
© 2019 Indian Journal of Nuclear Medicine | Published by Wolters Kluwer - Medknow 263

Address for correspondence: 
Prof. Sanjay Gambhir, 
Department of Nuclear 
Medicine, SGPGIMS, 
Lucknow ‑ 226 014, 
Uttar Pradesh, India. 
E‑mail: gaambhir@yahoo.com

Access this article online

Website: www.ijnm.in

DOI: 10.4103/ijnm.IJNM_90_19
Quick Response Code:

Abstract
Coronary artery disease (CAD) is the leading cause of morbidity and mortality worldwide. Invasive 
coronary angiography (ICA) is the gold standard for the evaluation of epicardial CAD. In the 
pathogenesis of the CAD, myocardial perfusion abnormalities are the first changes that appear 
followed by wall motion abnormalities, electrocardiogram changes, and angina. Myocardial perfusion 
imaging (MPI) demonstrates the cumulative effect of pathology at epicardial coronary arteries, small 
vessels, and endothelium. Thus, it evaluates the overall burden of ischemic heart disease (IHD). MPI 
is used noninvasively to diagnose early asymptomatic CAD or to know the functional significance of 
known CAD. There are evidence that early detection of myocardial perfusion abnormalities followed 
by aggressive intervention against cardiovascular risk factors may restore myocardial perfusion. This 
may lead to reduce morbidity and mortality. Various MPI modalities have been used to diagnose 
and define the severity of CAD. Cardiac myocardial perfusion single‑photon emission computed 
tomography (myocardial perfusion scintigraphy [MPS]) has been in use since decades. Several newer 
modalities such as positron emission tomography, cardiac magnetic resonance imaging, computed 
tomography perfusion, and myocardial contrast echocardiography are developing utilizing the similar 
principle of MPS. We shall be reviewing briefly these modalities, their performance, comparison to 
each other, and with ICA.
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Introduction
Cardiovascular disease remains the leading 
cause of death in the world.[1] After the 
age of 40 years, nearly half of the men 
and one‑third of women may develop 
coronary artery disease (CAD).[2] Invasive 
coronary angiography (ICA) remains gold 
standard for the diagnosis of the epicardial 
CAD. However, a significant proportion of 
patients referred for coronary angiography 
are found to have no significant obstructive 
coronary disease.[3] ICA is not found to be 
a cost‑effective first‑line investigational 
strategy when the pretest probability of 
significant CAD is <75%.[4] It is also 
a well‑established fact that anatomical 
stenosis severity may not correlate with 
physiological severity absolutely.[5] Both 
the American and European guidelines 
have emphasized the functional imaging 
in the patients having an intermediate 
pretest probability of CAD.[6,7] Various 

noninvasive imaging techniques are used to 
investigate the presence of stress‑induced 
ischemia in patients with known or 
suspected CAD, such as myocardial 
perfusion scintigraphy [MPS], positron 
emission tomography (PET), myocardial 
contrast echocardiography (MCE), cardiac 
magnetic resonance (CMR), and computed 
tomography perfusion (CTP).

Imaging Techniques
Nuclear myocardial perfusion imaging-
myocardial perfusion scintigraphy and 
positron emission tomography

Cardiac MPS and PET imaging are 
done after physical or pharmacologic 
stress and at rest to determine regional 
differences in coronary blood flow. They 
provide a qualitative and semi‑quantitative 
assessment of regional perfusion defects.[8] 
MPS has been extensively used in clinical 
practice since more than three decades and 
extensive literature available in support 
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of its diagnostic performance, value in risk stratification, 
and prognostication. Myocardial perfusion imaging (MPI) 
tracers show the linear relationship between peak stress 
myocardial blood flow (MBF) and myocardial tracer 
concentration uptake. However, this is hampered in clinical 
practice by the “roll‑off phenomenon” in which increases in 
coronary flow beyond 1.5–2‑fold are not accompanied by a 
directly proportional increase in tracer uptake. MPS detects 
ischemia if the stenosis is capable of producing a reduction 
in blood flow. This happens only when the diameter of 
stenosis is in excess of ~50%–70%. Early published 
literature (analysis of 79 studies of nearly 9000 patients), 
MPS reported a sensitivity of 86% and specificity of 74% 
for detecting more than 50% angiographic stenosis.[9]

It provides an incremental value for risk assessment in 
patients with known or suspected CAD. There is a linear 
risk of cardiac death and MI associated with increasing 
extent and severity of perfusion abnormalities. In large 
meta‑analysis comprising of nearly 40,000 patients, a 
normal or low‑risk MPS study was associated with a low 
major adverse cardiovascular event rate (0.6% per year). 
This is comparable to event rates in the general population 
without evidence of CAD.[10] A recent prospective study has 
shown that an abnormal scan predicts a multifold increase 
in the rates of death (9.2% vs. 2.6%), death or MI (11.8% 
vs. 3.3%), and revascularization (24.7% vs. 2.7%).[11] 
Extent and severity of stress perfusion abnormality also 
predict high rates of MI and death. A summed stress score 
of >13 was found associated with a high (4.2%) annual risk 
of MI.[12]

MPS is an excellent prognostication tool. In a large 
observational study, including 10,627 patients with 
suspected CAD, it was found that patients with no or a 
mild stress‑induced ischemia have a survival advantage 
with medical therapy. However, in patients with 
extensive ischemia (>10%–12.5%) survival benefit with 
revascularization was noted.[13] There is a strong association 
between the extent and severity of hibernating myocardium, 
posttest treatment, and subsequent patient survival. 
Patients with limited hibernating myocardium benefit 
from the medical therapy and while those with extensive 
hibernating myocardium (>10%) may have benefited from 
revascularization.[14]

Similarly, for preoperative risk stratification, MPS has 
an excellent high negative predictive value. A normal 
preoperative MPS result incurs not only a low perioperative 
risk and but even a low long‑term risk.[15] A recently 
published large retrospective observational study of 
322,688 patients undergoing noncardiac surgery concluded 
that abnormal myocardial perfusion appears to be an 
important risk factor for adverse postoperative events.[16]

In contrast to angiography, MPS identify only coronary 
territory supplied by the most severe stenosis. It may be 
a less sensitive technique to delineate the full extent of 

cardiac atherosclerotic burden, especially in the setting 
of multivessel disease. This is an area where PET MPI 
holds great potential. The superior quality and accuracy 
of PET in comparison to MPS has been attributed to its 
better spatial resolution and attenuation correction.[17] PET 
MPI provides absolute quantitation of MBF and coronary 
flow reserve (CFR). CFR is the ratio of hyperemic to rest 
MBF and is an integrated measure of coronary vasomotor 
dysfunction. It measures holistic effect of focal, diffuse, 
large, small‑vessel CAD, and endothelial dysfunction on 
myocardial perfusion.[5] It gives a complete insight of IHD 
rather than CAD alone.

In a meta‑analysis including 177 studies with nearly 
12,000 patients confirmed higher sensitivity of PET relative 
to MPS (92.6% vs. 88.3%) for the detection of >50% 
epicardial stenosis, however with comparable specificity.[18] 
However, the clinical effect of this difference may be small. 
Another meta‑analysis of 114 MPS and 15 PET studies 
demonstrated similar results.[19] CFR measurements by 
PET can distinguish patients at low or high risk for serious 
adverse events, including cardiovascular death, beyond 
comprehensive clinical assessment, left ventricular ejection 
fraction, or traditional semi‑quantitative measures of 
stress‑induced ischemia. It also helps in risk‑reclassification 
(~ 35% of patients) of intermediate risk patients. CFR 
of <2 and <1.5 has been associated with a 3.4 and 5.6 fold 
increased risk of cardiac death.[20]

A lot of the latest research has advanced gamma 
camera performance. Recently, introduced gamma 
camera systems with optimized acquisition geometry, 
collimator designs, and advanced reconstruction 
techniques have the potential to further improve image 
quality.[21] Cadmium‑zinc‑telluride (CZT) detectors 
have superior energy and spatial resolution. They have 
demonstrated a sensitivity of 95% and accuracy of 
69% for detecting obstructive CAD.[22] These cameras 
are more sensitive therefore require a shorter imaging 
time even at lesser radioactivity administration.[23] CZT 
camera provides very fast perfusion imaging and allows 
the acquisition of serial dynamic images. Thus, it allows 
measurement of MBF and CFR. Hybrid imaging cameras 
provide a fusion of anatomical and functional images, 
i.e., MPS/coronary computed tomography angiography 
(CCTA). A meta‑analysis comprising of 951 patients and 
1973 vessels have demonstrated improved diagnostic 
specificity of hybrid imaging for the detection of obstructive 
CAD in comparison to stand‑alone CCTA.[24] Patients with 
a normal MPS study who underwent concomitant CCTA, 
an abnormal CCTA was associated with a higher event 
rate.[25]

PET/CCTA offers an accurate spatial coregistration of 
myocardial perfusion defect and subtending coronary 
artery. Javadi et al. found that 72% (51/71) of the patients 
demonstrated differences from the standard assignment in 
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at least one myocardial segment; 112 of 1207 segments 
were reassigned to nonstandard vascular territories. Due 
to variability in the coronary tree, the vascular territory 
distribution can be done more accurately by CCTA.[26] A 
study comparing CCTA with MPS/CCTA hybrid imaging 
has demonstrated poor specificity and positive predictive 
value (PPV) of CCTA alone. Hybrid imaging approach 
resulted in a significant improvement in specificity 
(from 63% to 95%) and PPV (from 31% to 77%) in 
comparison to CCTA.[27]

Myocardial contrast echocardiography

Echocardiography has been used since a long to study 
anatomy and function of the heart. Lipid microspheres 
are used as echocardiographic contrast agent. These 
microspheres vary according to their outer shell 
composition (hydrophilic properties) and gas content 
(echogenic properties). Once microspheres are injected into 
the systemic circulation, the ultrasound‑induced oscillation 
reflects a unique echo that allows differentiation of blood, 
myocardium, and other tissues.[28] After opacification of 
the left ventricle cavity with contrast, a high‑intensity 
ultrasound pulse causes destruction of the microspheres. 
In normal myocardium, replenishment of the left ventricle 
contrast takes ~5 s. Under hyperemic conditions, contrast 
replenishment typically takes <2 s. Decreased MBF due 
to coronary stenosis results in an increased replenishment 
time.[29]

MCE has shown good diagnostic performance in 
comparison with ICA. It has shown a sensitivity of 83% 
and specificity of 80% (meta‑analysis of ~1700 patients 
from 20 trials) for the diagnosis of CAD.[30] MCE has 
demonstrated reasonable concordance with MPS (kappa 
0.81 at the patient level and 0.86 at the vessel level) for 
the diagnosis of CAD.[31] MCE also provides important 
prognostic data. In a study by Tsutsui et al., abnormal 
myocardial perfusion determined by MCE was a better 
predictor of cardiac events than other clinical factors, 
ejection fraction, and wall motion abnormalities. The 
3‑year event‑free survival in patients with normal wall 
motion and myocardial perfusion was 95% compared 
to 68% in patients with abnormal wall motion and 
myocardial perfusion.[32] Another study of patients with 
known or suspected CAD who underwent MCE has shown 
a hazard ratio of 6.1 for major adverse cardiovascular 
events in patients with any inducible perfusion defect 
or wall motion abnormality.[33] In patients suspected 
of the acute coronary syndrome with normal troponin 
levels and non‑diagnostic electrocardiogram, presence of 
abnormal wall motion and myocardial perfusion yielded 
a hazard ratio of 10.7 for prediction of future cardiac 
events.[34] CFR measure by MCE is also useful in the 
evaluation of patients with microcirculatory disease and 
has shown to discriminate ischemic from nonischemic 
cardiomyopathy.[35]

Cardiac magnetic resonance imaging

CMR has been increasingly utilized in clinical 
cardiology over the past 2 decades. This technique uses 
pharmacological stress by a vasodilator (adenosine or 
regadenoson) or by dobutamine. Vasodilator methods 
involve the administration of intravenous gadolinium 
contrast during vasodilator infusion that leads to perfusion 
defects in ischemic territories during hyperemia. CMR also 
demonstrate wall motion abnormalities in the presence of 
ischemia.[36] CMR assessment is usually qualitative, with 
visual assessment for the presence and extent of ischemia. 
However, to improve diagnostic accuracy, quantitative 
measurement of perfusion has been done. These methods 
are either semi‑quantitative that uses the difference in 
signal intensity between areas of the myocardium, or fully 
quantitative that measure absolute blood flow.[37]

In a study of 84 patients, who underwent rest and 
vasodilator stress imaging, the measurement of myocardial 
perfusion reserve using CMR was found to have a 
sensitivity of 88% and specificity of 90%, in comparison 
with ICA.[38] It has shown excellent agreement with PET for 
the detection of obstructive epicardial CAD.[39] In a recent 
meta‑analysis comparing CMR, PET, and MPS have shown 
that all have similar sensitivity with various specificity. 
CMR showed a sensitivity of 89% and specificity of 76% 
compared to ICA and appeared to have a better diagnostic 
accuracy than MPS.[19] MR‑IMPACT trial, CE‑MARC 
trial, and MR‑IMPACT II trials compared CMR with MPS 
in the diagnosis of stable angina with a gold standard of 
ICA. They have shown CMR have a superior diagnostic 
accuracy in comparison to MPS. This was noted in both 
sexes.[40‑42] In CE‑MARC 2 trial, patients were randomized to 
a CMR‑guided strategy, MPS, or the UK National Institute 
for Health and Care Excellence guideline recommendation. 
Authors found that CMR was equivalent to MPS and that 
both strategies reduced unnecessary ICA.[43]

In MR‑INFORM trial, investigator compared adenosine 
stress CMR with Fractional Flow Reserve (FFR) in 
patients with suspected stable angina. CMR was found 
to be noninferior to FFR, with both conferring ≤4% risk 
of major adverse cardiovascular events within 1 year.[44] 
Recent meta‑analysis reported a sensitivity of 89% and 
specificity of 87% at the per‑patient level compared to 
FFR. The performance of CMR was found equivalent to 
CT and PET.[45] Normal dobutamine stress CMR predicts 
a 3‑year event‑free survival of 99.2%. It was found to be 
an effective and robust tool for patients of either sex.[46] 
CMR imaging also provides effective risk stratification. 
A meta‑analysis of 56 studies including 25,497 patients 
who underwent CMR imaging has been done. Researchers 
found that CMR findings such as wall motion abnormalities, 
stress‑induced perfusion defects, and low LVEF were 
associated with increased risk of adverse events including 
all‑cause death.[47] CMR is currently accepted as the 
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noninvasive gold standard for the assessment of cardiac 
structure and function. It allows better assessment of wall 
motion abnormalities as well as provide superior diagnostic 
information in comparison to echocardiography.[48]

Computed tomography perfusion

CT perfusion uses a similar principle as used by other 
MPI modalities. A multidetector CT system images in a 
dynamic mode and sequential images are obtained over 
a period to record the kinetics of iodinated contrast in 
the arterial blood pool and the myocardium.[49] Areas of 
infarction or ischemia appear hypodense in comparison to 
normal myocardium. George et al. used 64‑detector CT 
in a canine ischemia model and performed CTP during 
adenosine infusion. They found strong correlations between 
the ratio of myocardial to left ventricular upslope and 
microsphere‑derived MBF. The authors replicated the study 
in humans using adenosine stress on 64 and 256‑row CT 
scanner. They did CCTA and measured CTP. In comparison 
to combined ICA and MPS, a Combined CCTA/CTP was 
found 86% sensitive and 92% specific for identifying 
atherosclerosis causing perfusion abnormalities.[50] 
Prospective multicenter international CORE320 trial has 
demonstrated that by measuring simultaneous CCTA and 
CTP, CT has the potential to assess both anatomy and 
physiology in a single imaging session.[51] Magalhães 
et al. compared CCTA/CTP against a reference standard 
of stenosis. They found that combined CCTA/CTP had 
lower sensitivity, however, specificity and overall accuracy 
were higher in comparison to CCTA alone.[52] In a recent 
study, Rief et al. compared performance of CTP and CMR 
with a reference standards of quantitative ICA and MPS 
or ICA alone. Per‑patient diagnostic accuracy, sensitivity, 
specificity of CTP and CMR were 63% and 75%, 92% and 
83%, and 45% and 70%, respectively. It was observed that 
the diagnostic performance of CTP was similar to CMR.[53]

Another promising technique is the measurement of CT 
fractional flow reserve (CTFFR). This technique uses 
computational fluid dynamics to provide a prediction of 
the invasive FFR. DISCOVER‑FLOW trial demonstrated 
CTFFR has a diagnostic accuracy of 84.3% per vessel, 
and 87.4% per patient, in comparison with invasive 
FFR as the gold standard.[54] These promising results 
were also replicated in DeFACTO and NXT trials.[55,56] 
The PLATFORM trial used CTFFR as part of a strategy 
comparing CTCA with standard care. Authors found that 
CTFFR is a feasible and safe alternative to ICA and is 
associated with a significantly lower rate of ICA showing 
no obstructive CAD.[57] Douglas et al. found that CTCA led 
to reduced referrals for ICA and also had similar clinical 
outcomes at 1 year and lower cost than usual care.[58]

Discussion
It has been appreciated for years that apparent anatomical 
stenosis severity does not show a linear correlation with 

its physiological severity. Physiologic severity as defined 
by coronary pressure and/or flow has resurged into clinical 
prominence as a potential, fundamental change from 
anatomical to functional guided management.[5] Boden 
et al. demonstrated that in patients with stable CAD, 
percutaneous coronary intervention (PCI) did not reduce 
the risk of death, MI, or other major cardiovascular events 
when added to optimal medical therapy.[59] DEFER study 
was one of the first studies to demonstrate the importance 
of functional assessment of CAD. Authors showed that 
PCI in lesion with FFR ≥0.75 failed to improve clinical 
outcomes, i.e., event‑free survival, combined cardiac 
mortality, and MI or percentage free of angina. They even 
indicated that PCI in Reference group (i.e., FFR <0.75) 
failed to prevent cardiac death or acute MI, but in fact was 
associated with a five times incidence of these outcomes 
compared to medical therapy alone of similar anatomical 
appearing lesions (~15 vs. ~3%).[60] Hence, there is a very 
rapidly evolving role of perfusion imaging to determine 
the functional aspect of CAD. A brief comparison between 
different modalities has been done in Table 1.

In a recent study by Dey et al., patients underwent CCTA 
and 13‑NH3 PET perfusion. They demonstrated that the 
burden of noncalcified plaque better predicts abnormal 
MBF than the degree of stenosis. Patients with abnormal 
MBF were shown to have significantly more noncalcified 
arterial plaque, low‑density noncalcified plaque, and total 
plaque burden.[61] Assante et al. demonstrated that Coronary 
artery calcium score (CCS) correlates inversely with stress 
MBF and CFR. It may serve as an independent risk factor 
for reduction in CFR.[62] In a recent meta‑analysis Takx 
et al. compared diagnostic performance of CMR, PET, 
MPS, CTP, and stress echocardiography in comparison to 
FFR by ICA. They found that CMR, PET, and CTP are 
better techniques for diagnosing CAD at both vessel and 
patient level than MPS and stress echocardiography.[45] 
These studies have shown that CAD has very complex 
multifactorial pathogenesis, and its overall impact on the 
vascular flow is not linear. It may involve major epicardial 
coronary vessels, small vessels, and endothelium. 
A complete characterization of the disease process may be 
become possible by combining PET or MPS with CCTA, 
CCS, or magnetic resonance imaging (MRI).

As mentioned in Table 1, various imagine modalities have 
their advantages and disadvantages as well. It is very 
important to note that few meta‑analysis has shown MPS 
is less sensitive in comparison to PET and CMR. However, 
there is a wide availability of hybrid MPS/CT cameras and 
significant advancement in the gamma camera systems.[21‑24] 
Future studies may unveil an improvement in the diagnostic 
performance of MPS. Diagnostic data on the efficiency of 
MPI by MPS are enormous, while it is still developing 
for PET and relatively scarce for CMR, CTP, and CME. 
MPS is widely available and most extensively validated. 
PET has the highest diagnostic performance, while CMR 
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provides a similar diagnostic performance as PET without 
ionizing radiation. CCTA provides excellent resolution of 
coronary arteries with the potential to measure CTP and 
CTFFR in single sitting. Overall combined anatomical 
and perfusion‑based noninvasive hybrid imaging offer the 
potential for best diagnostic accuracy.[24‑27] Such an approach 
would represent a paradigm shift in the era of personalized 
medicine. Multimodality fusion imaging (MPS/CT, 
PET/CT, and PET/MRI) would complement each other and 
have the potential to become gatekeeper in the diagnosis 
and management of CAD.

Conclusions
MPI gives an insight into the cardiac perfusion, which is 
often inaccessible by ICA. There is a continuous shift of 
imaging from mere demonstration of the effect of CAD on 
blood flow to complete evaluation of perfusion, function, 
and metabolism. This holds true even for subclinical CAD 
and in patients with endothelial dysfunction. Functional 
imaging has “in vivo” holistic capability to image and 
quantify IHD rather that evaluating only epicardial CAD 
burden. MPI has proved it is effectiveness in diagnosis, 
risk stratification, and management of CAD patients. It also 
influences the management and prognosis of the patients. 
In summary, a multimodality imaging approach should 

be able to provide detailed anatomical and functional 
information in patients suspected of CAD or known CAD. 
A multimodality hybrid MPI would be the next step in the 
era of “precision medicine.”
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