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Much of microbial life on Earth grows and reproduces under the elevated hydrostatic
pressure conditions that exist in deep-ocean and deep-subsurface environments. In this
study adaptive laboratory evolution (ALE) experiments were conducted to investigate the
possible modification of the piezosensitive Escherichia coli for improved growth at high
pressure. After approximately 500 generations of selection, a strain was isolated that
acquired the ability to grow at pressure non-permissive for the parental strain. Remarkably,
this strain displayed growth properties and changes in the proportion and regulation of
unsaturated fatty acids that indicated the acquisition of multiple piezotolerant properties.
These changes developed concomitantly with a change in the gene encoding the acyl
carrier protein, which is required for fatty acid synthesis.
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INTRODUCTION
Elevated hydrostatic pressure promotes reduced system volumes
and volume changes of activation in chemical equilibria and
rates of reactions, respectively (Meersman and McMillan, 2014).
Microorganisms growing preferentially at elevated hydrostatic
pressures exist in large portions of Earth’s biosphere including
deep-sea and deep-subsurface locations (Meersman et al., 2013).
Despite the fact that the growth attributes of these piezophiles
appear to require relatively little evolutionary change (Prieur
et al., 2009), increased hydrostatic pressure exerts pervasive effects
on many aspects of cellular function and the adaptations required
remain incompletely defined (Lauro et al., 2008). Arguably the
best understood adaptation is the need for bacterial piezophiles
to maintain a sufficient proportion of unsaturated fatty acids in
their membranes as a means of tuning phase, viscosity, and/or
ion permeability (Bartlett, 2002; Kawamoto et al., 2011).

Escherichia coli is the most studied piezosensitive microor-
ganism with the ability to grow to pressures of up to 50 MPa
(Zobell and Cobet, 1963). It has been successfully used as a
model organism to investigate the effects of increasing pressure
on cell processes and structures. E. coli belongs to the class of
Gammaproteobacteria which includes a large proportion of the
characterized piezophiles, while as a foodborne pathogen has
been subjected to high pressure pasteurization processes poten-
tially promoting the emergence of piezoresistant strains (Vanlint
et al., 2012). High pressure affects many cellular processes
in E. coli, including replication, transcription, and translation.
Previous studies have demonstrated DNA synthesis inhibition at
50 MPa while RNA synthesis was abolished completely at 77 MPa

(Yayanos and Pollard, 1969; Welch et al., 1993). Interestingly,
a moderate pressure of 30 MPa was sufficient to suppress gene
transcription (Sato et al., 1996). Protein synthesis was com-
pletely inhibited at 68 MPa; aminoacyl-tRNA binding, ribosome
translocation, and ribosome stability have all been implicated as
the basis of high pressure impacts on translation (Schwarz and
Landau, 1972; Groß and Jaenicke, 1990; Alpas et al., 2003). Cell
division was affected at pressures ranging from 20 to 50 MPa
resulting in elongation of the cells and a filamentous morphology
since cell division is affected prior to cell growth and accumu-
lation of biomass (Zobell and Cobet, 1963). Pressure of 10 MPa
and higher affect flagellation by disrupting filament polymeriza-
tion and flagellum rotation (Meganathan and Marquis, 1973).
Other structural changes under high pressure include a compact
nucleoid structure (Welch et al., 1993).

High pressure growth of E. coli at 30 or 50 MPa induces a
cascade of stress responses with the concomitant regulation of
a series of genes; such cascade networks include heat and cold
stress responses (Welch et al., 1993; Welch and Bartlett, 1998;
Aertsen et al., 2004a; Ishii et al., 2005). Interestingly, heat shock
pre-treatment improved the pressure resistance of E. coli in sub-
sequent high pressure treatment, suggesting that heat shock pro-
teins might play a protective role (Aertsen et al., 2004a). Finally,
sub-lethal pressure treatments (100–500 MPa) increased expres-
sion of stress sigma factors and genes involved in spontaneous
mutations and triggered the SOS and oxidative stress responses
(Aertsen et al., 2004b, 2005; Malone et al., 2006). Recently,
a genome wide screening approach confirmed the pleiotropic
effects of pressure on E. coli identifying a series of genes required
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for growth at high pressure, including genes involved in DNA
replication, cell division, cytoskeleton, and cell envelope physiol-
ogy (Black et al., 2013).

In this report we investigate the feasibility of employing adap-
tive laboratory evolution (ALE) techniques to drive the pheno-
type of a model mesophile in the direction of piezophily. ALE is
a powerful tool that relies on the Darwinian principles of muta-
tion and selection (Pourmir and Johannes, 2012). In some cases
the selections involve a single selective step (Vanlint et al., 2011),
in others a few hundred to a few thousand generations (Lee
et al., 2011), and in the extreme case of the long-term studies
of Lenski and colleagues they may proceed for more than 50,000
generations (Barrick et al., 2009). Examples of ALE experiments
selecting for more extremophilic characteristics in mesophiles
include increased salt tolerance (Zhou et al., 2013), increased
radiation resistance (Harris et al., 2009), the conversion of a
mesophile into a facultative thermophile (Blaby et al., 2012) and
the selection for survival to exposures of more than 2 gigapascals
of pressure (Hauben et al., 1997). It should be noted that resis-
tance to ultra-high pressure does not confer improved growth at
elevated pressures (Hauben et al., 1997; Lauro et al., 2008). In this
study, following 505 generations of selection we have isolated a
strain with the ability to grow at 62 MPa and alter membrane
fatty acid composition in response to pressure. A mutation has
been identified in a gene involved in lipid metabolism that could
contribute in the improved piezotolerance of the newly isolated
strain.

MATERIALS AND METHODS
GROWTH CONDITIONS
E. coli K-12 MG1655 was grown in triplicate lineages (A, B, and C)
under fermentative conditions at 37◦C using Luria Bertani (LB)
medium supplemented with glucose (11 mM) and HEPES buffer
(100 mM, pH 7.5) in 5 ml polyethylene transfer pipette bulbs kept
within stainless steel pressure vessels (Figure 1A). Initial incuba-
tions were performed at 41 megapascal (MPa) and the growth
was measured after 48 h of incubation. The cultures were allowed
to reach a minimum optical density (OD) at 600 nm of 0.45
(corresponding to a cell density of 4.5 × 108 cells ml−1), before
the cultures were diluted 1000-fold in fresh medium and reincu-
bated at high pressure. Each triplicate subculture was assigned a
new lineage number (i.e., L2A, 2B, 2C). The pressure was grad-
ually increased in increments of 7 MPa when cell yield exceeded
4.5 × 108 cells ml−1. Single clonal isolates from each culture were
obtained by streaking LB agar plates and incubating for 48 h at
37◦C.

MICROSCOPY AND IMAGE ANALYSIS
Cells were fixed with 2% glutaraldehyde in 0.1 M sodium cacody-
late buffer (pH 7.4) under in situ pressure conditions (Figure 1B)
(Chastain and Yayanos, 1991). Two Sarstedt syringes were joined
together using silicone adhesive creating a device with two cham-
bers separated by a circular glass cover slip. The first chamber
contained the culture while the second chamber contained the fix-
ative solution and a stainless steel ball. The conjoined syringe was
placed in a pressure vessel and incubated at 37◦C, at the desired
pressure. To fix the cells the pressure vessel was shaken vigorously

to cause the steel ball to break the glass cover slip and mix the
fixative with the culture at in situ pressure conditions.

For epifluorescence microscopy the fixed cells were immobi-
lized onto a 0.2 μm polycarbonate membrane (EMD Millipore)
and stained using 4′, 6′ -diamidino-2-phenylindole (DAPI)
nucleic acid stain (Vector Laboratories, Inc). The stained samples
were viewed at 1000 fold magnification on an Olympus BX51 flu-
orescence microscope (Olympus). TEM samples were post fixed
with 1% osmium and 2% of uranyl acetate and embedded in
Ducurpan at 60◦C for 36 h. Ultra-thin sections (60 nm) were cut
with a diamond knife on Leica Ultracut UCT Microtome and post
stained with uranyl acetate and lead. Images were captured on FEI
Tecnai spirit at 80 KV.

FATTY ACID ANALYSIS
Fatty acid analysis was performed by MIDI Labs (Newark, DE) on
frozen cell pellets harvested during the early logarithmic phase of
growth. Saponification, methylation, extraction, and base wash
were performed before the fatty acid methyl esters were ana-
lyzed on an Agilent/HP 6890 gas chromatograph. Using a pattern
recognition software, Sherlock MIS, the fatty acid composition of
each sample was compared to a stored database. The software was
able to identify each component of the analyzed sample, produc-
ing a composition report including the relative amount (%) of the
named fatty acids.

DNA PURIFICATION AND GENETIC ANALYSIS
Cells growing at exponential phase were centrifuged at 14,000 ×
g for 2 min and the cell pellets were used for DNA purification.
The Wizard Genomic DNA purification kit (Promega) was used
according to the manufacturer’s instructions. The purified DNA
was used as template for the amplification of the acpP, fabA, fabB,
and fabF genes (see Table S1 for primer sequences and cycling
parameters). Each PCR reaction contained 45 μl of Platinum PCR
Supermix (Life Technologies), 2 μl of each primer (10 μM) and
1 μl of template DNA. The PCR products were purified using the
QIAquick PCR Purification kit (Qiagen) and submitted for direct
sequencing by Retrogen Inc. (San Diego, CA) using the respective
primers in both directions.

RESULTS
E. COLI GROWTH AT HIGH PRESSURE
The ALE of E. coli for growth at high pressure was initiated by
incubating triplicate cultures at 41 MPa. E. coli was grown at
41 MPa for 103 generations prior to increasing the pressure to
48 MPa for 247 generations, followed by incubation at 55 MPa for
130 generations, and finally further increased to 62 MPa for 25
generations (Figure 2). The total time required was 126 days and
the total number of generations was 505. Improved high pressure
growth of isolated strains was not evident until after selection for
growth at the last pressure tested, 62 MPa, and this was only evi-
dent in cells derived from the lineage A population. Lineage B and
C did not respond as well as lineage A to the increasing pressure,
failing to produce any cells capable of growth above 55 MPa. The
last subculture collected was L62A, and from this population a
single clonal isolate, designated strain AN62, was obtained from
an LB agar plate.
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FIGURE 1 | Schematic diagram of the (A) adaptive laboratory evolution experimental procedure and (B) cell fixation under in situ pressure conditions.

FIGURE 2 | Directed evolution of E. coli K-12 MG1655 to growth at

high pressure. Cultures were grown under fermentative conditions to a
minimum OD of 0.45 before they were diluted and incubated at increasing
pressure at increments of 7 MPa. The OD values presented were recorded
after 48 h of incubation for each subculture for lineage A.

At atmospheric pressure the growth of clonal isolate AN62 was
slower than the parental strain in liquid medium (Figure 3). The
parental strain had a doubling time of 17 min while AN62 strain
had a doubling time of 44 min when grown at 0.1 MPa. In contrast
at 60 MPa the parental strain was unable to grow, while AN62
grew after an extended lag phase of ∼20 h with a doubling time

FIGURE 3 | Growth curves of E. coli K-12 MG1655 parental and

pressure adapted AN62 strain at atmospheric (0.1 MPa) and high

(60 MPa) pressure. Cultures were grown micro-aerobically in LB
supplemented with glucose and HEPES buffer at 37◦C. WT, parental strain.

of 70 min (Figure 3). The same was true for colonial growth on
agar plates; AN62 strain formed smaller colonies following a 48-h
incubation compared to the parental strain (Figure 4).

CELL MORPHOLOGY AT HIGH PRESSURE
Epifluorescence microscopy and transmission electron
microscopy (TEM) was used to determine whether any
morphological changes accompanied the improved high pressure
growth phenotype. The DAPI-stained parental strain (2 ±
0.5 μm) and evolved strain AN62 (2 ± 0.4 μm) exhibited the
typical rod shaped morphology of E. coli at atmospheric pressure
(Figure 5). At 60 MPa the few parental strain cells that were
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present maintained a rod shaped morphology, while AN62 cells
primarily existed as long filaments with an average size of 6.6
± 2 μm (Figure 5). The parental strain cells appeared longer
at 60 MPa (2.5 ± 1 μm, p = 0.037) compared to atmospheric
pressure.

TEM confirmed the overall morphology indicated by the
epifluorescence observations. Interestingly AN62 cells appeared
darker at atmospheric pressure compared to the parental strain,
suggesting the presence of a dense intracellular matrix (Figure 5).
At 60 MPa the majority of the AN62 cells appeared as long fil-
aments (7.2 ± 2 μm). Growth at high pressure caused a change
in the distribution of the nucleoid in the parental strain as it
appeared condensed in the mid-cell region, while the internal
structure of AN62 at high pressure resembled that of the parental
strain at atmospheric pressure.

MEMBRANE FATTY ACID COMPOSITION
Because a hallmark feature of all piezophilic bacteria is a high
ratio of unsaturated to saturated membrane fatty acids, the

FIGURE 4 | Colony morphology of E. coli parental and AN62 strain.

Cells were plated on LB plates and incubated for 48 h at 37◦C at 0.1 MPa.
WT, parental strain.

fatty acid profiles of the parental and evolved strain were also
compared. Under atmospheric pressure growth conditions the
ratio of unsaturated to saturated fatty acids was similar for both
the parental strain and AN62, although the former produced
more palmitoleic acid (16:1 ω7c) and the latter more cis-vaccenic
acid (18:1 ω7c). Remarkably, at 60 MPa evolved strain AN62
increased its production of cis-vaccenic acid by about 50%, up
to more than 30% of the total fatty acid abundance, largely at the
expense of the saturated fatty acid palmitic acid (16:0) (Table 1).
There was insufficient biomass production at 60 MPa for the
parental strain membrane fatty acid analysis.

GENETIC ANALYSIS
Based on the altered unsaturated fatty acid species abundances
produced in AN62 selected genes involved in fatty acid biosyn-
thesis were sequenced. These genes included acpP, encoding
acyl carrier protein ACP, fabA, encoding beta-hydroxydecanoyl
thioester dehydrase, fabB, encoding beta-ketoacyl-ACP synthase I
(KAS I), and fabF, encoding beta-ketoacyl-ACP synthase II (KAS
II). Only one of these genes was discovered to possess a sequence
difference with its homolog in the parental strain. The AN62 acpP
gene contains a transversion mutation (T to G) at nucleotide
position 131 resulting in a valine to glycine (V43G) amino acid
change (Figure 6). The evolutionary history of this mutation was
followed by assessing its presence or absence in strains derived
from past lineages. Based on these analyses it was found that this
mutation first appeared in lineage 60A, the same lineage found to
possess the first cells adapted for improved high pressure growth
(data not shown).

DISCUSSION
In this study, we used ALE to isolate a novel E. coli strain
with the ability to grow at pressures that impede parental strain
from growing. No E. coli strain has ever been documented to

FIGURE 5 | Epifluorescence and TEM microphotographs of in situ fixed parental and AN62 strain cells at atmospheric (0.1 MPa) and high (60 MPa)

pressure. Cultures were grown micro-aerobically in LB supplemented with glucose and HEPES buffer at 37◦C. WT, parental strain. Scale bar indicates 1 μm.

Frontiers in Microbiology | Extreme Microbiology January 2015 | Volume 5 | Article 749 | 4

http://www.frontiersin.org/Extreme_Microbiology
http://www.frontiersin.org/Extreme_Microbiology
http://www.frontiersin.org/Extreme_Microbiology/archive


Marietou et al. E. coli growth at high pressure

Table 1 | Fatty acid composition of E. coli K-12 MG1655 parental and

AN62 strain at atmospheric (0.1 MPa) and high (60 MPa) pressure.

Fatty Acid WT AN62 AN62

0.1 MPa 0.1 MPa 60 MPa

% of total composition

11:0 3OH 0.04 – –

12:0 6.11 4.60 3.99

12:0 3OH 0.07 0.06 0.08

13:0 0.09 0.10 –

14:0 9.37 6.14 5.54

14:0 3OH 10.76 8.86 8.13

15:0 0.19 0.13 0.10

16:0 27.72 34.06 22.73

16:0 3OH 0.08 0.07 0.09

16:1 ω5c 0.33 0.31 0.84

16:1 ω7c 31.66 20.46 20.72

17:0 0.04 0.05 0.06

17:0 cyclo 2.22 2.93 3.59

18:0 0.14 0.33 0.36

18:1 ω5c – 0.11 0.25

18:1 ω7c 9.50 20.02 31.15

18:2 ω6,9c 0.04 0.06 –

19:0 iso 0.03 – –

19:0 cyclo ω8c 0.05 0.21 1.06

Unknown 1.48 1.48 1.25

Sum (%) 99.99 99.98 99.99

UFA/SFA (%) 94.97 90.24 161.32

Cultures were grown micro-aerobically in LB supplemented with glucose and

HEPES buffer at 37◦C. Cells were harvested at the early exponential growth

phase. WT, parental strain; UFA, unsaturated fatty acids; SFA, saturated fatty

acids.

FIGURE 6 | Multiple sequence alignment of helix II region of various

ACP. Identical residues are shaded gray, while red is used to highlight the
glycine in AN62 strain. Ec WT, E. coli parental strain; Ec AN, E. coli AN62
strain; Phpro, Photobacterium profundum SS9; Shvio, Shewanella violacea
DSS12; Dhydr, Desulfovibrio hydrothermalis AM13; Ddesl, Desulfovibrio
desulfuricans 27774; Mpiez, Marinitoga piezophila KA3.

grow at pressures exceeding 50 MPa (Ishii et al., 2004). Although
AN62 did not exhibit piezophilic growth, which would necessi-
tate improved growth at high pressure compared to atmospheric
pressure, its growth characteristics were altered at both ends of
the pressure spectrum in a direction toward piezophily. This is

the first time any microorganism has had its growth pheno-
type changed at both low and high pressure, although improved
growth at high pressure has been noted in two other studies
(Marquis and Bender, 1980; Abe and Horikoshi, 2000).

AN62 strain grew at 60 MPa following an extended lag phase
with a doubling time of 70 min (Figure 3). The extended lag
phase observed for AN62 at 60 MPa could be attributed to the
physiological and molecular changes that the cells have to adjust
before exponential growth can proceed at high pressure. Thus,
even though AN62 strain has evolved to grow at 60 MPa the
changes required to switch from growth at atmospheric pres-
sure to growth at high pressure suggest that the cells required a
substantial amount of “fine-tuning,” perhaps reflecting changes
in transcription, translation, and/or the activity of key enzymes.
Fatty acid biosynthesis is among the processes that are up-
regulated during lag phase (Rolfe et al., 2012) and the response
of the fatty acid machinery to changes in pressure could have
contributed to the observed extended lag phase. Finally, the rel-
atively slow growth rate of AN62 under all pressure conditions
indicates that this mutant did not evolve improved growth effi-
ciency but rather improved high pressure growth capacity. The
basis of its growth rate reduction, is unknown, but ATP supply
and demand is strongly influenced by pressure in piezosensitive
bacteria (Marquis, 1982). The significantly slower growth rate
of AN62 at 60 MPa could also reflect the constraints imposed
on a larger cell volume due to inhibition of cell division at high
pressure (Klumpp et al., 2009).

At 60 MPa, AN62 exhibited filamentous morphology in con-
trast to the parental strain which exhibited only a slightly elon-
gated cell shape. It has previously been reported that E. coli
assumes a typical filamentous morphology at the non-permissive
pressure of 40 MPa (Ishii et al., 2004). Filamentation is a well-
documented response of mesophilic bacteria to elevated pressures
sufficiently high to inhibit cell division, but not so great as
to prevent biomass accumulation (Jannasch, 1987; Yayanos and
DeLong, 1987; Kawarai et al., 2004). The basis of this effect may
stem from direct effects on the tubulin-like cell division protein
FtsZ (Ishii et al., 2004) or through the induction of a DNA dam-
age stress response (Aertsen and Michiels, 2005). When pressures
high enough to prevent growth were applied to AN62 (75 MPa),
no change in morphology occurred. Thus, along with its growth
properties the filamentation response of AN62 was shifted to
higher pressures.

Growth at suboptimal pressures also causes substantial
changes to the morphology of known piezophiles. Marinitoga
piezophila KA3 cells are short rods (1–1.5 μm) when grown at the
optimal pressure of 40 MPa (Alain et al., 2002). However, when
the cells are grown at 10 MPa or atmospheric pressure they appear
elongated (Alain et al., 2002). Similarly, Profundimonas piezophila
cells are rods (4–5 μm ) when grown at 60 MPa (pressure opti-
mum 50 MPa) and their morphology changes to 0.8–1.0 μm cocci
when grown at pressures lower than 20 MPa (Cao et al., 2014).
Interestingly, following nine transfers at atmospheric pressure
M. piezophila KA3 exhibited the short rod morphotype. These
observations highlight the effect of pressure on cell morphol-
ogy and indicate that adaptation to higher or lower pressures is
accompanied by cell size changes.
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Strain AN62 produced on overall more cis-vaccenic acid, while
its relative amount increased further at 60 MPa. These results
indicate that not only had the mutant strain acquired the ability
to produce more unsaturated fatty acids, but also it had gained
the ability to regulate their abundance in response to the pres-
sure applied. Both of these phenotypes are shared with piezophilic
bacteria (Allen and Bartlett, 2000). The molecular mechanisms
underlying such a response to increasing pressure remains largely
unexplored.

Previous studies highlighted the importance of fatty acid
synthesis genes in temperature and pressure response modula-
tion (Garwin and Cronan, 1980; Garwin et al., 1980; Allen and
Bartlett, 2000). ACP is a conserved protein that interacts with
several other proteins including some with known role in lipid
metabolism (Worsham et al., 2003). ACP carries fatty acid syn-
thesis intermediates as thiosters (Rock and Jackowski, 2002).
The V43G mutation is located in the helix II region; a site of
interaction with several proteins involved in fatty acid synthesis
(Jackowski and Rock, 1987). There is a high degree of identity
among type II ACP homologs, including position V43 (Jackowski
and Rock, 1987). This is also true for most but not all piezophiles.
For example, the well-studied piezophiles Photobacterium profun-
dum and Shewanella violacea possess V43, whereas the piezophiles
Desulfovibrio hydrothermalis and M. piezophila have isoleucine
and threonine at position V43, respectively. The presence of V43
in well studied piezophiles is indicating that modification of this
residue is not a universal feature of high pressure adaptation.

Previous studies in E. coli have established that a V43I substi-
tution affects the ACP equilibrium to a more compact, tightly-
folded conformation by stabilizing the hydrophobic core of
the protein and decreasing the molecular radius (Keating and
Cronan, 1996; Roujeinikova et al., 2002). The V43I substitution
is hypothesized to also increase the efficiency of unsaturated fatty
acid synthesis (Roujeinikova et al., 2002).

We hypothesize that the mutation uncovered in acpP is linked
to KAS II activity, both because of the associated increased pro-
duction of cis-vaccenic acid synthesis observed in AN62 (Garwin
et al., 1980; Jackowski and Rock, 1987; Allen and Bartlett, 2000)
and because of prior evidence linking ACP structure with KAS
II activity (Jackowski and Rock, 1987). KAS II is responsible
for increased cis-vaccenic acid production in response to lower
growth temperature (Garwin et al., 1980). It catalyzes the elonga-
tion of palmitoleic (16:1) to cis-vaccenic acid (18:1). Interestingly,
thermal regulation of cis-vaccenic acid synthesis is not controlled
at the transcriptional or translation level but is depended on
KAS II activity (Garwin and Cronan, 1980). KAS II mutants with
impaired activity possessed ACP proteins with the V43I muta-
tion suggesting that V43 residue has an important role in KAS
II/ACP interaction with effects on fatty acid synthesis (Jackowski
and Rock, 1987).

It is likely that the observed genetic change is necessary but
insufficient for piezoadaptation. Additional studies will be needed
to identify and confirm all mutations necessary and sufficient for
the high pressure phenotypes of AN62. It will also be of inter-
est to determine how much further ALE experiments can drive
E. coli and other non-piezophiles along the gradient of piezophily.
In the case of obligate piezophiles ALE experiments could be used

to determine the adaptations required for the evolution of growth
and survival at decreased pressures.

ALE could improve our understanding of the evolutionary
steps required for the adaptation of life at extremes of pressure.
The environmentally relevant exposure of piezosensitive surface
microbes to increases in pressure could proceed by a variety of
different mechanisms including in association with metazoans
undergoing extensive vertical migrations, or in association with
large carrion or smaller aggregates of particulate organic car-
bon. The vertical travel speeds of particle-associated microbes
have been estimated to range from 10 to 150 m d−1 (McDonnell
et al., 2010). At increasing depths travel speed increases by a fac-
tor of 10–60%, while pressure increases by 1 MPa every 100 m
(Berelson, 2001). Sufficient growth could occur during these tran-
sits to enable the acquisition of the requisite number and types of
mutations needed for selection of high pressure growth mutants
of increased fitness.

Our results demonstrate that it is possible to drive the evolu-
tionary trajectory of a piezosensitive bacterium along the pressure
continuum toward piezophily, and to archive the evolutionary
history of this process for the subsequent examination of the asso-
ciated mutational events. ALE experiments performed in this way
provide a new approach to characterize the genetic underpinnings
enabling microbial life to flourish under the extreme physical
constraint of high pressure (low volume change).
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