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Clear cell renal cell carcinoma (ccRCC) is one of the most common tumors in

the urinary system. ccRCC has obvious immunological characteristics, and the

infiltration of immune cells is related to the prognosis of ccRCC. The effect of

immune checkpoint therapy is related to the dynamic changes of the tumor

immune microenvironment (TIM). The 7-methylguanosine (m7G) is an

additional mRNA modification ability besides m6A, which is closely related

to the TIM and affects the occurrence and development of tumors. At present,

the correlations between m7G and the immune microenvironment, treatment,

and prognosis of ccRCC are not clear. As far as we know, there was no study on

the relationship between m7G and the immune microenvironment and survival

of clear cell renal cell carcinomas. A comprehensive analysis of the correlations

between them and the construction of a prognosis model are helpful to

improve the treatment strategy. Two different molecular subtypes were

identified in 539 ccRCC samples by describing the differences of 29 m7G-

related genes. It was found that the clinical features, TIM, and prognosis of

ccRCC patients were correlated with the m7G-related genes. We found that

there were significant differences in the expression of PD-1, CTLA4, and PD-L1

between high- and low-risk groups. To sum up, m7G-related genes play a

potential role in the TIM, treatment, and prognosis of ccRCC. Our results

provide new findings for ccRCC and help to improve the immunotherapy

strategies and prognosis of patients.
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Introduction

ccRCC is one of the most common tumors in the urinary

system, and the incidence of renal cell carcinoma is increasing

year by year. About 400,000 people worldwide suffer from renal

cell carcinoma every year, accounting for about 2%–3% of all

cancers (Siegel et al., 2021; Sung et al., 2021). With the

development of endoscopy and the improvement of adjuvant

chemotherapy and immunotherapy, the mortality rate has

decreased in developed areas (Antonelli et al., 2018; Tao et al.,

2021). The successful application of immunotherapy in many

kinds of cancer and further study of the tumor immune

microenvironment may change our current management

mode of patients and help some patients achieve long-term

survival and even achieve the goal of clinical cure (Gandara

et al., 2018; Mazieres et al., 2021).

Recent epitranscriptomic studies reveal that more than

170 post-transcriptional ribonucleic acid (RNA) modifications

can be identified in eukaryotic RNAs. This type of RNA is

generally catalyzed by a highly specific and conserved enzyme,

and its destruction will lead to a series of diseases (Jonkhout et al.,

2017). The most common and widespread mRNA modification

in mammals is N6-methyladenosine (m6A) (Boccaletto et al.,

2018). The internal modification of transfer RNA (tRNA) affects

the stability of its structure and function and has a significant

correlation with protein expression (Zheng et al., 2017).

Maladjusted tRNA modification affects the occurrence and

development of tumors (Rapino et al., 2021). M7G is a

conserved modified nucleoside, which is most often located at

the 46th position in the variable region of tRNA.M7G is found in

eukaryotes and eubacteria, and even in some archaea (Frye et al.,

2018). The expression of m7G was still found in the

psychrophilic bacteria with very low content of modified

nucleosides.

M7G plays an important role in ischemic diseases. Some

studies have found that m7G-related gene METTL1 promotes

the translation of VEGFA mRNA, which is positively related

to post-ischemic angiogenesis (Zhao et al., 2021).

Dysregulation of RNA is associated with tumors. Highly

expressed m7G-related genes were found in the lung cancer

patient tissues, and METTL1 promoted the development and

metastasis of lung cancer through the modification of tRNA

(Ma et al., 2021). In addition, high expression of METTL1 is

often associated with poor prognosis in tumor patients, and

METTL1 depletion affects m7G tRNA modification and

changes the cell cycle, which is negatively correlated with

oncogenicity (Orellana et al., 2021). Similarly, METTL1 is

significantly expressed in intrahepatic cholangiocarcinoma,

which affects the progression and prognosis of patients. M7G-

related genes are closely related to the treatment and

progression of tumors, suggesting that it may become a

new target of immunotherapy.

At present, the direct correlation between the treatment of

ccRCC andm7G is not clear. The occurrence and development of

tumor is affected by many factors. Therefore, a multi-angle

understanding of the correlations between m7G and TIM is

helpful to provide new insights into the treatment of ccRCC. To

the best of our knowledge, there is no study of m7G on the

survival and immunotherapy response of ccRCC, and our study

provides important suggestions for the management of ccRCC

patients.

Materials and methods

Data sources

RNA sequencing transcriptome profiling harmonized to the

fragments per kilobase million (FPKM) of 539 ccRCC samples,

72 normal samples, and corresponding clinical data were

downloaded from The Cancer Genome Atlas (TCGA)

database (https://portal.gdc.cancer.gov/repository). The simple

nucleotide variation (Masked Somatic Mutation) was also

downloaded from the TCGA database. The GSE16449 cohort

containing 70 ccRCC samples were downloaded from the Gene

Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/

geo/). The ccRCC copy number data (gene-level) were

downloaded from UCSC Xena (https://xena.ucsc.edu/). For

the TCGA ccRCC cohort, fragments per kilobase million

(FPKM) values were transformed into transcripts per million

(TPM) (Conesa et al., 2016). Combining the TPM data of TCGA

and GSE16449 data, the normal samples were removed, and the

“sva” package of R software was used for batch correction. For

datasets in public databases, institutional review board approval

and informed consent were not required. The patients’ clinical

information is described in Supplementary Table S1.

Unsupervised cluster analysis

Altogether, 29 m7G-related genes were retrieved from a prior

review (Tomikawa, 2018) and the Gene Set Enrichment Analysis

(GSEA) website (http://www.gsea-msigdb.org/gsea/index.jsp,

Supplementary Table S2). According to the expression of

m7G-related gene, we used the “ConsensusClusterPlus”

package of R software for unsupervised cluster analysis and

divided the patients into different molecular subtypes. We

ensured that the intra-group correlation was large and the

inter-group correlation was small. We used the “GSVA”

package of R software for gene set variation analysis (GSVA)

to study the differences in biological processes of the m7G-

related gene (Ferreira et al., 2021); the gene set file (c2.cp.kegg.v7.

4.symbols.gmt) was obtained from theMSigDB database (https://

www.gsea-msigdb.org).
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Correlations between the molecular
subtypes and prognosis of clear cell renal
cell carcinoma

We compared the correlations between molecular subtypes

and clinical characteristics of patients and analyzed the

correlations between m7G-related genes, molecular subtypes,

and survival of ccRCC patients by “survival” and “survminer”

packages of R software (Wang H et al., 2020).

Correlations of molecular subtypes with
the tumor immune microenvironment

We used the single-sample gene set enrichment analysis

(ssGSEA) algorithm to determine the relative abundance of

immune cell infiltration in TIM (Racle and Gfeller, 2020). The

immune score was calculated using the “ESTIMATE” package.

Differentially expressed genes

We used the “limma” package of R software to obtain DEGs and

made the adjusted p value < 0.05. We used the “clusterprofiler”

package for enrichment analysis of gene ontology (GO), functional

annotation, andKyotoEncyclopedia ofGenes andGenomes (KEGG).

Generation of 7-methylguanosine score

Individual ccRCCpatients were evaluated by constructing am7G

scoring system. First, a univariate COX regression analysis was used

forDEGs, and unsupervised clusteringmethodwas used to divide the

patients into different subtypes (m7Gcluster A and B) for a follow-up

analysis. Second, the patients were divided into different subtypes

(geneCluster A, B, andC) according to the expression ofm7G-related

genes. Then patients with ccRCC were divided into equal number of

train group (n= 265) and test group (n= 253). Finally, through cross-

verification, the optimal LASSO regression model was constructed.

The risk score formula was obtained using the coefficient and gene

expression level calculated by LASSO regression.

m7G Score � ∑(Expi pCoefi). (1)

Here, Expi and Coefi represent the expression level and risk

coefficient of each gene, respectively. According to the median

risk score, the samples of the test group and the train group were

divided into high- and low-risk groups, and subsequent survival

analysis was carried out. The ROC curve was depicted, and the

area under the curve (AUC) of the test group and train group was

calculated for 1, 3, and 5 years with the “timeROC” package of R

software. Principal component analysis (PCA) was carried out

with the “ggplot2” package of R software.

Establishment of a nomogram

Based on the patient’s clinical information and risk score, we

used the “RMS” package of R software to establish a simple and

effective nomogram (Iasonos et al., 2008). Each variable in the

figure can get a score, and the sum of all the scores is the final

result of the patient. Nomogram is used to describe 1-year, 3-

year, and 5-year survival forecasts.

Correlation between 7-methylguanosine
score and immune cells

We evaluated the correlation between seven genes involved

in the model and 22 immune cells, analyzed the differential

expression between the low-risk group and the high-risk group,

and discussed the correlations between the two risk groups and

cancer stem cells (CSCs).

Mutation and immune checkpoint analysis

We used the “maftools” package of R software to evaluate

somatic mutations in patients in high-risk and low-risk groups

(Mayakonda et al., 2018). We also performed a stratified analysis

according to age, sex, TNM stage, and survival status of kidney

cancer patients to determine the objective predictive power of the

m7G score and analyzed the correlation of the m7G score with

immune checkpoints. Finally, we verified the expression of some

m7G-related genes and risk score genes in tumor tissue and

normal tissue by immunohistochemistry (METTL1, EIF3D,

NUDT11, NUDT16, EIF4A1, IFI44, and CYFIP1).

Statistical analysis

All the statistical analyses and picture drawings were

carried out using the R software (version 4.1.2). p <
0.05 was considered to have the statistical difference; the

Benjamini–Hochberg (BH) multiple test correction was

used to calculate the adjusted p value.

Results

Variation and expression of 7-
methylguanosine-related genes in clear
cell renal cell carcinoma

We studied the incidence of somatic mutation in 29 m7G-

related genes (Figure 1A). There were 17 sample mutations in

336 samples, with a mutation rate of 5.06%. Among them, the

mutation rate of LARP1 was the highest, followed by AGO2,
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EIF4G3, and NSUN2. Overall, the m7G-related gene

mutation rate was not high in ccRCC; there were 20 m7G-

related genes without mutation in any sample. Through the

analysis of copy number variation (CNV) of m7G-related

genes, it was found that with the exception of NUDT4B, all

28 m7G-related genes had copy number variation. EIF4E1B

had the most significant copy number variation, followed by

LARP1, GEMIN5, and DCP2, and the most significant copy

number deletion was EIF4E2 and EIF4G3 (Figure 1B). Next,

we observed the location of m7G-related genes copy number

variation on chromosomes (Figure 1C). And we further

evaluated the expression of m7G-related genes in normal

samples and ccRCC samples. In the two groups, most of the

m7G-related genes’ expression was significantly different

(Figure 1D). We observed a high expression of METTL1 in

tumor samples, which is consistent with the conclusions of

previous studies. The expression of EIF3D is the highest in

tumor samples. Some studies have shown that the expression

of EIF3D is positively correlated with the grade of glioma and

the poor prognosis of gastric cancer (Ren et al., 2015; He et al.,

2017).

7-Methylguanosine cluster in clear cell
renal cell carcinoma

First, we merged the TPM data and the GSE16449 data

using the “sva” package of R software for batch correction.

Then we extracted the expression of m7G-related genes from

all tumor samples. According to the univariate COX

regression and Kaplan–Meier analysis, the prognosis-

related m7G-related genes were found, and the m7G-

related genes were divided into high- and low-risk groups,

and the survival curve was plotted according to p < 0.05

(Supplementary Figure S1 and Supplementary Table S3). The

prognosis network of m7G-related genes showed that the

FIGURE 1
Variation of m7G-related genes in ccRCC. (A) Genetic alteration on a query of m7G-related genes. (B) The frequency of CNV in m7G-related
genes. (C) The location of the CNV alteration of the m7G-related genes changes on 23 chromosomes. (D)Gene expression of m7G-related genes in
ccRCC and normal samples. *p < 0.05, **p < 0.01, ***p < 0.001; ccRCC, clear cell renal cell carcinoma.
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expression of most m7G-related genes was positively

correlated; NUDT11, NUDT16, and CYFIP1 were the most

likely genes related to prognosis (Figure 2A). We used

K-mean method to cluster m7G-related genes, and K = 2

(Figure 2B) was the optimal value, and m7G-related genes

were divided into two subtypes (m7Gcluster A n = 416 and

m7Gcluster B n = 166). PCA showed that there were

significant differences between the two m7Gclusters

(Figure 2C). Figure 2D shows the survival rates between

two different subtypes. There are significant differences

between the two different subtypes, and the survival of

m7Gcluster A is significantly better than that of

m7Gcluster B. The heat map shows the differential

expression of m7G-related genes between the two subtypes,

as well as the difference between the two subtypes and clinical

features. There were significant differences between the two

subtypes, and most of the m7G-related genes were highly

expressed in m7Gcluster A (Figure 2E).

The correlations between different
subtypes and the tumor immune
microenvironment

GSVA enrichment analysis showed the enrichment pathway

between different subtypes (Figure 3A). We can observe that

pathways steroid hormone biosynthesis, metabolism of

xenobiotics by cytochrome P450, arachidonic acid

metabolism, linoleic acid metabolism, cardiac muscle

contraction, olfactory transduction, and neuroactive ligand

receptor interaction are active in m7Gcluster B, and other

pathways are active in m7Gcluster A. Then we evaluated the

difference between TIM and two m7Gclusters. Figure 3B shows

the difference in the expression of 23 kinds of human immune

cells and subtypes. All immune cells are significantly different

between the two different subtypes, and the content of immune

cells is higher in cluster B. We used “limma” package to screen

the differentially expressed genes (DEG) related to m7G-related

FIGURE 2
Characteristics of m7G subtypes. (A) The correlations between m7G-related genes; the line indicates that the two were related, the red line
represented the positive correlation, the blue line represented the negative correlation, and the size of the node represented the prognostic
correlation. (B)M7G-related genes were divided into two subtypes. (C) PCA analysis showed that there were significant differences among different
subtypes. (D) Survival analysis of different subtypes. (E) The expression of m7G-related genes in different subtypes and the clinical
characteristics of the subtypes. PCA, principal components analysis.
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gene subtypes, and the adjusted p values of all the DEGs were less

than 0.05. After that, the DEGs were analyzed by GO and KEGG

enrichment analysis. Through GO enrichment analysis, we can

observe that the DEGs are mainly enriched in biological

processes and cell component, and the most significant one is

positive regulation of the catabolic process (Figure 3C). KEGG

enrichment analysis showed that the enrichment of DEGs were

the most significant in extracellular matrix organization,

extracellular structure organization, and external encapsulating

structure organization (Figure 3D). These results suggest that

m7G-related genes play an indispensable role in immune

regulation.

Screening of prognostic genes and
construction of the model

According to the DEGs, univariate COX regression analysis

(p < 0.05) was used to screen the prognosis-related genes (n =

4419). As with the m7G-related gene subtypes method, we

divided the prognostic genes of ccRCC into three subtypes

(Figure 4A). The survival analysis of the three subtypes

showed that geneCluster A had more survival advantage than

geneCluster B and C, and there were significant differences

between the three subtypes (Figure 4B). The heat map showed

the correlations between the three subtypes of prognostic and the

clinical characteristics and m7G-related gene subtypes of ccRCC.

Most of the genes were highly expressed in geneCluster A and

lowly expressed in geneCluster C (Figure 4C). There is a

significant difference between m7G-related genes and the two

prognosis-related gene subtypes of ccRCC, which indicates that

m7G-related genes are closely related to the prognosis of ccRCC

(Figure 4D). The prognosis-related genes of ccRCC were

analyzed by Lasso regression and multivariate Cox analysis

(Supplementary Figure S2, Supplementary Table S4). Finally,

seven genes were obtained. M7G Score = INPP4B * −0.3438 +

PDK4 * −0.1936 + AJAP1 * −0.4170 + GADD45A * −0.3576 +

IFI44 * 0.6223 + PPP1R1A * 0.1396 + HLA-DQB2 * −0.1989. The

Sankey diagram showed the process of constructing the

prognostic model (Figure 4E).

Verification of the prognostic model

We observed the difference between the m7G score and the

prognosis-related gene subtypes; Figure 5A shows that the

geneCluster C score was the highest, and there was a

significant difference between the three subtypes. There were

also significant differences among m7G-related gene subtypes,

and m7Gcluster B had higher m7G score (Figure 5B). The

differential analysis of m7G-related genes between high- and

low-risk groups showed that 21 m7G-related genes were

FIGURE 3
M7G subtype enrichment analysis. (A) GSVA enrichment analysis of different subtypes, blue and red represented inhibition and activation
pathways, respectively. (B) Difference in immune infiltration of m7G subtypes. (C,D) GO and KEGG enrichment analysis. GSVA, gene set variation
analysis; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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significantly different between high- and low-risk groups, m7G-

related genes were highly expressed in most low-risk groups, and

METTL1 and EIF4A1 was highly expressed in high-risk groups

(Figure 5C). Then we plotted the survival curves of the high- and

low-risk patients and verified it with the test group. The results

showed that there were significant differences between high- and

low-risk patients in all groups, and the prognosis was better in the

low-risk group (Figure 5D). In addition, the ROC curve of high-

and low-risk patients in all groups had good validity (Figure 5E).

The high-risk group had a poorer prognosis, METTL1 and

EIF4A1 were highly expressed in the high-risk group, and

these were consistent with our previous results, patients with

high expression of METTL1 and EIF4A1 had a poorer prognosis,

while the remaining m7G-related genes were the opposite

(Supplementary Figure S1).

Establishment of a nomogram

To easily and effectively predict the overall survival of ccRCC

patients, we constructed a nomogram using the patient’s clinical

information and the m7G score (Figure 6A). The results of the

calibration curve show that the nomogram can effectively predict

the 1-year, 3-year, and 5-year survival time of ccRCC patients

(Figure 6B). The risk map shows the distribution of patients in

high- and low-risk groups, and with the increase of the m7G

score, the number of patients dying increases gradually; at the

same time, we plotted a risk heat map, and the high-risk gene

involved in the construction of the m7G score is IFI44 and

PPP1R1A, the low-risk gene is INPP4B, PDK4, AJAP1,

GADD45A, and HLA-DQB2 (Figures 6C–E).

Correlations between 7-methylguanosine
score and immune cells

We analyzed the correlations between the seven genes and

immune cells, and the results showed that there was a wide

correlation between the m7G score and immune cells

(Figure 7A). The correlation scatter plot showed that the m7G

score was positively correlated with Macrophages M0, Plasma

cells, T cells CD4 memory activated, T cells CD8, and T cells

regulatory (Tregs) and negatively correlated with Dendritic cells

activated, Dendritic cells resting, Macrophages M2, Mast cells

FIGURE 4
Characteristics of prognosis-related gene subtypes. (A) Prognosis-related genes were divided into three subtypes. (B) Survival analysis of
prognosis-related gene subtypes. (C) The expression of prognosis-related gene subtypes and the clinical characteristics of the subtypes. (D)
Correlations between prognosis-related gene subtypes andm7G-related genes. (E) The Sankey diagram in the process of constructing a prognostic
model. *p < 0.05, **p < 0.01, ***p < 0.001.
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resting, Monocytes, and T cells CD4memory resting (Figure 7B).

There were significant differences in high- and low-risk groups,

the ImmuneScore and ESTIMATEScore were higher in the high-

risk group (Figure 7C).

Correlation between 7-methylguanosine
score and clinicopathological features

We analyzed the correlation between the m7G score and

clinicopathological features of ccRCC patients. The results

showed that there was a significant correlation between TNM

stages, survival status, and the m7G score, but the m7G score was

not correlated with age and gender (Figure 8A). Higher m7G

scores had higher TNM stage and death. In addition, there was a

significant difference in the TNM stage between the high- and

low-risk groups with m7G scores, and the patients in the low-risk

group had better survival (Figure 8B).

Mutation and immune checkpoints

The waterfall map shows the somatic mutation in the high-

and low-risk groups, with the mutation rate of 83.13% in the

high-risk group and 81.22% in the low-risk group. We showed

the top 20 mutations in both groups, with the highest VHL

FIGURE 5
Verification of prognostic model. (A) Differential analysis of risk scores for prognosis-related gene subtypes. (B) Differential analysis of risk
scores for m7G subtypes. (C) Expression difference in m7G-related genes in high- and low-risk groups. (D) From left to right, the patients in the train
group, the test group, and all patients analyzed for survival. (E) From left to right, the patients in the train group, the test group, and all patients
analyzed for ROC curves. ROC, receiver operating characteristic.
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mutation rate in the high- and the low-risk group (Figure 9A). In

addition, the results of tumor mutational burden (TMB) showed

that (Figures 9B,C) there was a significant difference between

high- and low-risk groups; the high-risk group had a more

significant TMB, and TMB positively correlates with the m7G

score. There was a significant difference in survival between the

high- and low-TMB groups, and the survival of patients with low

TMB was significantly better than that of patients with high

TMB, and the survival of patients with low TMB plus low m7G

score was better (Figures 8D,E). The correlation analysis between

the m7G score and stem cells showed that there was no

significant correlation between the two (Figure 8F). In

addition, our analysis of three important immune checkpoints

showed that PD-1 and CTLA4 were highly expressed in the high-

risk group while PD-L1 was lowly expressed (Figure 9G).

Moreover, there was no significant difference between the four

groups of immunotherapy in the high- and low-risk groups

(Figure 9H). We further performed immunohistochemistry to

externally verify the genes for METTL1, EIF3D, NUDT11,

NUDT16, EIF4A1, IFI44, and CYFIP1 (https://www.

proteinatlas.org/); the results showed that there were

significant differences between ccRCC tissues and normal

tissues (Supplementary Figure S3).

Discussion

ccRCC is one of the most common tumors in urology, and

the most effective treatment is still surgery; partial nephrectomy

is the standard of surgical treatment for small renal mass

(Campbell et al., 2021). About half of localized tumors have

distant metastasis, and the prognosis of metastatic ccRCC

FIGURE 6
Construction of nomogram, the correlations between the m7G score and patient survival status. (A) Nomogram predicted 1, 3, and 5-year
overall survival of ccRCC patients. (B) Calibration curves of the nomogram for predicting of 1-, 3-, and 5-year overall survival of ccRCC patients.
(C–E) Distribution of the m7G score among ccRCC patients, correlations between the m7G score and patient survival status, risk heat map of m7G
score genes, from left to right were the patients in the training group, the patients in the test group and the patients in all groups.
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patients is poor; ccRCC is the most common renal cell carcinoma

(Gong et al., 2016; Navani and Heng, 2021). Immune checkpoint

inhibitors have been used in clinic (Hu et al., 2021) and have

achieved good results in a variety of tumor treatment (Arbour

and Riely, 2019; O’Malley et al., 2021). Renal cell carcinoma is not

sensitive to chemotherapy drugs, and immunotherapy and

targeted therapy are effective treatments for advanced renal

cell carcinoma (Bedke et al., 2021; Yoshida et al., 2021).

Although advances in immunotherapy have been made in

recent years, the heterogeneity of the tumor immune

microenvironment often affects the progression and prognosis

of renal cancer. We need new evidence to improve the current

treatment.

M7G has a regulatory effect on the occurrence and

development of tumors (Liu et al., 2019; Ma et al., 2021).

Post-transcriptional modification of tRNA affects the

structure and function of tRNA, thereby affecting the

occurrence and development of a series of diseases. In the

urinary system, a study (Ying et al., 2021) had shown that

METTL1 is highly expressed in bladder cancer patients, and its

expression level is positively correlated with the poor prognosis

of patients. METTL1 affects the expression of some target genes

by modifying the post-transcriptional modification of tRNA,

thereby regulating tumors. At present, there are no studies on

the correlations between m7G and the development of ccRCC,

and the relationship between m7G-related genes and the

immune microenvironment of ccRCC is unclear. So, multi-

omics studies based on m7G-related genes are necessary. The

m7G-related genes have different molecular regulation

mechanisms among different tumors. Evaluation from

multiple aspects can more effectively explain the role of

m7G-related genes in the immune microenvironment of

ccRCC, especially for personalized treatment and precision

therapy.

FIGURE 7
The correlations between them7G score and TIM. (A)Correlations betweenm7G score genes and abundance of immune cells. (B)Correlations
between the m7G score and immune cell types. (C) The correlations between high- and low-risk group patients and TIM. TIM, tumor immune
microenvironment.
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In this study, we explored the expression patterns of m7G-

related genes in ccRCC patients from multiple levels and

analyzed the correlations between m7G-related genes and the

ccRCC immune microenvironment, which paved the way for

further discussions on how m7G-related genes can promote or

inhibit TIM in the future. We had observed significant CNV in

m7G-related genes. EIF4E1B, LARP1, GEMIN5, and DCP2 were

the genes with the most significant increase in CNV. EIF4E1B is

associated with eukaryotic canonical translation initiation; most

eukaryotes have distinct EIF4E subgenes (Ying et al., 2021).

LARP1 is involved in cell growth and proliferation, and its

overexpression may reverse the progression of ccRCC

[(Tcherkezian et al., 2014), (Li et al., 2020)]. GEMIN5 affects

the assembly of motor neuron complexes; GEMIN5 mutations

can shorten the life span of patients and affect movement and

development (Kour et al., 2021). DCP2 affects human RNA

stability and plays an important role in the regulation of

immune responses (Luo et al., 2021). In our study, we found

high expression of EIF4E1B, LARP1, GEMIN5, and DCP2 in

tumor tissues, which seems to be consistent with our results. The

role of m7G-related genes in ccRCC is worthy of further study.

According to the expression of 29 m7G-related genes, we divided

the ccRCC samples into two subtypes (m7Gcluster A and B) and

identified them. Different subtypes showed different

clinicopathological features and prognosis, and there were

significant differences in TIM. There is higher m7G-related

gene expression in m7Gcluster A, which is related to the

higher stage and grade of ccRCC. We observed that there was

a different immune cell infiltration in the two subtypes. Then we

carried out GO, KEGG, and GSVA analyses to further explore the

related functions and biological processes of the subtypes. With

the study of TIM, the immune system is inextricably linked with

the whole process of tumor progression (Kardoust Parizi et al.,

2021).

FIGURE 8
M7G score and ccRCC clinicopathological features. (A) Correlation between the m7G score and ccRCC clinicopathological features. (B)
Correlation between the TNM stage survival and the M7G score.
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Then, according to the differential expression of genes

between the two subtypes, we divided the prognosis-related

genes into three subtypes (geneCluster A, B, and C). There

was a significant difference in survival between the three

subtypes, and the prognosis of geneCluster A was better than

geneCluster B and C. We also observed that most of the

differential genes and m7G-related genes were highly

expressed in subtype A, which was also associated with higher

clinical stage and grade. Based on seven genes, we constructed a

predictive model in the training group to evaluate ccRCC

patients. We observed that most m7G-related genes were

highly expressed in the low-risk group. In the train group and

the test group, the overall survival rate of low-risk patients was

significantly higher than high-risk patients, and the 1-, 3-, and 5-

year AUC of the training group were 0.904, 0.838, and 0.847,

respectively. Univariate and multivariate COX showed that the

gene we used to construct the model was an independent

prognostic factor—high expression of IFI44 and PPP1R1A in

high-risk patients and high expression of INPP4B, PDK4, AJAP1,

GADD45A, and HLA-DQB2 in low-risk patients. The study had

shown that the expression level of IFI44 is associated with

tyrosine kinase inhibitor resistance in non-small cell lung

cancer (Wang S et al., 2020). Tumor metastasis often means

worse prognosis. As a potential target of breast cancer, the

expression level of PPP1R1A is closely related to the invasion

and metastasis of breast cancer (Shi et al., 2020). We combined

the m7G score and the clinical characteristics of ccRCC patients

to create a nomogram, which gives full play to the advantages of

the m7G score, which helps to objectively evaluate the prognosis

of patients and better manage patients. One of the difficulties in

tumor treatment is the lack of specificity. This study provides a

new idea for the treatment of ccRCC and understands the

molecular mechanism of ccRCC from many levels; our model

may become a prognostic marker and potential therapeutic target

for ccRCC. This has paved the way for subsequent targeted drug

treatment.

FIGURE 9
Mutation and immune checkpoint therapy. (A) Somatic mutation features of ccRCC patients in high- and low-risk groups, with colors
representing different mutation types. (B,C) Correlations between the m7G score and tumor mutation burden. (D,E) Survival difference of patients
with different TMB. (F)Correlations between them7G score and RNAs. (G) Expression levels of PD-1, PD-L1 and CTLA4 in high- and low-risk groups.
(H) Analysis of the m7G score in anti-PD-L1 and CTLA-4 immunotherapy.
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We found that there were significant differences between the

m7G score and immune cells. Macrophages vary with tumor

progression (Biswas et al., 2008). In the initial stage, macrophages

are often characterized by the accumulation of Macrophages M1.

With the change of TIM, Macrophages M1 is gradually polarized

to Macrophages M2. T cells CD8 plays an important role in host

defense of the immune environment, and studies had shown that

T cells CD8 infiltration is associated with poor prognosis in

ccRCC [(Qi et al., 2020), (Murakami et al., 2021)]. Tregs are

associated with renal cancer progression, and high expression of

Tregs was detected in advanced ccRCC tissues (Minarik et al.,

2013).

Significant mutations were found in the high- and low-risk

groups of the m7G score, the highest mutation were VHL, and the

proportion of missense mutation was the highest. VHL mutation is

closely related to ccRCC. Low expression of PBRM1 and VHL is

associated with increased invasiveness of ccRCC and may serve as a

predictor of ccRCC growth rate (Hogner et al., 2018; Wang et al.,

2021).We observed that there was a positive correlation between the

m7G score and TMB, and there were significant differences between

different risk groups and TMB. TMBmay be related to TIM (Wang

and Li, 2019). Zhang et al. (2019) compared the immune scores in

the high- and low-TMB groups and found that there was a

significant difference in immune cell infiltration between the two

groups. This is consistent with our results, higher TMB in ccRCC

may be associated with immune cell rejection. The m7G score we

constructed can well predict the clinicopathological features of

patients. Although the results showed that the m7G score did

not predict survival in patients with N1 stage, it was fully

explainable, and there were fewer patients with N1 stage and

could not be effectively assessed.

At present, immune checkpoint blockade therapy (PD-1,

PD-L1, and CTLA4) has been successfully applied to renal

cancer patients with certain results (Kammerer-Jacquet et al.,

2019; Tucker and Rini, 2020). In this study, we observed that

there were significant differences in PD-1, PD-L1, and

CTLA4 expression between high- and low-risk groups.

Clinical trials have confirmed that PD-1 blockade can prolong

the overall survival time of ccRCC patients, and ccRCC patients

treated with nivolumab (anti-PD-1) are more effective than those

treated with everolimus (Motzer et al., 2020a). Overall survival in

ccRCC patients treated with nivolumab in combination with

ipilimumab was better than sunitinib alone in the phase III

CheckMate 214 trial (Motzer et al., 2020b). There was

evidence that the progression-free survival of ccRCC patients

treated with avelumab (anti-PD-L1) combined with axitinib is

better than that of patients treated with sunitinib alone (Albiges

et al., 2020; Tomita et al., 2020). To sum up, our model can

predict the prognosis of ccRCC patients and the effect of immune

checkpoint blockade therapy, which provides a new contribution

to the immunotherapy of ccRCC.

This study has a good guiding role in the management of

ccRCC patients, but it also has some limitations. Different case

choices may affect the results of the study. Therefore, it is

necessary to conduct a follow-up prospective study to verify it.

Conclusion

There is a close relationship between m7G and ccRCC. The

model we established from a multi-omics perspective provides

new insights on the prognosis of ccRCC patients and further

elaborates the relationship between ccRCC and TIM, which

provides a new idea for immunotherapy.
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