase ultrasonic; microwave Eucommia ulmoides bark Genipin 2015 [99]
cellulase ultrasonic Illicium verum flavonoids 2016 [94]
cellulase ultrasonic Panax notoginseng PNS 2016 [95]
cellulase ultrasonic Lenzites betulina polysaccharides 2019 [96]

cellulase, β-amylase HHP Panax ginseng CA Myer ginsenosides 2014 [97]

cellulose, β-glucosidase pulsed electric field ginseng
ginsenosides,
polyphenols,
flavonoids

2018 [100]

cellulase, amylase,
pectinase HHP ginseng ginsenosides Rg1 and

Rb1 2017 [98]

cellulase, pectinase RF Akebia trifoliata (Thunb.)
Koidz flowers anthocyanins 2020 [92]

4. Conclusions and Outlook

Cellulase-assisted extraction technology provides new ideas and methods for pro-
ducing and researching bioactive medicinal ingredients and can significantly increase
the extraction rate of effective ingredients and overcome the complex procedures and
time consumption of traditional methods. Cellulase was initially usually used alone or
in combination with other enzymes for the pretreatment of plant materials. Using some
appropriate enzymes (including cellulase, hemicellulase, and pectinase) on plant cells can
degrade cellulose, hemicellulose, pectin, and other substances in the cell wall and the inter-
cellular space. It can destroy the dense structure of the cell wall to reduce the mass transfer
resistance of the cell wall and other mass transfer barriers. In general, treating medicinal
materials with complex enzymes is better than cellulase alone. With the advancement of
technology and research, using physical methods, such as ultrasound, microwave, and
HHP, in combination with enzymatic hydrolyses to extract bioactive substances has become
a viable approach. The reaction conditions of enzymatic hydrolysis are mild, which can
maintain the conformation of the natural product without destroying its three-dimensional
structure and biological activity and will also reduce pollutant emissions. Although enzy-
matic hydrolysis also has limitations and requires high industrial application conditions,
the broad application prospects and economic benefits should encourage researchers and
engineers to develop further and optimize related manufacturing techniques.

With the continuing research on cellulase-assisted extraction technology, the limita-
tions of cellulase have gradually emerged. Its high cost restricts the development of this
technology, and finding new cellulases is a way to reduce production costs. Molecular biol-
ogy methods and DNA recombination technology can be used to screen special microbial
strains for enzyme-producing genes (including new enzymes in extreme environmental
conditions) and chemical methods or genetic engineering can be used to modify existing
enzymes to construct specifically engineered bacteria. As enzymes are extremely sensitive
to reaction conditions, it is necessary to determine the optimum temperature, pH, and
reaction time to maximize cellulase activity throughout experiments. The influence of
enzyme concentration, substrate concentration, agonists, and inhibitors should also be
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considered. At the moment, most of the cellulases used are processed by heating and
inactivation and cannot be recovered. This not only increases cost but also has an impact on
extract safety and effectiveness due to cellulase residue. There are some profound problems
that need to be solved: whether the enzyme residue will degrade, precipitate, or form a
complex with the bioactive ingredients in the preparation; whether it will affect the quality
and quantity of the bioactive ingredients; whether it will produce adverse reactions; and
whether it will affect the quality of the preparation or interfere with detection and affect
safety or effectiveness. Research into nonaqueous mediator enzyme reactions and immobi-
lized enzymes is an effective way to improve enzyme stability and potential recycling. In
conclusion, cellulase-assisted extraction technology cannot solve all the problems in the
extraction of bioactive ingredients. As a new technology, it must be applied in conjunction
with other technologies to allow exploitation of its advantages, and we consider that these
issues will become the focus of future research.
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