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The outcome of an inflammatory incident can hang in the balance between restoring

health and tissue integrity on the one hand, and promoting aberrant tissue homeostasis

and adverse outcomes on the other. Both microbial-related and sterile inflammation is a

complex response characterized by a range of innate immune cell types, which produce

and respond to cytokine mediators and other inflammatory signals. In turn, cells native to

the tissue in question can sense these mediators and respond by migrating, proliferating

and regenerating the tissue. In this review we will discuss how the specific outcomes

of inflammatory incidents are affected by the direct regulation of stem cells and cellular

plasticity. While less well appreciated than the effects of inflammatory signals on immune

cells and other differentiated cells, the effects are crucial in understanding inflammation

and appropriately managing therapeutic interventions.
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INTRODUCTION

Inflammation has a well-established role in the defense of organisms against microbial invasion.
The presence of commensal and pathogenic microbes, both intracellular and extracellular, is
usually detected by receptors residing mostly in the surface of innate immune cells known as
pattern recognition receptors (PRRs). These receptors are the first line of the surveillance system
which ultimately recognizes pathogen associated molecular patterns (PAMPs) and triggers the
inflammatory response. Acute and chronic inflammation in a number of diseases associated with
pathogens and the interplay between infection and inflammation is of paramount importance to
clinical outcomes (Apidianakis and Ferrandon, 2014).

While inflammation is a defense against pathogens it can also be triggered during processes
unrelated to microbial insult. This process, termed sterile inflammation, is typically linked to
chemical or physical triggers. Inflammatory cells present at the site of the damage recognize danger-
associated molecular patterns (DAMPs) and secrete molecules which prime the tissue restoration
via the proliferation of quiescent adult stem cells (Nagaoka et al., 2000; Koh and DiPietro, 2011;
Petrie et al., 2014; Kizil et al., 2015). Sterile inflammation can have profound effects on tissue
homeostasis and repair, for example during wound healing, or during the onset and initiation of
inflammatory diseases.

We summarize here evidence for the direct crosstalk between the inflammatory response and
stem cells both in cases of microbial and sterile induced inflammation (Figure 1). Inflammation is
emerging as an important regulator of stem cells and plays an intricate role in health and disease.
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REGULATION OF STEM CELLS IN
RESPONSE TO MICROBIAL MOTIFS

Recently PRRs were shown to be expressed in the surface of
tissue stem cells suggesting that there is the potential for direct
effects of PAMPs on stem cell behavior (Boiko and Borghesi,
2012). For example, hematopoietic stem cells express toll-like
receptors (TLRs) whose activation leads to the differentiation of
myeloid progenitors intomonocytes and macrophages immune
cells (Nagai et al., 2006) as seen in the presence of the vaccinia

FIGURE 1 | Tissue damage can arise as a result of physical damage, chemical damage or pathogen infection. Once the damage is detected a homeostatic

inflammatory response is activated to regenerate the tissue. This inflammation is characterized by the activation of immune cells, such as macrophages and

monocytes and the release of inflammatory mediators, such as cytokines and interferons to the site of damage. These mediators in turn can affect native tissue cells

to respond by migrating and proliferating resulting in tissue repair. Evidence suggest that the inflammatory response acts as a regulator of tissue stemness either by

directly affecting tissue stem cells or by shifting differentiated cells toward a stem-like cell character. The balance in this inflammatory response and its mediated

stemness is a critical driver of either maintaining tissue integrity or promoting aberrant homeostasis and disease.

virus in the bone marrow (Singh et al., 2008). Stem cells of
solid tissues, more prominently the gut, have also been shown
to express PRRs integrating inflammation to immune clearance
and subsequent tissue regeneration. Intestinal stem cells (ISCs)
expressing TLR4 show increased proliferation and expansion of
the stem cell population in the intestinal epithelium (Santaolalla
et al., 2013). ISCs have also been shown to express Nod2, a general
sensor for peptidoglycan (Girardin et al., 2003). The constitutive
expression of Nod2, in ISCs, provides protection against stress
(Nigro et al., 2014). The ability of gut stem cells to respond
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directly to patterns, such as LPS (via TLR4) and peptidoglycan
(via Nod2), may underlie mechanisms of tissue response not
only to pathogenic bacteria but also commensals and is likely
important to general tissue homeostasis via the interaction
with intestinal microbiota. The findings in mammalian systems
are corroborated by extensive literature in other experimental
systems, such as Drosophila (Panayidou and Apidianakis, 2013).

Once an inflammatory program has already been initiated
the production of cytokines, interferons etc. by local immune
populations can further impact the behavior of stem cells.
In the gut, innate lymphoid cells produce interleukin-22, a
potent survival factor, which can directly act on ISCs promoting
growth and epithelial regeneration (Lindemans et al., 2015).
Chronic HBV infection also stimulates release of interleukin-22
by inflammatory cells, inducing proliferation of liver stem cells
(Feng et al., 2012). In addition, the mediator of inflammation
TNF-α is activated as a result of brain inflammation in neural
stem cells seen in conditions of trauma, multiple sclerosis and
pathogen infections. TNF-α activation ultimately brings about
proliferation of the neural stem cells (Widera et al., 2006). Neural
stem cells in the hippocampus have also been shown by in vivo
studies to proliferate upon the presence of bacterial enterotoxins
(Wolf et al., 2009). In the urinary tract, upon E. coli infection,
the uroepithelial stem cells are activated for epithelial renewal in
response to the inflammatory response (Mysorekar et al., 2009).

The presence of pathogenic burden in the hematopoietic
system rapidly depletes immune cells stimulating intermediate
blood progenitors to maintain blood cell balance (Hawkins et al.,
2006). Inflammation-induced myelopoiesis, due to pathogen
presence, results in the release of interleukin-27 causing
activation and differentiation of hematopoietic stem cells (HSCs)
(Furusawa et al., 2016). Chronic infection, as seen in the
presence of the Mycobacterium avium, results in the activation
of quiescent HSCs through the release of the inflammatory
mediator interferon-γ (Baldridge et al., 2010).

Inflammation is proposed to promote tissue recovery via its
effects on differentiated cells to regenerate the tissue (Karin
and Clevers, 2016). In some cases the differentiated cells de-
differentiate in response to inflammation, acquiring stem-like
characteristics and increased cellular plasticity. In support of this
idea, the induction of immunity was found to be required for
efficient nuclear reprogramming in vitro (Lee et al., 2012).

Tissue reprogramming is achieved through the upregulation
of growth factors and cytokines in the inflammatory
microenvironment (Grivennikov et al., 2010). This could be
attributed to changes in the expression of specific genes/pathways
which shift a differentiated cell closer toward a stem cell
character. Alternatively, the effects could impart tissue stem cells
or progenitors with increased/altered capabilities.

There are a number of examples to support the idea that
inflammation caused by infections leads to tissue regeneration
and/or cellular stemness. Such a response has been observed in
viral infections of HBV and HCV where inflammation in the
liver induced expression of stemness markers (Karakasiliotis and
Mavromara, 2015). Specifically, the secretion of interleukin 6
(IL6) by the inflammatory cells during HBV infection regulates
the expression of Oct4 and Nanog pluripotency factors (Chang

et al., 2015). Furthermore, the hypoxia factor HIF-1α produced in
the HCV virally-infected cells confers an epithelial-mesenchymal
transition (EMT) character (Wilson et al., 2012). It is important
to note that in this case, the EMT is accompanied by enhanced
viral replication.

In fact, inflammation-mediated changes on the differentiation
status of the tissue are a factor in the pathology which
accompanies disease. Persistent induction of stemness in the
infected tissue in the presence of chronic inflammation, as seen
in infections of the gut, can likely contribute to carcinogenesis
(Apidianakis and Ferrandon, 2014; Kuo et al., 2016). However,
emerging concept suggests that it may also be beneficial to the
pathogen. Several groups have shown that for some infectious
agents it can play a role during their replication (as in the case
of HBV and HCV), their dissemination, and protection (Masaki
et al., 2013; Nigro et al., 2014; Karakasiliotis and Mavromara,
2015). A more prominent example, the leprosy bacterium infects
preferentially Schwann cells of the nervous system and induces
their reprogramming into stem-like cells. The infected stem-like
cells then migrate to the mesenchyme where they re-differentiate
to mesenchyme tissue allowing for expansion of the infection
(Masaki et al., 2013). The innate immune response has been
shown to precede this reprogramming (Masaki et al., 2014). For
efficient dissemination, the cells need to evade the host immunity
and they do so by inducing an inflammatory response achieved
through the release of factors from the stem-like cells. This
subsequently recruits macrophages that form granulomas able to
bypass immunity and migrate.

The inflammatory response is important to the host organism
as a protective mechanism against pathogen invasion as well
as tissue regeneration through the induction of stemness. In
some cases however, through inflammation, pathogens are
able to escape immune surveillance for their protection and
dissemination with possible consequences to their lifecycle and
replicative potential, as we have seen in the cases of the HBV
and HCV viruses or of bacteria in the intestine or the nervous
system.

REGULATION OF STEM CELLS DURING
TISSUE (RE)GENERATION

Sterile inflammation has also been shown to lead to profound
changes in the differentiation status of the tissue. An example
is the regenerative process which takes place in response to
wound healing. Wound healing requires an ordered sequence
of events ranging from acute inflammation, tissue organization,
and remodeling (Gurtner et al., 2008; Karin and Clevers, 2016).
However, the period of tissue repair varies between the extent of
the damage and the site of the damaged tissue (Meyer et al., 1992;
Gordon et al., 2003; Pitsouli et al., 2009).

Tissue repair following an insult restores health in the tissue
and preserves the state of homeostasis. Regeneration in the
tissue is achieved via the priming of resident slow-cycling stem
cells to adopt a proliferative state and yield transit-amplifying
cells which will differentiate to restore tissue architecture.
Sterile inflammation plays an important role in this process in
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ways which are likely distinct to those seen during infection
(Bezbradica et al., 2016).

The intestine can regenerate very rapidly. Tissue restoration
is mediated via neutrophil infiltration at the site of the
damage. These are responsible for JNK activation and the
priming and proliferation of slow–cycling ISCs (Karin
and Clevers, 2016). Work from Riehl et al. (2000) further
supported the role of inflammatory signals, as administration of
inflammatory cytokines and growth factors following radiation
exposure rescued damaged epithelium via the proliferation
and differentiation of intestinal stem cells (Riehl et al.,
2000). However, homeostasis is sustained via the activation
of developmental and inflammatory pathways which activate
dormant ISCs. For instance, JNK signaling pathway is responsible
for the secretion of IL6 which activates the JAK-STAT pathways
leading to ISC proliferation (Jiang et al., 2009; Liu et al., 2010;
Kuhn et al., 2014).

In the case of the skin epithelium, which also encounters
frequent damage, it is proposed that keratinocytes trigger
the inflammatory phase of the wound healing by secreting
molecules like IL6 and TNFα (Wang et al., 2004; Ryser et al.,
2014; Rittié, 2016). These inflammatory molecules along with
other developmental mediators, such as extracellular matrix
components (Kurbet et al., 2016) signal to the niche of
slow-cycling adult stem cells in order to train them toward
proliferation and ultimate differentiation (Cotsarelis et al., 1990;
Taylor et al., 2000).

Another organ that has a fast-paced regeneration with the
ability to recover its mass even after substantial loss is the
liver (Michalopoulos, 2007). While it remains controversial
whether the adult liver depends on a stem cell population
during homeostatic conditions, various stem cell or progenitor
populations have been described to participate in its regeneration
following injury (Yimlamai et al., 2014; Wang et al., 2015).
Soon after partial hepatectomy, the inflammatory cytokines TNF-
α and IL6 are upregulated at the site of regeneration guiding
hepatocytes to enter mitosis and restore lost tissue. Beyond
the involvement of unipotent mature hepatocytes, which assist
in the repair process of the liver particularly in response to
acute inflammation, liver progenitor cells are also present to
mediate liver repair. This is typically the case in the context of
chronic inflammation, when mature hepatocytes have reached
their replicative limit (Viebahn and Yeoh, 2008; Español-Suñer
et al., 2012). While some controversy exists with regard to the
exact characteristics of liver progenitors (Dollé et al., 2010), they
respond to inflammatory signals following injury to generate
differentiated cells essential for liver regeneration.

Our understanding of the effects of inflammatory signaling
on stem cells, stems mostly from model tissue systems, such
as the intestine, skin and liver. However, the inflammatory
signaling to resident tissue stem cells is corroborated as crucial
to regeneration in more poorly understood tissues and non-
mammalian model systems as well (Apidianakis and Rahme,
2011). In mice, the recently described dclk1 progenitors have
been shown to respond to inflammation during pancreatic
regeneration (Westphalen et al., 2016). There is also extensive
work implicating crosstalk between neural stem cells and
inflammation in mammals and zebrafish (Kizil et al., 2015).

Specifically, during zebrafish brain regeneration, inflammation is
the trigger which initiates neural stem cell proliferation (Kyritsis
et al., 2012).

While inflammation can prime stem cell responses it is
becoming increasingly clear that in certain contexts stem cells
possess immunomodulatory potential. Mesenchymal stem cells
and neural stem cells are the two cell types most often ascribed
with immunomodulatory potential (Kizil et al., 2015; Le Blanc
and Davies, 2015). In both these examples stem cells have
been shown to dampen or alter inflammation with beneficial
outcomes in inflammation-associated disease. Despite the fact
that the mechanisms are still poorly understood there is justified
excitement for the potential application of these properties in
therapeutics.

The crosstalk between sterile inflammation and stem cell
plasticity within a tissue during the wound healing response is
a critical step in the regenerative process. Priming stem cells
that reside in the circulation, in addition to the stem cells of the
regenerating tissue, may also contribute to this process. HSCs
are likely directed to liver and skin following physical damage
(Rennert et al., 2012). It was further suggested that inflammatory
cytokines and growth factors released due to tissue injuries can
stimulate a signaling wave toward bone marrow-residing stem
cells to enter the circulation and inhabit the injured site. These
bone-marrow stem cells and locally residing tissue stem cells hold
the capacity of tissue regeneration. Perhaps more surprisingly,
sterile inflammatory signaling, such as that initiated by IFNγ

and TLR4, plays a role not only in the regeneration of adult
tissue but is a well-conserved regulator in their production during
development (Li et al., 2014; He et al., 2015). These findings
certainly reframe currently held ideas about the evolutionary
function of inflammation.

INFLAMMATORY SIGNALING DURING
DISEASE

In some cases inflammation, particularly where it is chronic,
can lead to the development of disease. The continuous and
often aberrant response of stem cells as a result of this
signaling has been shown to play an important part in this
process. Intestinal stem cells express TLR4 the activation of
which can lead to ER-stress, a trigger for stem cell apoptosis
during necrotizing enterocolitis (Afrazi et al., 2014). In Barrett’s
esophagus Lgr5+ gastric cardia stem cells canmigrate in response
to the inflammatory signaling and are the likely source of the
metaplastic and dysplastic cells observed in the course of the
disease (Quante et al., 2012).

The disease most commonly associated with inflammation
is of course cancer. Multiple studies have produced substantial
evidence suggesting that cancer and inflammation are in many
cases connected, interdependent biological processes (Coussens
and Werb, 2002; Balkwill et al., 2005; Karin, 2006). This is
true in cases where the cancer is associated with microbial or
viral causes, but also in cases where no pathogen is directly
linked. For example, in addition to their mutagenic effects,
carcinogens in tobacco smoke cause damage and chronic
inflammation to the lungs and increase the risk of cancer
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development (Punturieri et al., 2009). Autoimmunity is also
associated with increased tumor development. The chance of
developing colitis-associated cancer or lymphoma is increased
in people suffering from inflammatory bowel or celiac disease,
respectively (Kraus and Arber, 2009; Waldner and Neurath,
2009).

The important bidirectional link between inflammation and
stem cells has direct implications on cancer development.
Studies have suggested that HSC recruitment and differentiation
is directly linked to increased inflammation. For example,
CD34+ progenitor cells are recruited to sites with increased
inflammation, probably using the same adhesion and chemokine
receptors used for stem cell homing to the bone marrow (PSGL-
1, CXCL12, α4β1 integrin, CD44, and others) (Blanchet and
McNagny, 2009). Inflammatory mediators seem to have a vital
role in inducing expression of stemness-related genes. The
expression of stemness-related genes in cancer is likely linked
to the generation and evolution of the compartment of cells
able to regenerate tumor diversity, the cancer stem cells (CSCs)
(Kuo et al., 2016; Uthaya Kumar et al., 2016). Upregulation of
OCT4 has been shown to contribute to tumor cell migration and
resistance to cancer therapeutics (Ma et al., 2011; Chang et al.,
2015, 2016; Bhatt et al., 2016).

While inflammation is one of the stimuli suggested to initiate
such transcriptional changes, once CSCs form, evidence suggests
that they can serve to further amplify inflammatory signaling.
Chemoresistant CSCs were found to express proinflammatory
gene signatures, mainly due to the sustained activation of
NF-kB and interferon-stimulated regulatory element (ISRE)-
dependent pathways. Notably, tumor-associated macrophages in
this environment protect tumor cells from chemotherapeutic
agents by promoting and enhancing the tumor growth properties
of CSCs (Jinushi et al., 2011). A proinflammatory signature has
also been exhibited by leukemia stem cells which can promote
chemoresistance by means of metabolic adaptation (Ye et al.,
2016). Thus, in some cases, tumors respond to chemotherapy by
altering the immunological profile of the microenvironment in
part due to the direct action of CSCs, thus further enabling tumor
growth (Jinushi et al., 2011; Jinushi, 2014).

In more rare cases recruited circulating stem cells, subjected
to chronic inflammation in a tissue, have been proposed to act
as cancer-initiating cells themselves. Houghton et al. (2004),
used a mouse model to demonstrate an extremely important

connection between chronic inflammation, hematopoietic stem-
cell recruitment and cancer development at the site of
inflammation (Houghton et al., 2004). In this study, infection
by Helicobacter pylori in the mouse caused the recruitment
and subsequent engraftment of bone marrow derived stem
cells (BMDC) into the stem cell compartment of the gastric
mucosa. Within their new, inflamed niche, these engrafted stem
cells accumulated mutations, and eventually gave rise to gastric
tumors. This study showcased a direct connection between
chronic inflammation, stem cell recruitment and increased
cancer development (Houghton et al., 2004).

CONCLUSION

Inflammatory signaling promotes cellular responses with critical
ramifications during infection, tissue generation/regeneration,
cancer and other diseases. We summarize here work which
demonstrates that stem cells can respond to and participate
in inflammatory cascades in a direct manner. They express
receptors which detect PAMPs and DAMPs, the initial triggers
of the inflammatory response. They are able to mobilize and
proliferate in response to inflammation in addition to producing
cytokines which further amplify the response. Accumulating
evidence suggests that in cases where a pathogen is involved,
the changes in stemness mediated by inflammation also have a
profound influence on the lifecycle of the pathogen. This is an
area which merits further research. Understanding the crosstalk
between stem cells and inflammation is an important piece of the
puzzle which refines our understanding of the evolutionary roles
of inflammation. Furthermore, it provides indispensable tools in
our quest to harness knowledge into useful therapeutics.
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