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Since the rebirth of regulatory (formerly known as suppressor) T cells in the early 1990s, 
research in the field of immune-regulation by various T cell populations has quickly 
gained momentum. While T cells expressing the transcription factor Foxp3 are currently 
in the spotlight, several other T cell populations endowed with potent immunomodu-
latory capacities have been identified in both the CD8+ and CD4+ compartment. The 
fundamental difference between CD4+ and CD8+ T cells in terms of antigen recognition 
suggests non-redundant, and perhaps complementary, functions of regulatory CD4+ 
and CD8+ T cells in immunoregulation. This emphasizes the importance and neces-
sity of continuous research on both subpopulations of regulatory T cells (Tregs) so as 
to decipher their complex physiological relevance and possible synergy. Two distinct 
CD8-expressing Treg populations can be distinguished based on expression of the 
co-stimulatory receptor CD28. Here, we review the literature on these (at least in part) 
thymus-derived CD28low and peripherally induced CD28−CD8+ Tregs.
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inTRODUCTiOn

The prerequisite to the prevention of immunopathologies such as autoimmunity and chronic 
inflammation is the maintenance of an immune homeostasis that relies mainly on intricate 
mechanisms of tolerance to self and innocuous non-self antigens. Through their multifaceted 
actions, regulatory T cells (Tregs) play an unparalleled role in modulating both innate and adaptive 
responses. As such, Tregs prevent autoimmune disorders, control immune reactions at environ-
mental surfaces, modulate anti-infectious responses, and contribute to fetomaternal tolerance 
[reviewed in Ref. (1–3)].

Historically speaking, the first suppressor population to be described were T cells expressing 
the CD8 co-receptor. Indeed, the T cell population identified by Cantor et  al., which act in an 
antigen-specific manner to suppress immune reactions, expressed the surface marker Lyt2, now 
known as CD8α (4, 5). Since then, the field has had its fair share of whirls on the wheel of scientific 
(mis)fortune. The concatenation of events from the downfall of suppressor T cells to its rebirth (or 

Abbreviations: AIRE, autoimmune regulator; APC, antigen-presenting cells; APECED, autoimmune polyendocrinopathy 
candidiasis ectodermal dystrophy; APS, autoimmune polyglandular syndrome; EAE, experimental autoimmune encephalo-
myelitis; Foxp3, forkhead/winged helix transcription factor; GFP, green fluorescent protein; IFN-γ, interferon-γ; IPEX, immune 
dysregulation polyendocrinopathy enteropathy X linked; ILT, immunoglobulin-like transcript; RAG, recombinase activating 
gene; SCID, severe combined immunodeficiency; TGF-β, transforming growth factor β.
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rebranding) as Tregs have extensively been reviewed elsewhere 
(6–8) and will not be discussed here.

The advent of molecular immunology in the postsuppressor 
era unequivocally established the T cell population expressing the 
forkhead/winged helix transcription factor Foxp3 as a key player 
in the fine regulation of immune responses [reviewed in Ref. (9)]. 
Indeed, in mice, invalidating mutations in the Foxp3 gene or spe-
cific ablation of Foxp3+ T cells lead to the development of a fatal 
lymphoproliferative disorder (10–13) and humans with mutations 
in the FOXP3 gene suffer from the lethal immune-dysregulation 
polyendocrinopathy enteropathy X linked syndrome (14, 15). In 
parallel, several other regulatory CD4+ and CD8+ subsets have 
been identified and characterized in both mice and humans 
(16–20). Distinct Treg (sub)populations differ in their origin, 
development, and mechanisms of action which in fine define their 
physiological role. As such, determining the specific function of a 
given Treg population mandates extensive research to identify the 
different molecular and cellular factors that govern its existence. 
We and others have contributed to unveil some key features of 
the CD8-expressing Treg population that is characterized by the 
expression of low levels of the co-stimulatory molecule CD28; 
CD8+CD28low Treg.

CD8+CD28low TReG in MiCe

The immunosuppressive capacity of CD8+CD28low was first 
described in a murine model of multiple sclerosis. Najafian et al. 
showed that CD8 knockout (CD8 KO) mice were more suscepti-
ble to the induction of experimental autoimmune encephalomy-
elitis (EAE) than wild-type (WT) mice suggesting a protective 
effect of CD8+ cells. Adoptive transfer of CD8+CD28low T cells 
from WT animals into CD8 KO recipients significantly reduced 
the severity of the disease. No such decrease was observed with 
the adoptive transfer of CD8+CD28high T cells. Furthermore, 
CD8+CD28low T cells but not their CD28high counterpart could 
suppress in vitro the production of interferon-γ by CD4+ T cells 
specific for the myelin oligodendrocyte glycoprotein used to 
induce EAE. The suppressive function of the CD8+CD28low Treg 
required an interaction with antigen-presenting cells (APC), 
which led to the downregulation of CD80, CD86, and CD40 
expression on the APC (21). In a similar model, Yang et al. have 
shown that pretreatment of mice with a group of 15-amino acid-
long trichosanthin-derived peptides reduced the clinical score 
of EAE as compared to untreated animals. Attenuation of the 
disease was attributed to the expansion and activation of IL10-
producing-CD8+CD28low Treg (22).

Previous work by our team has shown that CD8+CD28low Treg 
can prevent intestinal inflammation in a well-established experi-
mental colitis model where pathology is induced by the adoptive 
transfer of naïve CD4+CD45RBhigh T cells into lymphopenic ani-
mals [recombinase activating gene 2 (RAG2) deficient or severe 
combined immunodeficiency mice (23, 24)]. Cotransfer of freshly 
isolated splenic CD8+CD28low T cells from WT animals with the 
colitogenic cells prevented onset of colitis. Similar results were 
obtained with CD8+CD28low T cells isolated from the lamina pro-
pria of the intestine (25). These CD8αβ+CD28low Treg expressed 
a large repertoire of the TCRαβ heterodimer (26). Protection 

from colitis was dependent on IL-10 production by the Treg and 
on the responsiveness of the colitogenic T-cells to transform-
ing growth factor β (TGF-β), underlining the non-redundant 
functions of these two immunomodulatory cytokines in the 
control of intestinal inflammation by CD8+CD28low Treg (25). 
Importantly, in contrast to CD4+CD25high Treg, CD8+CD28low 
Treg from unmanipulated mice do not express the transcription 
factor Foxp3. More recently, in mice immunized with ovalbu-
min and subsequently intranasally challenged with ovalbumin 
encased in oligomannose-coated liposomes, an expansion of 
CD8+CD28low (and CD4+Foxp3+) Treg was observed. Upon 
adoptive transfer, the CD8+CD28low Treg reduced the severity of 
allergic diarrhea (27).

AUTOiMMUne ReGULATOR (AiRe)  
AnD THe DeveLOPMenT OF  
CD8+CD28low TReG

The transcription factor AIRE is primarily expressed by medul-
lary epithelial cells of the thymus (mTEC) where it controls 
cellular maturation and the ectopic expression of thousands of 
tissue-specific antigens (28, 29). Presentation of these peripheral 
antigens by mTEC leads to the negative selection of auto-specific 
conventional T cells (30–32). Furthermore, AIRE modulates 
the production of chemokines by mTEC, involved in the migra-
tion of thymocytes and dendritic cells from the cortex to the 
medulla in the thymus (33, 34). As such, AIRE is a key regulator 
of central tolerance. Indeed, loss-of-function mutations in the 
AIRE gene lead to the autoimmune polyendocrinopathy candidi-
asis ectodermal dystrophy (APECED) syndrome also known as 
APS for autoimmune polyglandular syndrome (35, 36). While 
chronic mucocutaneous candidiasis, hypoparathyroidism, and 
hypoadrenalism are considered to be the classic triad hallmarks 
of this autoimmune syndrome (37), about 25% of APECED 
patients are also affected by gastrointestinal diseases ranging 
from chronic diarrhea and obstipation (38). In children suffering 
from APECED, these intestinal ailments can lead to malabsorp-
tion, various deficiencies, growth impairment, and even death 
(39, 40). Importantly, some do even consider gastrointestinal 
symptoms to be the first manifestation of APECED (38). Mice 
deficient for AIRE also exhibit (though to a lesser extent) autoim-
mune symptoms such as presence of autoantibodies and cellular 
infiltration in various organs (41). Since CD8+CD28low Treg can 
efficiently prevent intestinal inflammation, a prominent symptom 
in APECED, the potential role of AIRE in the development of this 
Treg population was evaluated.

Our comparative study of CD8+CD28low Treg from WT and 
AIRE-deficient (AIRE KO) mice revealed that while both Treg 
populations were present in similar proportions and exhibited 
comparable immunosuppressive activity in  vitro, Treg from 
AIRE KO animals failed to prevent intestinal inflammation in 
the colitis model (26). Gene expression patterns, cell-surface 
marker expression, IL-10 production, and in vitro suppressive 
capacity of WT and AIRE KO CD8+CD28low Treg were indis-
tinguishable. However, a small difference was found between 
the T-cell receptor (TCR) repertoires expressed by WT vs. KO 
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Treg. Based on these observations, we concluded that AIRE 
is involved in shaping the TCR-repertoire of CD8+CD28low 
Treg. To our knowledge, this was the first definite demonstra-
tion that a deficiency in AIRE leads to the functional defect 
of a Treg population. This pioneer study is in line with more 
recent studies that have provided molecular evidence, through 
TCR repertoire analysis, that AIRE is essential for the thymic 
development of CD4+Foxp3+ Treg with unique individual 
TCRs (42–44). Taken together, these studies have established 
that AIRE not only drives the negative selection of conventional 
T cells but is also involved in the differentiation of CD8+ and 
CD4+ Treg populations.

ORiGin OF CD8+CD28low TReG

Based on our current understanding of the development of 
CD4+Foxp3+ Treg, it is commonly accepted that Treg in general 
can have two distinct origins: intrathymic development of “tTreg” 
from hematopoietic precursors and extrathymic (or peripheral) 
differentiation of “pTreg” from conventional T cells given appro-
priate environmental cues [reviewed in Ref. (45, 46)]. Since data 
from the literature have attributed distinct singular functions 
to tTreg and pTreg (47–49), the identification of the origin of 
CD8+CD28low Treg was an important milestone in the quest to 
better characterize this population. Our observation that AIRE, 
which is primarily expressed in the thymus, is involved in the 
development of the CD8+CD28low Treg repertoire suggested a 
thymic origin for CD8+CD28low Treg. However, expression of 
AIRE has also been reported in both hematopoietic and stro-
mal lineages outside of the thymus (50–52). Importantly, these 
extrathymic AIRE-expressing cells have tolerogenic properties 
(53) and thus in theory may induce differentiation of conven-
tional T cells into Tregs. We recently demonstrated that mature 
CD4−CD8+TCRhigh thymocytes expressing low levels of CD28, 
isolated from WT mice, can efficiently suppress the in  vitro 
proliferation of CD4+ T cells (54). However, since T cells includ-
ing Tregs can recirculate from the periphery back to the thymus 
(55, 56), their presence in this primary lymphoid organ was not 
sufficient to confirm their origin. Definite proof of the thymic 
origin of CD8+CD28low Treg came from the analysis of transgenic 
mice expressing the green fluorescent protein (GFP) under the 
control of the RAG2 promoter [RAG–GFP mice, Ref. (57)]. In 
the thymus, thymocytes express RAG2 at the early stages of their 
development and then terminate its expression after positive 
selection (58). As such, in RAG–GFP animals, the GFP protein 
whose expression parallels that of RAG2 and has a half-life 
of 56  h serves as a molecular marker for lymphocyte aging in 
the thymus allowing for the discrimination between “freshly” 
developed mature T cells that express GFP and recirculating 
T cells that do not (59). Analysis of RAG–GFP mice revealed 
that while approximately 20% of mature thymic CD8+CD28low 
T cells are deprived of GFP expression (i.e., recirculating or 
long-term thymus resident cells), the major proportion of this 
T cell population are newly developed cells. Importantly, the 
GFP+ compartment of the mature thymic CD8+CD28low T cells 
demonstrated immunosuppressive activity in vitro hence firmly 

establishing the thymic origin of CD8+CD28low Treg in mice (54). 
However, the interesting possibility that the pool of circulating 
CD8+CD28low Treg may be composed of both tTreg and pTreg 
must also be considered. Indeed, in an experimental model of 
myasthenia gravis (MG), exposure to specific antigens (the dual-
altered peptide) led to the emergence of CD8+CD28low Treg (60). 
While it can be argued that the emergence of Treg could be due 
to the expansion of preexisting tTreg, the alternate hypothesis of 
an induction of bona fide pTreg cannot be excluded (Figure 1).

CD8+CD28low TReG in HUMAnS

A population of CD8+CD28low T cell exhibiting similar 
immunosuppressive characteristics as its murine homolog has 
recently been identified in humans. Analysis of peripheral blood 
mononuclear cells (PBMCs) has revealed a substantial percentage 
(between 10 and 13%) of CD28low-expressing cells among naive 
CD8+ T cells. Importantly, following in  vitro activation, these 
cells produce the same cytokines (i.e., IL-10 and TGF-β), which 
confer CD8+CD28low Treg their immunomodulatory ability in 
experimental mouse models. Similar results were obtained when 
human thymii isolated from children aged from 0 to 10 years were 
analyzed (54). Taken together, these results from human stud-
ies strongly suggest that, similar to mouse, CD8+CD28low T cell 
endowed with immunosuppressive capacity are present in human 
PBMCs and that they develop in the human thymus.

CD8+CD28− TReG in HUMAnS AnD MiCe

Based on CD28 expression, another Treg population has 
previously been described in humans. Cyclic stimulations of 
PBMCs with allogenic APC induced CD8+ T cells deprived of 
CD28 expression, which inhibited cellular proliferation in these 
in  vitro cultures (61). Since then, several groups have tried to 
develop, with more or less success, their own strategies to induce 
CD8+CD28− Treg in vitro by stimulating PBMCs with cocktails 
of cytokines in the presence or absence of antigens (62, 63), with 
phorbol12-myristate 13-acetate/ionomycin or phytohemaggluti-
nin (64) or with a recombinant immunoglobulin-like transcript 
3 (ILT3)-Fc fusion protein (65, 66). CD8+CD28− Tregs express 
GITR, CD25, CD103, CD62L, and 4-IBB and are MHC class I 
restricted (67). They exert their immunomodulatory activity by 
inducing the expression of ILT3 and ILT4 on dendritic cells, thus 
rendering them tolerogenic (66). Intriguingly, human mesen-
chymal stromal cells have recently been shown to enhance the 
immunomodulatory function of CD8+CD28− Treg by reducing 
their rate of apoptosis (68).

CD8+CD28− T cells with a regulatory phenotype have been 
observed in patients having undergone successful organ trans-
plantation (69–71), alloanergized HLA-mismatched bone mar-
row graft (72), and allogenic platelet transfusion (73) or suffering 
from autoimmune diseases (74–76), pregnancy complications 
(77), and cancers (78–80). Importantly, CD8+CD28− T cells 
isolated from healthy donors are not immunosuppressive (69). 
Hence, it would seem that CD8+CD28− Treg are induced in the 
periphery following disturbances of the immune homeostasis.
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FiGURe 1 | Summary of findings on CD8+CD28low regulatory T cells (Tregs). In the thymus, T cell precursors will interact with stromal cells presenting antigens 
that are expressed under control of the transcription factor autoimmune regulator and differentiate into tTreg. In the periphery, these cells will enforce their regulatory 
function by secreting immunomodulatory cytokines and/or by inhibiting antigen-presenting cells. It cannot be excluded that CD8+CD28low Treg can also differentiate, 
under specific tolerogenic conditions, in the periphery. So far, the immunosuppressive capacity of CD8+CD28low Tregs has been documented in experimental models 
of multiple sclerosis, myasthenia gravis, and colitis. Solid lines indicate established features, and dashed lines indicate potential characteristics.
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A mouse homolog of human CD8+CD28− pTreg may also 
exist. Ben-David et al. showed that in an experimental model of 
MG where pathology is triggered by immunization with a myas-
thenogenic peptide, injection of a dual-altered peptide induces 
the emergence of CD8+CD28− Treg that efficiently suppress the 
autoimmune response. Flow cytometry analysis of these cells 
suggested that these Tregs may express low levels of Foxp3 (60).

CD28− vS. CD28lowCD8+ TReG  
in HUMAnS AnD MiCe

Najafian et  al. initially showed that total CD8+ T cells isolated 
from CD28-deficient mice (i.e., CD8+CD28− cells) exhibited 
immunosuppressive activity in vitro and decreased the severity 
of EAE in adoptive transfer experiments. However, the CD8+ T 
cells isolated from WT mice that inhibited severity of EAE clearly 
expressed low levels of CD28 (21). In our initial report on the 
prevention of experimental colitis in the mouse, the CD8+ Treg, 
which we inaccurately termed CD28−, also clearly expressed low 
but detectable levels of CD28. In unmanipulated specific path-
ogen-free WT mice, we only observed subsets of CD8+ T cells 
expressing low or high levels of CD28 but none that are deprived 

of expression of this co-stimulatory molecule (25, 26, 54). In 
humans, their low but readily detectable level of expression of 
CD28, their presence in the thymus, and their naive phenotype 
clearly distinguish CD8+CD28low Treg from CD8+CD28− Treg 
that do not express CD28 at levels exceeding background, are not 
found in the thymus, and have an activated phenotype (54). We 
therefore conclude that the co-stimulatory molecule CD28 allows 
for the identification of two distinct CD8+ subsets: CD28low tTreg 
and CD28− p Treg.

COnCLUDinG ReMARKS

While the various studies discussed here have helped to decipher 
key features of CD8+CD28low T cells and in parallel establish 
them as a potent Treg population in both mice and humans, 
several burning questions concerning these Treg remain unan-
swered, the most important one being perhaps their biological 
function(s) under homeostatic and pathologic conditions. We 
believe that the identification of other, more discriminative, 
markers of CD8+CD28low Treg will greatly help in achieving this 
goal. Currently, this Treg population can only be characterized by 
their low levels of expression of CD28 allowing for only a minimal 
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estimation of their proportions by flow cytometry analysis (25, 
26, 54). Furthermore, the absence of a better marker is hindering 
a panoply of key experiments such as specific localization in tis-
sues and lymphoid organs, antibody-specific depletion, germline, 
and/or conditional knockout strategies.

Up till now, research on CD8+CD28low Treg had been 
confined to murine studies (21, 25, 26). Even though the 
potent immunoregulatory capacity of CD8+CD28low has been 
documented in these experimental models of inflammation, 
its relevance in human diseases remains unknown. In paral-
lel, defects in various CD4+ and CD8+ Treg populations have 
been reported in human autoimmune diseases and immune-
mediated inflammatory pathologies (81–87). The identification 
of CD8+CD28low Treg in humans is hence paving the way to 
further studies so as to gain insight into the physiological 

function of this Treg population and its potential involvement 
in human pathologies.
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