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Abstract

Maternal nutritional status influences fetal development and long-term risk for adult non-

communicable diseases. However, the underlying mechanisms remain poorly understood.

We examined whether biomarkers for metabolism and inflammation during pregnancy were

associated with maternal health and with child biomarkers and health at 9–12 years of age

in 44 maternal-child dyads from the Supplementation with Multiple Micronutrients Interven-

tion Trial (SUMMIT, ISRCTN34151616) in Lombok, Indonesia. Archived blood for each

dyad from maternal enrollment, later in pregnancy, postpartum, and from children at 9–12

years comprised 132 specimens. Multiplex microbead immunoassays were used to quantify

vitamin D-binding protein (D), adiponectin (A), retinol-binding protein 4 (R), C-reactive pro-

tein (C), and leptin (L). Principal component analysis (PCA) revealed distinct variance pat-

terns, i.e. principal components (PC), for baseline pregnancy, bp.pc1.D#A#R# and bp.pc2.

C#L"; combined follow-up during pregnancy and postpartum, dp-pp.pc1.D"#A"R"#L# and

dp-pp.pc2.A"C"L"; and children, ch.pc1.D"R"C" and ch.pc2.D#A"L". Maternal multiple

micronutrient (MMN) supplementation led to an association of baseline maternal bp.pc2.

C#L" with decreased post-supplementation maternal dp-pp.pc2.A"C"L" (p = 0.022), which

was in turn associated with both increased child ch.pc1.D"R"C" (p = 0.036) and decreased

child BMI z-score (BMIZ) (p = 0.022). Further analyses revealed an association between

maternal dp-pp.pc1.D"#A"R"#L# and increased child BMIZ (p = 0.036). Child ch.pc1.

D"R"C" was associated with decreased birth weight (p = 0.036) and increased child BMIZ

(p = 0.002). Child ch.pc2.D#A"L" was associated with increased child BMIZ (p = 0.005),

decreased maternal height (p = 0.030) and girls (p = 0.002). A pattern of elevated maternal

adiponectin and leptin in pregnancy was associated with increased C-reactive protein,
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vitamin A, and D binding proteins pattern in children, suggesting biomarkers acting in con-

cert may have qualitative as well as quantitative influence beyond single biomarker effects.

Patterns in pregnancy proximal to birth were more associated with child status. In addition,

child patterns were more associated with child status, particularly child BMI. MMN supple-

mentation affects maternal biomarker patterns of metabolism and inflammation in preg-

nancy, and potentially in the child. However, child nutrition conditions after birth may have a

greater impact on metabolism and inflammation.

Introduction

Emerging epidemiological evidence has shown that the risk for non-communicable diseases

(NCDs) during childhood or as an adult is mediated in part by maternal nutrition in pregnancy

and fetal growth [1–3]. Studies in animal models indicate that alterations in nutritional, metabolic,

immune and hormonal milieu in-utero profoundly affect long-term health of the offspring,

including increased risk for NCDs such as diabetes, obesity or cardiovascular disease [4,5]. Knowl-

edge of the underlying mechanisms of these effects remains limited, although evidence is growing

for the pivotal roles of metabolism-related hormones and inflammatory mediators [6,7].

Adipocytokines, including leptin, adiponectin, and retinol binding protein 4 (RBP4), play

an important role in regulating metabolism, energy homeostasis and inflammatory responses

[8–11]. Leptin is involved in body weight control by acting on the satiety center in the hypo-

thalamus [12]. Leptin also promotes fetal growth and regulates fetal adipose tissue develop-

ment [13]. Adiponectin plays a role in the catabolism of fatty acids and carbohydrates,

improvement of insulin sensitivity and reduction of inflammation [14]. RBP4, previously

thought to act as a specific transport protein for retinol, has been added to the family of adipo-

cytokines given its role in obesity-induced insulin resistance [15]. Increased concentrations of

both leptin and RBP4 have been associated with increased body mass index (BMI) [16,17],

while adiponectin concentration was negatively associated with BMI [18]. Morevover, elevated

concentrations of these adipocytokines during pregnancy have also been associated with

adverse conditions, including gestational diabetes, preeclampsia and intrauterine growth

restriction (IUGR) [19–22]. A previous study reported that maternal leptin and adiponectin

concentrations were correlated with fetal leptin and adiponectin concentrations [23].

Inflammatory markers have been associated with increased risk of cardiovascular disease

[24]. Specifically, higher C-reactive protein (CRP) concentrations in pregnant women were

associated with increased risks for preterm birth and low birth weight (LBW) newborns

[25,26], as well as elevated BMI in children [27]. Vitamin D binding protein (VDBP), previ-

ously known as a transport protein for vitamin D and as a regulator of vitamin D metabolism

[28], has recently been shown to mediate inflammation and macrophage activation [29].

Maternal vitamin D status was reported to have an impact on birth weight and offspring

immunity [30,31].

Multiple dietary factors, including micronutrients, have been reported to modulate leptin,

adiponectin, RBP4, CRP, and VDBP concentrations [32–37]. Maternal expression patterns for

these biomarkers may be associated with expression patterns in their children. To examine

these relationships, we studied mother-child dyads from the Supplementation with Multiple

Micronutrients Intervention Trial (SUMMIT) in Lombok, Indonesia wherein blood speci-

mens and the relevant data were available from pregnancy as well as their children 9–12 years

after birth. The SUMMIT, a randomized trial comparing maternal multiple micronutrients

(MMN) supplementation to iron and folic acid (IFA), showed that maternal MMN reduced
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early infant mortality and LBW [38]. The study also identified multiple risk factors for poor

fetal development [39]. A follow-up study of children at 9–12 years of age indicated long term

effects of MMN on child cognitive development. We hypothesized that in this cohort: 1.

Maternal nutritional status is associated with maternal biomarkers; 2. Maternal MMN supple-

mentation influenced maternal biomarkers; 3. Maternal biomarkers are associated with child

biomarkers; 4. Child biomarkers are associated with child health outcomes (Fig 1).

Materials and methods

Data collection

The SUMMIT (ISRCTN34151616) was approved by the National Institute of Health Research

and Development of the Ministry of Health of Indonesia, the Provincial Planning Department

of Nusa Tenggara Barat Province, and the Johns Hopkins Joint Committee on Clinical Investi-

gation, Baltimore, USA; the ten-year follow-up study was approved by the University of

Mataram Ethical Research Committee as a certified Institutional Review Board of the National

Institute of Health Research and Development of the Ministry of Health of Indonesia; the cur-

rent study of SUMMIT archived materials was also approved by the Eijkman Institute

Research Ethics Commission. Plasma specimens from pregnant women were collected at

enrolment before supplementation (baseline) and follow-up specimens at one of four

Fig 1. Conceptual framework.

https://doi.org/10.1371/journal.pone.0216848.g001
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subsequent time points: one month after enrolment, 36 weeks of gestation, one week postpar-

tum, and 12 weeks postpartum (post-supplementation) [40]. Maternal nutritional status was

measured at enrollment by mid-upper arm circumference (MUAC), maternal height and

maternal hemoglobin (Hb). Child status at age 9–12 years was characterized by height and

weight which were converted to BMI-for-age z-score (BMIZ) following World Health Organi-

zation norms [41], and by systolic blood pressure (SBP) and diastolic blood pressure (DBP).

Sample selection

We selected 414 mother-child dyads from the SUMMIT with plasma samples from three time

points: maternal pre-supplementation, maternal post-supplementation, and the child at age

9–12 years. From these, we further selected 44 dyads, consisting of 22 each of the MMN and

the IFA groups, who had participated in the studies on maternal cognition [40], cognition at

pre-school age [40], and cognition at 9–12 years [42]. This was to optimize the spectrum of

outcomes over time that could be included in analyses. Within these 44 dyads, maternal

plasma consisted of baseline pre-supplementation samples paired with post-supplementation

samples. The post-supplementation samples were collected during pregnancy (either four

weeks after enrolment or at 36 weeks gestational age) or postpartum (either one week or 12

weeks postpartum). The post-supplementation during pregnancy group consists of 18 samples

(9 from MMN and 9 from IFA groups) and the post-supplementation postpartum group con-

sists of 23 samples (13 from MMN and 13 from IFA groups). A total of 132 maternal and child

plasma specimens were analyzed for VDBP, adiponectin, RBP4, CRP, and leptin (Fig 2).

Multiplex immunoassay

Quantification of leptin, adiponectin, RBP4, CRP, and VDBP was conducted using Luminex1

Magnetic Screening Assays (Catalogue number LXSAHM-8, R&D System, Minneapolis, MN,

USA) following the manufacturer’s instructions. Plasma samples were diluted according kit

requirements and incubated with antibody-coated microspheres, followed by biotinylated

detection antibody, and phycoerythrin-labeled streptavidin. The bead immuno-complexes

were read using a MagPix CCD Imager (Luminex, Austin, TX, USA) set to the following

parameters: events (beads) = 50, sample size = 50 μl. Biomarker concentrations were calculated

based on the average of the median fluorescence intensity (MFI) of each duplicate sample.

Statistical analysis

Data normality for biomarkers was assessed by the Shapiro Wilk test and QQ plots. Biomark-

ers concentrations were log-transformed to normalize distributions as needed. Normally dis-

tributed variables were presented as the mean (±standard deviation). Non-normally

distributed variables were presented as the median (interquartile range). Principal component

analysis (PCA) was performed to identify specific components of correlation between the five

biomarkers as putative composite biomarkers. A component was retained following cross vali-

dation by meeting at least two of three criteria: (1) eigenvalue cutoffs defined by Horn’s parallel

analysis [43], (2) being robust to outlier prediction based on the squared residual distance Q

and Hotelling T2 distance as well as pattern of variance explained, (3) frequency of associations

in regression analyses that exceeds what would be expected as assessed by the Fisher Exact test.

These criteria yielded two retained components for all PCA conducted. Factor loadings greater

than absolute value of 0.40 were used to identify biomarkers that loaded on each component

as this threshold would imply the observed variable shares more than 15% of its variance

(0.402 = 0.16) with the component [44].
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The principal component (PC) scores for retained components were computed for each

specimen type (baseline, post-supplementation, and child), then normalized to a mean of 0

and standard deviation of 1 and used as either the independent or dependent variable in regres-

sion models. To include post-supplementation PC scores in regression analyses, we merged the

Fig 2. Participant and specimen selectionflow chart. IFA = iron folic acid; MMN = multiple micronutrients. �44 paired maternal-child plasma specimens were

selected, consisting of 22 each of the MMN and the IFA groups, with data for maternal cognition, cognition at pre-school age, and cognition at 9–12 years [40].

https://doi.org/10.1371/journal.pone.0216848.g002
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normalized scores from samples collected during pregnancy and postpartum. Multiple linear

regression was used to determine the association of the following variables: maternal PC scores

at baseline with maternal nutritional status (association 1), maternal PC scores at baseline with

post-supplementation (association 2), maternal PC scores at each time point with child PC

scores (association 3), and PC scores of each group with child health outcomes (association 4).

Analyses for association 1 were a regression model with maternal PCs at baseline as the depen-

dent variable and baseline maternal hemoglobin, maternal height, maternal mid-upper arm cir-

cumference (MUAC), and gestational age at enrolment as independent variables. Association 2

modeled maternal PCs at post-supplementation as the dependent variable and baseline mater-

nal PCs, maternal hemoglobin, maternal height, maternal mid-upper arm circumference

(MUAC), and type of supplement (MMN or IFA) as the independent variables. We analyzed

the interaction of MMN supplementation with maternal PCs at baseline and maternal PCs at

post-supplementation. In the regression model for association 3, the dependent variables were

child PCs, while the independent variables were maternal PCs at baseline and post-supplemen-

tation, and baseline maternal hemoglobin, maternal height, maternal MUAC, birth weight,

child gender (boy or girl), and type of supplement (MMN or IFA). Association 4 modeled

maternal and child PCs, baseline maternal hemoglobin, maternal height, maternal MUAC,

birth weight, child gender (boy or girl), and type of supplement (MMN or IFA) as the indepen-

dent variables when the BMIZ was the dependent variable, with additional adjustment for child

BMIZ when the systolic blood pressure (SBP) and diastolic blood pressure (DBP) were the

dependent variables. All regression analyses were performed using R-Project for Statistical

Computing version 3.4.0 and SAS 9.4. A p-value of less than 0.05 was considered significant.

Results

Baseline characteristics of subjects

The baseline characteristics of mother-child dyads were collected during the SUMMIT and its

follow up studies, as shown in Table 1. Pregnant women who received MMN supplementation

had similar characteristics to those receiving IFA. The characteristics of the children at 9–12

years of age whose mothers received MMN or IFA supplementation were also similar to the

overall SUMMIT enrollees, as were the general characteristics of women in this study [38,45].

Biomarker concentrations of women and children

The median values of the selected biomarkers are summarized in Table 2. The biomarker con-

centrations for each supplement are presented in S1 Table.

Principal Component Analysis (PCA) to identify composite biomarker

components

Table 3 shows the results of principal component analysis. The first two PCs were retained for

further analyses based on the criteria detailed in Materials and Methods. For maternal PCA,

the first two PCs explained 60% (PC1 = 39.5%, PC2 = 20.5%), 77.6% (PC1 = 52.1%, PC2 =

25.5%), and 60.5% (PC1 = 36.9%, PC2 = 23.6%) of the total variance for baseline, post-supple-

mentation during pregnancy and post-supplementation postpartum groups, respectively. For

child PCA, the first two PCs explained 63.2% (PC1 = 40.0%, PC2 = 23.2%). Each group had

distinctive component patterns based on biomarker loadings. For the maternal baseline preg-

nancy (bp) group, PC1 consisted of negative loadings for VDBP (D), adiponectin (A), and

RBP4 (R) (bp.pc1.D#A#R#), while PC2 consisted of negative loadings for CRP (C) and positive

for leptin (L) (bp.pc2.C#L"). The PC1 for post-supplementation during pregnancy (dp) was
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comprised of positive loadings for VDBP, adiponectin, and RBP4 (dp.pc1.D"A"R"), while

PC2 was comprised of positive loadings for adiponectin and leptin (dp.pc2.A"L"). For the

post-supplementation postpartum group (pp), PC1 was characterized by negative loadings for

VDBP, RBP4, and leptin (pp.pc1.D#R#L#), and PC2 by positive loadings for adiponectin, CRP

and leptin (pp.pc2.A"C"L"). The child (ch) PC1 consisted of positive loadings for VDBP,

RBP4 and CRP (ch.pc1.D"R"C"), while the PC2 consisted of negative loadings for VDBP, and

positive for adiponectin and leptin (ch.pc2.D#A"L"). The complete principal component anal-

ysis results of maternal biomarkers and child biomarkers are presented in S2–S5 Tables.

Associations of maternal baseline nutrition characteristics with maternal

baseline pregnancy components

Linear regression analyses between maternal PCs at baseline and maternal nutrition status

showed that PC1 bp.pc1.D#A#R# had a mild negative association with reduced MUAC in

both unadjusted (β = −0.017, p = 0.036) and adjusted (β = −0.020, p = 0.025) models. Mean-

while, PC2 bp.pc2.C#L" displayed a mild positive association with increased MUAC in

Table 1. Baseline characteristics of mother-child dyads.

Characteristics MMN (N = 22) IFA (N = 22) p-value

Mothers

Age (years) ¶ 25.0 (20.0–26.5) 25.5 (20.5–30.0) 0.251

Parity (number of births) ‡

0 8 (36) 5 (23) 0.509

� 1 14 (64) 17 (77)

Height (cm) ¶ 151.4 (149.3–153.6) 149.8 (148.7–152.6) 0.231

Mid-upper arm circumference (mm) ¶ 239.5 (228.2–253.0) 245.0 (230.2–253.1) 0.503

Haemoglobin at enrolment (g/dL) ¶ 11.1 (10.3–12.0) 11.3 (10.4–11.9) 0.842

Gestational age at enrolment (weeks) ¶ 16.5 (9.5–24.1) 14.6 (12.3–18.7) 0.734

Children

Gender (M/F) 13/9 10/12 0.546

BMI-for-age z-scores † −0.7x (±1.0x) −0.8x (±1.1x) 0.678

Systolic blood pressure (mmHg) † 110.0 (±11.3) 104.4 (±7.8) 0.525

Diastolic blood pressure (mmHg) † 65.0 (±9.8) 63.4 (±5.3) 0.067

Birth weight (g) ¶ 3300 (2925–3500) 3000 (2825–3450) 0.350

Gestational age at birth (weeks) ¶ 39.1 (36.9–40.1) 39.6 (38.1–40.9) 0.231

¶: median (interquartile range).
†: mean (±standard deviation).
‡: n (percentage). MMN: multiple micronutrients supplement. IFA: iron and folic acid supplement.

https://doi.org/10.1371/journal.pone.0216848.t001

Table 2. Biomarker concentrations of women during baseline, post-supplementation during pregnancy, post-supplementation at postpartum, and in children.

Biomarker Baseline (N = 44) Post-supplementation during pregnancy (N = 18) Post-supplementation at postpartum (N = 26) Children (N = 44)

VDBP (μg/mL) 52.8 (32.6–86.0) 34.1 (21.3–49.0) 39.5 (29.4–102.4) 19.1 (15.9–24.7)

Adiponectin (μg/mL) 3.0 (2.0–4.1) 2.5 (2.1–2.9) 3.3 (2.3–4.3) 5.2 (4.6–6.5)

RBP4 (μg/mL) 27.3 (22.1–35.9) 20.3 (16.6–32.3) 39.4 (28.8–47.1) 24.2 (19.6–28.9)

CRP (μg/mL) 2.0 (0.6–3.4) 1.3 (0.4–2.2) 0.5 (0.1–1.2) 0.2 (0.1–0.6)

Leptin (ng/mL) 8.2 (4.8–13.8) 15.0 (10.5–21.4) 3.5 (2.1–5.7) 3.1 (2.4–5.8)

VDBP: vitamin D binding protein. RBP4: retinol binding protein. CRP: C-reactive protein. Data in median (interquartile range).

https://doi.org/10.1371/journal.pone.0216848.t002
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unadjusted analysis (β = 0.013, p = 0.023), and tendency, though not significant, for association

in adjusted analysis (β = 0.012, p = 0.068) (Table 4). Regression analyses between individual

maternal biomarkers and maternal nutritional status are presented in S6 Table.

Associations of maternal baseline pregnancy components, maternal nutrition,

and multiple micronutrient supplementation with post-supplementation

components

Regression analyses for the associations between maternal PCs at baseline and at post-supple-

mentation are presented in Table 5. Baseline maternal PC1 bp.pc1.D#A#R# was negatively

associated with the post-supplementation maternal PC2 dp-pp.pc2.A"C"L" (β = −0.315,

p = 0.028). A negative association was also found between the baseline maternal PC2 bp.pc2.

C#L" and the post-supplementation maternal PC1 dp-pp.pc1.D"#A"R"#L# (β = −0.518,

p = 0.022). Of particular interest were analyses incorporating an interaction term between

Table 3. Principal component analysis of biomarkers for maternal baseline, maternal follow-up, and for children.

Baseline (N = 44) Post-

supplementation

during pregnancy

(N = 18)

Post-

supplementation at

postpartum

(N = 26)

Children (N = 44)

PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2

Eigenvalues 1.974 1.026 2.607 1.277 1.846 1.181 1.997 1.163

% variance accounted for 39.484 20.518 52.134 25.540 36.927 23.620 39.950 23.268

Loadings

Log VDBP −0.407 0.056 0.586 −0.057 −0.585 0.170 0.464 −0.529

Log Adiponectin −0.569 −0.222 0.427 0.533 0.310 0.536 0.157 0.609

Log RBP4 −0.519 0.368 0.496 0.303 −0.609 −0.077 0.600 0.086

Log CRP −0.390 −0.679 0.389 −0.397 0.111 0.689 0.497 −0.226

Log Leptin −0.299 0.592 −0.280 0.680 −0.422 0.452 0.391 0.540

PC: principal component. VDBP: vitamin D binding protein. RBP4: retinol binding protein. CRP: C-reactive protein.

Principal component analysis (PCA) was performed to identify composite biomarker components. Components

were retained based on criteria described in Materials and Methods. Loadings>0.40, in bold, were used to define

and characterize the component [44].

https://doi.org/10.1371/journal.pone.0216848.t003

Table 4. Associations of maternal baseline nutrition characteristics with maternal baseline pregnancy components.

bp.pc1.D#A#R# (n = 44) bp.pc2.C#L" (n = 44)

Unadjusted Adjusted Unadjusted Adjusted

B p B p B p B p
Hb at baseline 0.005 0.975 0.036 0.835 0.162 0.148 0.065 0.617

Height (cm) -0.075 0.263 -0.053 0.400 -0.008 0.865 -0.016 0.732

MUAC (mm) -0.017 0.036 -0.02 0.025 0.013 0.023 0.012 0.068

Gestational age (weeks) -0.043 0.146 -0.052 0.095 -0.014 0.499 -0.001 0.964

PC: principal component; bp.pc1.D#A#R#: baseline maternal PC1; bp.pc2.C#L": baseline maternal PC2; D: vitamin D binding protein; A: adiponectin; R: retinol

binding protein 4; C: C-reactive protein; L: leptin; #: decrease; ": increase; B: coefficient of regression; Hb: hemoglobin; MUAC: mid-upper arm circumference.

Association analyses were performed using unadjusted and adjusted linear models. For adjusted regressions, the dependent variables were baseline maternal PCs and

the independent variables were maternal Hb at baseline, maternal height, maternal MUAC at baseline, and gestational age at enrolment. Significant p values <0.05 are

in bold.

https://doi.org/10.1371/journal.pone.0216848.t004
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each PC and supplementation type (IFA or MMN), which revealed that MMN caused baseline

bp.pc2.C#L" to be negatively associated with post-supplementation maternal PC2 dp-pp.pc2.

A"C"L", whereas these components were positively associated for the IFA group (p interac-

tion = 0.022) (Fig 3A), Analysis of maternal baseline and post-supplementation biomarkers is

shown in S7 Table.

Associations of maternal components and child characteristics with child

biomarker components

We found that post-supplementation maternal PC2 dp-pp.pc2.A"C"L" was positively associ-

ated with child PC1 ch.pc1.D"R"C" (β = 0.439, p = 0.036) (Fig 3B). As shown in Table 6, the

child PC1 ch.pc1.D"R"C" was also negatively associated with birth weight (β = −0.826,

p = 0.036). The child PC2 ch.pc2.D#A"L" showed a mild negative association with maternal

height (β = −0.097, p = 0.030), and strong negative association with male gender (β = −0.958,

p = 0.002) (Table 6). The association of individual child biomarkers with maternal biomarkers

at baseline and post-supplementation are shown in S8 Table and S9 Table.

Association of child health outcomes with maternal and child biomarker

components

We then analyzed the association of maternal and child biomarker PC scores with child health

outcomes (BMIZ, SBP, and DBP) as seen in Table 7. We found that child BMIZ was negatively

associated with the maternal dp-pp.pc2.A"C"L" (β = –0.302, p = 0.022), and positively associ-

ated with maternal pp.pc1.D"#A"R"#L# (β = 0.224, p = 0.036), ch.pc1.D"R"C" (β = 0.347,

p = 0.002), and ch.pc2.D#A"L" (β = 0.515, p = 0.005) (Fig 4). With respect to maternal charac-

teristics, we observed that child BMIZ was negatively associated with baseline maternal Hb

(β = –0.280, p = 0.010), and mildly positively associated with maternal MUAC (β = 0.014,

p = 0.027). No significant associations were found with child SBP and DBP. The association of

Table 5. Associations of maternal baseline pregnancy components, maternal nutrition, and multiple micronutrient supplementation with and post-supplementa-

tion components.

dp-pp.pc1.D"#A"R"#L# (n = 44) dp-pp.pc2.A"C"L" (n = 44)

Unadjusted Adjusted Unadjusted Adjusted

B p B p B p B p
bp.pc1.D#A#R# -0.269 0.088 -0.29 0.083 -0.284 0.015 -0.315 0.028

bp.pc2.C#L" -0.516 0.016 -0.518 0.022 0.084 0.616 0.066 0.719

Hb at baseline (g/dL) -0.241 0.132 -0.132 0.421 0.062 0.61 0.042 0.762

Height (cm) -0.07 0.312 -0.111 0.100 -0.015 0.772 -0.026 0.646

MUAC (mm) -0.011 0.204 -0.003 0.731 0.009 0.166 0.001 0.889

MMN supplementation 0.648 0.14 0.723 0.100 -0.121 0.718 -0.279 0.445

Interaction model:

bp.pc1.D#A#R#�MMN -0.281 0.376 −0.257 0.395 -0.121 0.604 −0.149 0.531

bp.pc2.C#L"�MMN 0.240 0.558 0.315 0.438 -0.799 0.016 −0.761 0.022

PC: principal component; bp.pc1.D#A#R#: baseline maternal PC1; bp.pc2.C#L": baseline maternal PC2; dp-pp.pc1.D"#A"R"#L#: post-supplementation maternal PC1;

dp-pp.pc2.A"C"L": post-supplementation maternal PC2; D: vitamin D binding protein; A: adiponectin; R: retinol binding protein 4; C: C-reactive protein; L: leptin; #:

decrease; ": increase; "#: increased post-supplementation during pregnancy and decreased post-supplementation at postpartum; B: coefficient of regression; Hb:

hemoglobin; MUAC: mid-upper arm circumference; MMN: multiple micronutrients. Analysis were performed using unadjusted and adjusted linear models. For

adjusted regressions, the dependent variables were post-supplementation maternal PCs, and the independent variables were baseline maternal PCs, maternal Hb at

baseline, maternal height, maternal MUAC at baseline, and MMN/IFA supplementation. For interaction (�) we added the terms baseline maternal PC1�MMN/IFA

supplementation and baseline maternal PC2�MMN/IFA supplementation. Significant p values <0.05 are in bold.

https://doi.org/10.1371/journal.pone.0216848.t005

PLOS ONE Maternal biomarkers and micronutrients are associated with child biomarkers and nutritional status

PLOS ONE | https://doi.org/10.1371/journal.pone.0216848 August 7, 2020 9 / 21

https://doi.org/10.1371/journal.pone.0216848.t005
https://doi.org/10.1371/journal.pone.0216848


Fig 3. A. Maternal multiple micronutrient supplementation affects associations between maternal biomarker components. Interaction between baseline

maternal PC2 bp.pc2.C#L" and supplementation type with post-supplementation maternal PC2 dp-pp.pc2.A"C"L". B. Effect of maternal biomarker

component on child biomarker component. Association of maternal PC2 dp-pp.pc2.A"C"L" and child PC1 ch.pc1.D"R"C". Blue line and blue dots: MMN

supplementation; Red line and red dots: IFA supplementation.

https://doi.org/10.1371/journal.pone.0216848.g003

Table 6. Association of maternal components and child characteristics with child biomarker components.

ch.pc1.D"R"C" (n = 44) ch.pc2.D#A"L" (n = 44)

Unadjusted Adjusted Unadjusted Adjusted

B p B p B p B p
bp.pc1.D#A#R# -0.094 0.546 0.243 0.195 0.041 0.732 -0.010 0.932

bp.pc2.C#L" 0.303 0.156 0.292 0.237 0.230 0.160 -0.043 0.774

dp-pp.pc1.D"#A"R"#L# 0.011 0.939 0.204 0.242 -0.040 0.727 -0.103 0.330

dp-pp.pc2.A"C"L" 0.392 0.046 0.439 0.036 0.189 0.214 0.168 0.182

Hb at baseline (g/dL) 0.220 0.158 0.015 0.932 -0.124 0.301 -0.072 0.511

Height (cm) 0.066 0.324 0.090 0.204 -0.125 0.012 -0.097 0.030

MUAC (mm) 0.018 0.023 0.018 0.091 0.005 0.441 0.001 0.925

Birth weight (kg) -0.685 0.074 -0.826 0.036 0.203 0.496 0.347 0.142

Gender: Boy -0.035 0.936 0.496 0.299 -0.566 0.082 -0.958 0.002

MMN supplementation -0.073 0.866 -0.092 0.841 0.006 0.986 0.328 0.249

PC: principal component; bp.pc1.D#A#R#: baseline maternal PC1; bp.pc2.C#L": baseline maternal PC2; dp-pp.pc1.D"#A"R"#L#: post-supplementation maternal PC1;

dp-pp.pc2.A"C"L": post-supplementation maternal PC2; ch.pc1.D"R"C": child PC1; ch.pc2.D#A"L": child PC2; D: vitamin D binding protein; A: adiponectin; R:

retinol binding protein 4; C: C-reactive protein; L: leptin; #: decrease; ": increase; "#: increased post-supplementation during pregnancy and decreased post-

supplementation at postpartum; B: coefficient of regression; Hb: hemoglobin; MUAC: mid-upper arm circumference; MMN: multiple micronutrients. Analysis was

performed using unadjusted and adjusted linear models. For adjusted regressions, the dependent variables were child PCs, and the independent variables were baseline

maternal PCs, post-supplementation maternal PCs, maternal Hb at baseline, maternal height, maternal MUAC at baseline, birth weight, child’s gender (boy/girl), and

MMN/IFA supplementation. Significant p values <0.05 are shown in bold.

https://doi.org/10.1371/journal.pone.0216848.t006
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child health outcome with maternal biomarkers and child biomarkers are shown in S10 Table

(maternal biomarkers at baseline) and S11 Table (maternal biomarkers at post-supplementa-

tion) and S12 Table (child biomarkers).

Discussion

To our knowledge, few studies have explored the association of maternal metabolic biomarkers

during pregnancy and postpartum with child metabolic biomarkers at age 9–12 years. More-

over, because biomarkers may not work independently, but in concert, potential interactions

between composite biomarker components and outcomes may better represent the complexity

of their effects. We therefore utilized PCA to construct composite components of biomarkers

that represented their covariance structure and analyzed the associations of the resulting com-

ponents and other characteristics, with downstream components and health indicators.

PCA showed that maternal biomarkers at baseline and post-supplementation during preg-

nancy and postpartum had distinctive component structures, indicating that gestational age

may influence the maternal biomarker patterns. We found that increased maternal MUAC

was associated with lower baseline maternal PC1 bp.pc1.D#A#R#. This is consistent with pre-

vious reports where nutritional status measured by BMI was positively correlated with leptin,

adiponectin, and RBP4 concentrations [46–48], though these studies were not done in preg-

nant women.

We also found that maternal biomarker PCs at baseline were associated with biomarker

PCs at post-supplementation, although associations at these timepoints between individual

Table 7. Associations of maternal and child components and nutritional characteristics with child body mass index and blood pressure.

Child’s outcome

BMIZ (n = 44) SBP (n = 43) DBP (n = 43)

Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted

B p B p B p B p B P B p
bp.pc1.D#A#R# -0.063 0.581 0.088 0.424 0.564 0.609 1.100 0.445 0.486 0.571 0.853 0.438

bp.pc2.C#L" 0.081 0.610 0.114 0.429 1.272 0.415 1.050 0.606 0.186 0.879 -0.427 0.783

dp-pp.pc1.D"#A"R"#L# 0.144 0.191 0.224 0.036 1.352 0.201 1.968 0.185 1.222 0.136 1.369 0.227

dp-pp.pc2.A"C"L" -0.067 0.649 -0.302 0.022 -1.954 0.164 -2.788 0.126 -0.432 0.695 -0.605 0.658

ch.pc1.D"R"C" 0.368 0.001 0.347 0.002 1.991 0.064 2.123 0.199 1.696 0.042 0.894 0.474

ch.pc2.D#A"L" 0.163 0.269 0.515 0.005 1.113 0.441 2.097 0.428 2.289 0.037 2.403 0.237

Hb at baseline (g/dL) -0.155 0.176 -0.280 0.010 0.273 0.807 0.594 0.692 -0.042 0.962 1.073 0.352

Height (cm) 0.061 0.210 0.063 0.165 0.314 0.509 0.328 0.592 0.042 0.909 0.402 0.392

MUAC (mm) 0.009 0.125 0.014 0.026 0.030 0.612 0.018 0.842 0.027 0.558 -0.013 0.851

Birth weight (kg) 0.000 0.540 -0.046 0.852 0.476 0.864 2.667 0.415 -2.179 0.309 -0.912 0.714

Gender: Boy -0.277 0.381 0.540 0.104 -1.077 0.728 -0.715 0.875 -2.988 0.211 -2.332 0.503

MMN supplementation 0.132 0.678 -0.080 0.766 5.637 0.063 3.684 0.322 1.592 0.508 0.587 0.835

Child BMIZ 4.064 0.007 1.035 0.670 3.444 0.003 1.990 0.288

PC: principal component; bp.pc1.D#A#R#: baseline maternal PC1; bp.pc2.C#L": baseline maternal PC2; dp-pp.pc1.D"#A"R"#L#: post-supplementation maternal PC1;

dp-pp.pc2.A"C"L": post-supplementation maternal PC2; ch.pc1.D"R"C": child PC1; ch.pc2.D#A"L": child PC2; D: vitamin D binding protein; A: adiponectin; R:

retinol binding protein 4; C: C-reactive protein; L: leptin; #: decrease; ": increase; "#: increased post-supplementation during pregnancy and decreased post-

supplementation at postpartum; B: coefficient of regression; Hb: hemoglobin; MUAC: mid-upper arm circumference; MMN: multiple micronutrients; BMI: body mass

index; SBP: systolic blood pressure; DBP: diastolic blood pressure. Analysis was performed using unadjusted and adjusted linear models. For adjusted regressions, the

dependent variables were BMIZ, SBP, DBP, and the independent variables were baseline maternal PCs, post-supplementation maternal PCs, child PCs, maternal Hb at

baseline, maternal height, maternal MUAC at baseline, birth weight, child’s gender (boy/girl), MMN/IFA supplementation, and child BMIZ for models with SBP and

DBP as dependent variables. Significant p values <0.05 are indicated in bold.

https://doi.org/10.1371/journal.pone.0216848.t007
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biomarkers were observed only for adiponectin and RBP4 (S8 Table). This suggests that bio-

markers may indeed have stronger influence working in concert as components in a net-

worked biological system. In this context it is intriguing that maternal MMN supplementation

interacted with maternal baseline PC bp.pc2.C#L" to strongly decrease post-supplementation

PC dp-pp.pc2.A"C"L". This is consistent with reports of vitamin C and E supplementation

reducing CRP concentrations [36,49], and vitamin D supplementation reducing serum leptin

[50].

We observed that maternal PC dp-pp.pc2.A"C"L" was associated with higher child PC ch.

pc1.D"R"C" at 9–12 years of age and with lower child BMIZ. This suggests co-elevation of adi-

ponectin, CRP, and leptin in pregnancy may lead to co-elevation of VDBP, RBP4, and CRP in

the child. Moreover, maternal MMN might therefore tend to decrease VDBP, RBP4, and CRP

in the child, which could favor lower BMIZ, as we observed in Table 7, and possibly leaner

growth. However, we note that a decrease in PC dp-pp.pc2.A"C"L" as shown in Table 7 might

also favour higher BMIZ.

Previous studies showed that maternal leptin concentration was correlated with child leptin

concentration in cord blood [23,51] and serum of 9-years old children [52]. Postpartum

maternal biomarkers may be associated with child biomarkers through breast milk, in agree-

ment with a previous study that reported a correlation between leptin concentration in breast

milk with its concentration in maternal serum and infant weight gain [53]. Although genetics

was also reported to have moderate influence on variation of biomarkers concentration

[54,55], environmental factors such as nutrition, including micronutrients, and infection have

been reported to more strongly modulate adipocytokines and inflammatory markers [32–

37,56]. Our analysis did not include the influence of dietary intake on biomarkers concentra-

tions, which could reveal additional associations. Daily nutrient-dense food intake should

remain the principal source of micronutrients. In this study, we did not include analysis of die-

tary intake, and further analyses of SUMMIT dietary data in this context may yield additional

insights.

BMI-for-age z-score represents nutritional and health conditions in children and adoles-

cents [57]. Our study showed that maternal and child biomarker PCs were associated with

child BMIZ. This is in line with previous studies that reported BMIZ in children was correlated

with biomarkers concentrations, such as leptin [58] and RBP4 concentrations [59]. In our

study, the average BMIZ was below the WHO standard for a healthy population [41], which

means the children tended to be underweight. However, BMIZ is a modifiable factor which

can be improved by nutritional and behavioral interventions [60]. Thus, maternal MMN sup-

plementation during pregnancy might indirectly influence child BMIZ considering that our

results indicated that MMN modified the association between maternal baseline and maternal

post-supplementation biomarker PC scores, while maternal post-supplementation PC scores

were associated with child biomarker PC scores and BMIZ.

It has been suggested that pre-pregnancy and pregnancy nutritional status have long term

effects on health outcomes of children. Both maternal height and MUAC were positively asso-

ciated with child PC scores, although these were not significant. Maternal Hb during preg-

nancy and height were also associated with child BMIZ. These results support the potential

influence of maternal nutritional status on long term child metabolism and health. This notion

has been previously reported wherein maternal BMI was correlated with child BMI [61] and

Fig 4. Association of maternal and child biomarker components with child BMIZ. A-B. Maternal baseline PC1 bp.pc1.D#A#R#

and PC2 bp.pc2.C#L". C-D. Maternal PC1 dp-pp.pc1.D"#A"R"#L# and PC2 dp-pp.pc2. A"C"L". E-F. Child PC1 ch.pc1.D"R"C"

and PC2 ch.pc2.D#A"L". Blue dots: MMN supplementation; Red dots: IFA supplementation.

https://doi.org/10.1371/journal.pone.0216848.g004
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weight for height z-score (WHZ) [62]. Maternal BMI was also reported to be associated with

infant serum leptin values [48]. Therefore, our findings also highlight the importance of opti-

mal macronutrient intake during pregnancy that would improve maternal nutritional status

and child health later in life [63]. In this context, the reported greater impact of maternal

MMN on birth weight in well-nourished women is noteworthy [38].

We proposed that maternal biomarkers of adipocytokines and inflammatory markers could

influence the same biomarkers in the child through the interactions of immunologic and meta-

bolic factors. Adiponectin, RBP4, CRP, and leptin play important roles in regulating metabo-

lism, energy homeostasis, and inflammatory responses, while VDBP has a role in modulating

immune and inflammatory response. The immune and metabolic system have co-evolved to

signal each other and form complex networks in response to environmental exposures, such as

the secretion of leptin and adiponectin that are contra-regulated [64,65]. Transfer of immune

and metabolic properties between mother and child occurs through the placenta [23,66], and

through breast milk during the neonatal period [53]. Together, these immune-metabolic sig-

nals provide innate and adaptive immunity, and influencing the metabolic homeostasis of the

newborn. The transmission of these cross-generational immune and metabolic properties may

be modified via optimal macronutrient and micronutrient intake during pregnancy and post-

partum. Maternal adverse conditions, such as malnutrition or infection may modify these sig-

nals and alter newborn immunity, consequently influencing newborn and infant health, and

possibly later life [67,68].

It is remarkable that despite the relatively small set of specimens analyzed in this study, sig-

nificant and interpretable associations were observed, suggesting that the biomarker compo-

nents exhibit strong influence. We also note that the overall associations identified through

components tended, although not always, to be more frequent and stronger than for individual

biomarkers alone. Replication of this study’s findings would be warranted. In addition, due to

the multiple hypotheses tested, the multiple comparisons in the study were unavoidable, but

again we note the frequency of associations exceeds that which would be expected by chance

as assessed by the Fisher Exact test on PCs not retained for analyses which would represent

random data. To our knowledge, this is the first study suggesting an effect of maternal MMN

supplementation on the child outcomes via modulation of the mother’s biomarkers. We sug-

gest that specific effects of a particular micronutrient or of MMN overall cannot be determined

based on a single biomarker, as there would be many pathways involved. Therefore, analyzing

the effect of a composite biomarker component may be more relevant, as conducted here.

While the above findings suggest associations between maternal and child biomarker status

as well as a role of MMN in this relationship, there are several limitations of the study. First,

the limited sample size yielded limited statistical power, precluding more detailed analyses.

For example, we could not assess the outcome of gestational age at birth. Similarly, in some

cases the distribution of predictors in regression models may not have adequately represented

the full spectrum of values. The impact of this in many cases was greater variance, thereby lim-

iting associations. In addition, other potentially important covariates were not included, such

as dietary intake or recent infections, or blood samples from children at younger ages that

could be analyzed. Finally, while we utilized PCA to discern components, this approach would

not be able to identify localized clustering of biomarkers in the n-dimensional space. Other

techniques such as k-means clustering or uniform manifold approximation and projection

(UMAP) may also be useful and would require greater sample size. Nevertheless, the results

herein are suggestive, and additional confirmation would be warranted.

In the SUMMIT, MMN supplementation compared to IFA improved birth and health out-

comes [38]. The IFA contained 30 mg iron and 400 μg folic acid, and the MMN followed the

UNIMMAP formulation that contained 30 mg iron and 400 μg folic acid along with 800 μg
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retinol, 200 IU vitamin D, 10 mg vitamin E, 70 mg ascorbic acid, 1.4 mg vitamin B1, 1.4 mg

vitamin B2, 18 mg niacin, 1.9 mg vitamin B6, 2.6 μg vitamin B12, 15 mg zinc, 2 mg copper,

65 μg selenium, and 150 μg iodine. Deficiencies of these micronutrients have been associated

with adverse pregnancy outcomes. For example, vitamin A deficiency may lead to night blind-

ness [69], vitamin D deficiency is associated with preeclampsia, insulin resistance, and gesta-

tional diabetes mellitus [70]. Vitamin E and C are antioxidants to prevent pre-eclampsia [71].

Vitamin B1 deficiency may cause of IUGR [72]. Vitamins B6 and B12 play important roles in

maternal health as well as fetal development and physiology [73]. Deficiencies of minerals

such as zinc, selenium, copper and iodine have also been associated with complications in

pregnancy, childbirth or fetal development [74–76]. We recently showed that increases in

mitochondrial DNA copy number during pregnancy are associated with LBW, and that mater-

nal MMN supplementation stabilized mitochondrial DNA copy number in peripheral blood

mononuclear cells of SUMMIT women, indicating its effects on improved energy efficiency

and reduced oxidative damage [77,78].

In conclusion, the results herein suggest that biomarkers of adipocytokines and inflamma-

tory mediators during pregnancy comprise components that may influence downstream bio-

marker components in pregnancy and in children 9–12 years later, along with child BMIZ.

Moreover, MMN supplementation may affect the relationship between components, and fur-

ther influence child BMIZ score. Improving maternal nutritional status may improve child

health not only at birth, but also during childhood, and into adulthood.

Supporting information

S1 Checklist. STROBE statement—checklist of items that should be included in reports of

cross-sectional studies.
(DOCX)

S1 Fig. Screeplot of maternal baseline PCA.

(DOCX)

S2 Fig. Screeplot of maternal post-supplementation during prengancy PCA.

(DOCX)

S3 Fig. Screeplot of maternal post-supplementation at post-partum PCA.

(DOCX)

S4 Fig. Screeplot of children PCA.

(DOCX)

S5 Fig. Cross validation of cumulative variance. Cross validation was performed using ‘mda-

tools’ package. Blue line: cumulative variance of PCA result. Red line: cumulative variance of

cross validation result.

(DOCX)

S6 Fig. Correlation map between principle components and all variables.

(DOCX)

S1 Table. Biomarker concentrations of pregnant women during baseline, post-supplemen-

tation during pregnancy, post-supplementation at post-partum, and in children.

(DOCX)

S2 Table. Principal component analysis results of maternal biomarkers at baseline.

(DOCX)

PLOS ONE Maternal biomarkers and micronutrients are associated with child biomarkers and nutritional status

PLOS ONE | https://doi.org/10.1371/journal.pone.0216848 August 7, 2020 15 / 21

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0216848.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0216848.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0216848.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0216848.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0216848.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0216848.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0216848.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0216848.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0216848.s009
https://doi.org/10.1371/journal.pone.0216848


S3 Table. Principal component analysis results of maternal biomarkers post-supplementa-

tion during pregnancy.

(DOCX)

S4 Table. Principal component analysis results of maternal biomarkers post-supplementa-

tion at post-partum.

(DOCX)

S5 Table. Principal component analysis results of children’s biomarkers.

(DOCX)

S6 Table. Association between maternal biomarkers at baseline and maternal nutritional

status.

(DOCX)

S7 Table. Association between maternal biomarkers at baseline and post-supplementation.

(DOCX)

S8 Table. Association between child biomarkers and maternal biomarkers at baseline.

(DOCX)

S9 Table. Association between child biomarkers and maternal biomarkers at post-supple-

mentation.

(DOCX)

S10 Table. Association between child’s outcome and maternal biomarkers at baseline.

(DOCX)

S11 Table. Association between child’s outcome and maternal biomarkers at post-supple-

mentation.

(DOCX)

S12 Table. Association between child’s outcome and child’s biomarkers.

(DOCX)

S13 Table. Spearman correlation of maternal biomarkers at baseline and post-supplemen-

tation during pregnancy.

(DOCX)

S14 Table. Spearman correlation of maternal biomarkers at baseline and post-supplemen-

tation at post-partum.

(DOCX)

Acknowledgments

We thank all the pregnant women, their children, the families, the communities, and the mid-

wives in Lombok, West Nusa Tenggara, who participated in and facilitated the original SUM-

MIT and its follow up studies. We are grateful to Dr. Husni Muadz of Mataram University,

Center for Research on Language and Culture, and Ms. Mandri Apriatni, SPd, MA, of Summit

Institute of Development, who were involved in the SUMMIT study and S10Y follow-up

study, and Mr. Miswar Fattah and his team of Prodia CRO for the use of their MagPix CCD

Imager. The authors are grateful to the Scientific Members of the Indonesian Danone Institute

Foundation and Dr. Jacques Bindels of the Asia Pacific R&D Danone Baby Nutrition, for their

inputs during the initial development of this study.

PLOS ONE Maternal biomarkers and micronutrients are associated with child biomarkers and nutritional status

PLOS ONE | https://doi.org/10.1371/journal.pone.0216848 August 7, 2020 16 / 21

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0216848.s010
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0216848.s011
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0216848.s012
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0216848.s013
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0216848.s014
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0216848.s015
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0216848.s016
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0216848.s017
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0216848.s018
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0216848.s019
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0216848.s020
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0216848.s021
https://doi.org/10.1371/journal.pone.0216848


Author Contributions

Conceptualization: Lidwina Priliani, Safarina G. Malik, Anuraj H. Shankar.

Data curation: Lidwina Priliani, Sukma Oktavianthi, Elizabeth L. Prado, Safarina G. Malik,

Anuraj H. Shankar.

Formal analysis: Lidwina Priliani, Sukma Oktavianthi, Elizabeth L. Prado, Safarina G. Malik,

Anuraj H. Shankar.

Investigation: Lidwina Priliani, Sukma Oktavianthi.

Methodology: Lidwina Priliani, Sukma Oktavianthi, Elizabeth L. Prado, Safarina G. Malik.

Software: Lidwina Priliani, Sukma Oktavianthi, Anuraj H. Shankar.

Supervision: Safarina G. Malik, Anuraj H. Shankar.

Validation: Lidwina Priliani, Elizabeth L. Prado, Safarina G. Malik, Anuraj H. Shankar.

Visualization: Lidwina Priliani.

Writing – original draft: Lidwina Priliani, Safarina G. Malik, Anuraj H. Shankar.

Writing – review & editing: Lidwina Priliani, Sukma Oktavianthi, Elizabeth L. Prado, Safarina

G. Malik, Anuraj H. Shankar.

References
1. Barker DJP, Hales CN, Fall CHD, Osmond C, Phipps K, Clark PMS. Type 2 (non-insulin-dependent)

diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth. Dia-

betologia. 1993; 36: 62–67. https://doi.org/10.1007/BF00399095 PMID: 8436255

2. Hales CN, Barker DJP. The thrifty phenotype hypothesisType 2 diabetes. Br Med Bull. 2001; 60: 5–20.

https://doi.org/10.1093/bmb/60.1.5 PMID: 11809615

3. Symonds ME, Sebert SP, Hyatt MA, Budge H. Nutritional programming of the metabolic syndrome. Nat

Rev Endocrinol. 2009; 5: 604–610. https://doi.org/10.1038/nrendo.2009.195 PMID: 19786987
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