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The NLRP3 inflammasome is a core component of innate immunity, and dysregulation
of NLRP3 inflammasome involves developing autoimmune, metabolic, and
neurodegenerative diseases. Potassium efflux has been reported to be essential for
NLRP3 inflammasome activation by structurally diverse pathogen-associated molecular
patterns (PAMPs) or danger-associated molecular patterns (DAMPs). Thus, the molecular
mechanisms underlying potassium efflux to activate NLRP3 inflammasome are under
extensive investigation. Here, we review current knowledge about the distinction channels
or pore-forming proteins underlying potassium efflux for NLRP3 inflammasome activation
with canonical/non-canonical signaling or following caspase-8 induced pyroptosis. Ion
channels and pore-forming proteins, including P2X7 receptor, Gasdermin D, pannexin-1,
and K2P channels involved present viable therapeutic targets for NLRP3 inflammasome
related diseases.

Keywords: P2X7 receptor, pannexin-1, Gasdermin D, K2P channels, TWIK protein-related acid-sensitive potassium
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NLRP3 INFLAMMASOME

Inflammasomes are intracellular multiprotein complexes and core components of innate immunity
(1–3). To date, the NOD-like receptor (NLR) family and the PYHIN family have been reported to
form inflammasomes (4). These are composed of six NLR family proteins, including NLRP1,
NLRP2, NLRP3, NLRP6, NLRC4, NLRP12, and two members of the PYHIN family, including
AIM2 and IFI16 (5, 6).

Among various inflammasomes, NLRP3 inflammasome has been widely under investigation
because of its most significant clinical relevance (7, 8). NLRP3 inflammasome consists of sensory
protein NLRP3, adaptor protein ASC (the adaptor molecule apoptosis-associated speck-like protein
containing a CARD), and effector protein caspase-1 (7, 8). Canonical NLRP3 inflammasome
activation requires two steps: priming and activation. The priming process leads to the expression of
NLRP3, pro-IL-1b, and pro-IL-18, which could be initiated by Toll-like receptors (TLR) ligands (9).
The activation process promotes the assembly of inflammasome complexes, cleaving pro-caspase-1
to form active caspase-1, thereby cleaving pro-IL-1b and pro-IL-18 to release mature IL-1b and
IL-18 (Figure 1).
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Besides, activated caspase-1 also cleaves GasderminD (GSDMD)
to release its N-terminal domain, which forms pores at the plasma
membrane and induces a rapid, pro-inflammatory form of cell death
termed “pyroptosis” (10–12). Intriguingly, the activation process of
NLRP3 inflammasome could be provided by surprisingly various
types of PAMPs (pathogen-associatedmolecular pattern) orDAMPs
(danger-associated molecular pattern). These include extracellular
ATP, pore-forming toxins (nigericin and maitotoxin, etc.),
particulate matter (urate crystalline MSU, aluminum adjuvant,
silica, and asbestos), and misfolded proteins related to
neurodegenerative diseases (fibrillar Ab protein; a-synuclein) (10–
12). The dysregulated activation of NLRP3 inflammasome is closely
related to various auto-inflammatoryor chronic inflammations, such
as gout, atherosclerosis, obesity, Alzheimer’s disease, Parkinson’s
disease, and type 2 diabetes (13–15). Besides the canonical
activation process, the non-canonical inflammasome pathway is
mediated by caspase-11 in mouse cell or caspase-4/caspase-5 in a
human cell in response to cytoplasmic bacterial lipopolysaccharide
(LPS) (Figure 2) (16, 17).

Cytoplasmic LPS directly binds the caspase recruitment domain
(CARD) of caspase-4/5/11, triggering caspase-4/5/11 cleaves
GSDMD to initiate pyroptosis (18, 19). Caspase-11 mediated
pyroptosis in response to cytosolic LPS is critical for antibacterial
defense and septic shock in mice as demonstrated that GSDMD–/–

and caspase11–/– mice could be protected against LPS-induced
lethality (20, 21). Besides directly causing pyroptosis, the non-
canonical inflammasome also promotes the canonical NLRP3
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inflammasome to cause the maturation and release of IL-1b and
IL-18 (19).
ION CHANNELS AND PORE-FORMING
PROTEINS MEDIATING POTASSIUM
EFFLUX DURING NLRP3 INFLAMMASOME
ACTIVATION

It has been well accepted that potassium (K+) efflux is both necessary
and sufficient for NLRP3 inflammasome activation in most cases
(22–25). First, a large reduction of intracellular potassium
concentration was observed to activate the NLRP3 inflammasome
by ATP, nigericin, and crystal molecules (23). Furthermore,
incubation of primed macrophages in a K+-free medium was
sufficient to trigger NLRP3 inflammasome activation (26). In
contrast, NLRP3 inflammasome activation could be blocked by
high concentrations of extracellular potassium (30-45 mM) (23,
26). Besides, AIM2 and NLRC4 inflammasomes activation was not
affected by high concentrations of extracellular K+, indicating
potassium’s specific role in modulating NLRP3 inflammasome
(23–25).

Structurally diverse DAMPs/PAMPs employ distinct mechanisms
tocausepotassiumefflux toactivate theNLRP3 inflammasome.Firstly,
the existing research mainly focuses on the molecular mechanism of
potassium efflux during ATP-induced NLRP3 inflammasome
FIGURE 1 | Canonical NLRP3 inflammasome activation. Canonical NLRP3 inflammasome activation includes two signals: priming and activation. The priming
process leads to the expression of NLRP3, pro-IL-1b and pro-IL-18 could be provided by Toll-like receptors activation. The activation process promotes the
assembly of inflammasome complexes through various PAMPs or DAMPs, including extracellular ATP, nigericin, and particulate matters. The activation of NLRP3
inflammasome cleaves pro-caspase-1 to active caspase-1, thereby cleaves pro-IL-1b and pro-IL-18 to produce mature IL-1b and IL-18. Besides, activated caspase-1 also
cleaves GSDMD to release its N-terminal domain, which forms pores at the plasma membrane and mediates the release of mature IL-1b and IL-18. The P2X7 receptor,
Pannexin-1, TWIK2, and THIK1 have been proposed to mediate potassium efflux during NLRP3 inflammasome activation under different circumstances.
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activation. The P2X7 receptor, pannexin-1, and K2P channels have
been reported to participate in the process above (24, 25, 27). Secondly,
toxins such as nigericin directly promote potassium efflux by forming
pores on the plasmamembrane. NLRP3 inflammasome could also be
activated following the non-canonical inflammasome or caspase-8
mediated pyroptosis, which also depends onpotassium efflux (28–31).
Controversially, GSDMD, and pannexin-1 have been proposed to
mediate potassium efflux in the above process to activate NLRP3
inflammasome (19, 29, 30, 32, 33). This sectionwill review the current
knowledge about ion channels’ roles and pore-forming proteins
mediating potassium efflux during NLRP3 inflammasome activation
under different circumstances.

P2X7 Receptor
The P2X7 receptor is an ATP-gated cation-selective channel widely
expressed in various immune cells (34). At resting conditions,
extracellular ATP concentration is at low levels (<10 nM/L), which
will be massively increased to several tens or hundreds of mmoles/l
within stressed or dying cells (35). The elevated extracellular ATP
activates the P2X7 receptor, which then mediates potassium efflux
and thus leads to NLRP3 inflammasome activation (34, 36–38).

Besides, the canonical NLRP3 inflammasome, P2X7 receptor,
and pannexin-1 (see Pannexin-1) also have been reported to
participate in non-canonical inflammasome (39) coordinately. It
was reported that the activated caspase-11 cleaves pannexin-1
followed up by ATP release, which in turn activates the P2X7
receptor to mediate potassium efflux and NLRP3 inflammasome
activation (39). Correspondingly, the P2X7 receptor ablation
Frontiers in Immunology | www.frontiersin.org 3
significantly reduced the mortality of mice and IL-1b secretion in
peritoneal fluid in a sepsis mice model (39). However, this study is
contradicted with studies by several other groups that we will
discuss in the next section.

Gasdermin D
Gasdermin D (GSDMD) has been identified as the executor of
pyroptosis activated by caspase-1/4/5/11 in 2015 (19, 31, 40).
Full-length GSDMD includes the N-terminal (GSDMD-N) and
C-terminal repressor domain (GSDMD-C) interacting with each
other in the absence of stimulation. This auto-inhibitory
conformation is released upon efficient cleavage at a conserved
glutamic acid residue (D276 in mouse and D275 in human
GSDMD) caspase-1/4/5/11, dividing GSDMD into GSDMD-N
and GSDMD-C. The generation of GSDMD-N allows it to insert
into the plasma membrane and form large oligomeric pores,
leading to IL-1b and IL-18 secretion and pyroptosis. Kayagaki
et al. and Shi et al. reported that potassium pass through the pore-
forming GSDMD, which further leads to NLRP3 inflammasome
activation during non-canonical inflammasome activation (18,
19). Besides mediating pyroptosis and NLRP3 inflammasome
activation, GSDMD was recently reported to restrain type I
interferon response to cytosolic DNA by driving potassium
efflux (41).

Caspase-8 has long been considered to play key roles in extrinsic
apoptosis and suppress necroptosis by inhibiting RIPK1/RIPK3 and
MLKL.More recently, three independent studies have demonstrated
the “apoptotic” caspase-8 also could cleave GSDMD leading to
FIGURE 2 | NLRP3 inflammasome activation following non-canonical inflammasome activation. The non-canonical inflammasome pathway is mediated by caspase-
11 in mouse cell and caspase-4/caspase-5 in a human cell in response to cytoplasmic bacterial lipopolysaccharide (LPS). Caspase-4/5/11 cleaves GSDMD to initiate
pyroptosis, thus leads to NLRP3 inflammasome activation. GSDMD and P2X7 receptor/Pannexin-1 have been proposed to mediate potassium efflux, which
underlies the mechanism of NLRP3 inflammasome activation following non-canonical inflammasome.
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pyroptosis-like cell death, further triggering NLRP3 inflammasome
activation inmurinemacrophages (Figure 3) (29, 30, 32). It has been
proposed that potassium efflux underlies NLRP3 inflammasome
activation, followed by caspase-8 mediated pyroptosis. However,
three groups disagree with the molecular mechanism underlying
potassium efflux in the process above. Orning et al. and Sarhan et al.
suggest that NLRP3 inflammasome activation is dependent on
GSDMD-mediated potassium efflux based on delays in ASC
oligomerization in GSDMD-/- cells (29, 30). However, Chen et al.
observed normal caspase-1 processing in GSDMD-/- and/or
GSDME-/- (Gasdermin E; another member of Gasdermin protein)
cells, which suggests NLRP3 inflammasome activation is not
dependent on GSDMD or GSDME (32).

Pannexin-1
The pannexin-1 is a non-selective, large-pore channel that releases
potassium and nucleotides, including ATP (42, 43). Pannexin-1 is
expressed in most cell types and functionally auto-inhibited by its
cytoplasmic C-terminal domain. In response to apoptosis, the
pannexin-1 channel can be functionally activated by caspase-3
mediated cleavage of the inhibitory C-terminal domain (44, 45).

The relationship betweenpannexin-1 andNLRP3 inflammasome
is still controversial. By using pannexin-1 inhibitors or siRNA,
Pelegrin et al. reported that pannexin-1 is responsible for IL-1b
release upon NLRP3 inflammasome agonists ATP or nigericin (46–
48). However, this channel was lately reported to be dispensable for
canonical NLRP3 inflammasome activation using pannexin-1
knockout mice (49).
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Together with the P2X7 receptor, pannexin-1 was also
implicated in promoting pyroptosis and NLRP3 activation during
non-canonical inflammasome activation (discussed in P2X7
Receptor) (39). In LPS-induced sepsis mouse models, the ablation
of pannexin-1 significantly reducedmicemortality, which indicates
the role of pannexin-1 in non-canonical inflammasome activation
(39). This finding is at odds with the observation that caspase-11
drives NLRP3 inflammasome activation through GSDMD pores
(18, 19, 40). A recent study further pointed out that pannexin-1 is
dispensable for canonical or non-canonical inflammasome
activation within pharmacological inhibition and two other
macrophages strain with pannexin-1 ablation (33).

Interestingly, during the NLRP3 inflammasome activation
following caspase-8 activated pyroptosis, Chen et al. observed
that potassium efflux mediated by pannexin-1 but not GSDMD is
critical for NLRP3 inflammasome activation following caspase-8
mediated pyroptosis (32, 33).

K2P Channels
Two-pore domain potassium (K2P) channels comprise a major
and structurally distinct subset of mammalian K+ channel
superfamily, including fifteen K2P subtypes that form six
subfamilies (TWIK, TASK, TRESK, TALK, THIK, and TRESK)
(50, 51). K2P channels contribute to the background leak currents,
responsible for maintaining the resting membrane potential in
nearly all cells. They are regulated by various physical, chemical,
and biological stimuli and implicated in multiple physiological
processes. In recent years, significant roles of K2P channels for the
FIGURE 3 | NLRP3 inflammasome activation following caspase-8 mediated pyroptosis. The NLRP3 inflammasome could also be activated following by caspase-8
mediated pyroptosis. The “apoptotic” caspase-8 cleaves GSDMD and further mediated potassium efflux leading to NLRP3 inflammasome activation in murine
macrophages. In contrast, Chen et al. demonstrated the pannexin-1 but not GSDMD mediating potassium efflux contributed to NLRP3 inflammasome activation
following caspase-8 mediated pyroptosis.
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activation of NLRP3 inflammasome and innate immunity have
been gradually revealed (27, 52).

TWIK2 is a member of K2P channels, highly expressed in the
gastrointestinal tract, blood vessels, and immune system (53).
Given that TWIK2 showed no or little conductance in
heterologous expression systems, the physiological functions of
TWIK2 is poorly understood (54). Interestingly, a recent study
demonstrated that pharmacological inhibition or genetic
deletion of the TWIK2 channel blocked the activation of
NLRP3 inflammasome induced by ATP and thus reduced the
release of caspase-1 and IL-1b (27). In contrast, the TWIK2
channel had no effect on the activation of NLRP3 inflammasome
activated by imiquimod or nigericin. The TWIK2 channel was
mechanistically suggested to cooperate with the P2X7 receptor
activated by extracellular ATP, thus mediated potassium efflux
required for NLRP3 inflammasome activation.

Furthermore, TWIK2 deletion prevents inflammatory lung
injury in sepsis mice (27). Besides TWIK2, THIK1 channel,
another member of K2P channels, was recently discovered to play
key roles in microglia (52). THIK1 channel was reported to be the
main potassium channel expressed in microglia. Pharmacological
inhibition or gene knockout of THIK1 depolarizes microglia,
decreasing microglial ramification, reducing surveillance function,
and IL-1b secretion. This study indicates that THIK1 is necessary
for NLRP3 inflammasome activation and immune surveillance
in microglia.
THE MECHANISMS OF POTASSIUM
EFFLUX DURING NLRP3 INFLAMMASOME
ACTIVATION

K+ efflux is proposed as an important event upstream of NLRP3
inflammasome activation, and the decrease in intracellular K+ can
activate the NLRP3 inflammasome; however, the mechanisms of
potassium efflux during NLRP3 inflammasome activation is not
understood.Macrophages expressing a constitutively activemutant
NLRP3 R258W, which could not be suppressed by high
extracellular concentrations of potassium, suggests that potassium
effluxmayberelated toNLRP3protein conformational change (23).
Two individual studies show that potassium efflux is essential for
NLRP3 and NEK7 interaction, which is an important part of the
assembly of the NLRP3 inflammasome, given that the interaction
disappears with high extracellular concentrations of potassium (55,
56). These studies suggest that potassium efflux may be closely
related to the conformational change of NLRP3 protein and
Frontiers in Immunology | www.frontiersin.org 5
NLRP3-NEK7 interaction during NLRP3 activation, and the
underlying mechanism ought to be further investigated.
Moreover, K+ efflux might promote NLRP3 activation by
mitochondrial dysfunction and mtROS production (57).
SUMMARY AND OUTLOOK

Given the critical role of NLRP3 inflammasome in autoimmune,
metabolic, and neurodegenerative diseases and the essential role
of potassium efflux in NLRP3 inflammasome activation, it is of
great significance to explore the molecular mechanisms
underlying potassium efflux during NLRP3 inflammasome
activation under different circumstances.

The important role of the P2X7 receptor and GSDMD in
immune responses has gained a lot of attention, both
academically and industrially (31, 34). An inhibitor JNJ-55308942
targeting the P2X7 receptor is now in phase I clinical study to treat
neuroinflammation (58). The role of pannexin-1 in NLRP3
inflammasome activation following caspase-11 or caspase-8
induced pyroptosis is still under debate. Furthermore, although
crystalline substances also depend on potassium efflux to activate
NLRP3 inflammasome, this process’s mechanism is not clear and
needed to be resolved in the future.

Last but not least, the lately identified TWIK2 and THIK1
channels were the only “specific” potassium channels involved in
NLRP3 inflammasome activation (27, 52). Both TWIK2 and
THIK1 channels could be attractive therapeutic targets for the
treatment of NLRP3 inflammasome related autoimmune
diseases in the future.
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