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Simple Summary: Ascites syndrome (AS), a nutritional, metabolic disease in broiler chickens, exerts
serious effects on the economic efficiency of the broiler industry. To date, the pathogenesis of broiler
ascites syndrome is still not well understood. In this study, we explored the metabolic function of the
right ventricles of clinical ascitic broilers and healthy broilers (control) from the same flock. Our study
showed the myocardial energy supply in ascitic broiler chickens occurs mainly through glycolysis
and fatty acid metabolism, and the oxidation of the TCA cycle is blunted. These findings suggest
that there is insufficient energy metabolism in the right hearts of broilers with ascites syndrome,
causing a state of functional failure. These results may provide useful information for elucidating
the pathogenesis of broiler ascites syndrome and may also provide a reference for future research
on similar diseases (including pulmonary hypertension syndrome and heart failure) in humans and
domestic animals.

Abstract: Ascites syndrome (AS) is a metabolic disease observed mainly in fast-growing broilers. The
heart is one of the most important target organs of the disease. The goal of this study was to evaluate
the metabolic function of the right ventricles in clinical ascitic broilers. HE staining was performed
to observe histopathological changes in the right ventricle of the heart, while Western blotting was
used to detect the protein expression levels of macrophage migration inhibitory factor (MIF) and
phosphorylated AMP-activated protein kinase (p-AMPK), as well as other key enzymes of energy
metabolic pathways (i.e., glycolytic pathway: HK2, PFK1, PFK2, and PKM2; the tricarboxylic acid
cycle (TCA cycle) pathway: OGDH, IDH2, and CS; and the fatty acid oxidation pathway: CPT-1A
and ACC) in myocardial tissue. The histopathological examination of the myocardia of ascitic broilers
revealed disoriented myocardial cells in the myofibril structure and a large number of blood cells
deposited in the intermyofibrillar vessels, suggesting right heart failure in ascitic broilers. The Western
blotting analysis demonstrated significantly increased levels of MIF and p-AMPK in the myocardia of
ascitic broilers compared to those of the control group (p < 0.05). Additionally, the protein expression
of key enzymes was dramatically increased in the glycolytic and fatty acid oxidation pathways,
while the protein expression of key enzymes in the TCA cycle pathway was decreased in the ascitic
broiler group. These findings suggest enhanced glycolysis and fatty acid oxidation metabolism, and
a diminished TCA cycle, in the myocardia of broiler chickens with ascites syndrome.

Keywords: broiler; ascites syndrome; macrophage migration inhibitory factor; AMP-activated protein
kinase; glucose metabolism; fatty acid metabolism

1. Introduction

Ascites syndrome (AS), also known as pulmonary hypertension syndrome (PHS), is a
nutritional, metabolic disease in broiler chickens. It is characterized by abdominal fluid
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accumulation and right ventricular hypertrophy [1–3]. This disease exerts serious effects on
the economic efficiency of the broiler industry and the quality of chicken meat [4,5], and has
negative effects on animal welfare [6]. Many factors, such as physiological, environmental
and management factors can cause this disease [7,8], which can be summarized as follows:

(1) Genetic factors: Broilers are artificially bred strains whose most significant biological
characteristics are their exceedingly rapid growth rate and efficient feed conversion.
However, they also possess genetic defects; for instance, an imbalance between the
development of their cardio-respiratory system and their fast-growing bodies occurs
before four weeks of age [9,10], which leaves their organs and muscles extremely
vulnerable to hypoxia. Therefore, broiler chickens are especially prone to developing
ascites.

(2) Triggering factors: Various stimuli that cause hypoxia may also induce the occurrence
of ascites in broiler chickens. These stimuli include cold weather stress, light [11],
high-energy diets, excessive sodium intake [12], and high altitudes [13–15].

To date, studies on the pathogenesis of ascites syndrome in broiler chickens has mainly
focused on changes in the structure and functioning of the pulmonary arteries [2,9,16,17].
Long-term chronic hypoxia leads to the remodeling of the pulmonary artery [18] and
pulmonary hypertension (PH), which can either result in right heart hypertrophy or the
obstruction of the portal vein, both of which eventually lead to ascites. Although this
mechanism is widely accepted, it does not fully reveal the pathogenesis of broiler ascites.
This is because feeding restriction is still considered the simplest and most effective measure
to prevent broiler ascites in real farming production [19–21]. This assumes that broiler
ascites syndrome is a nutritional, metabolic disease, which requires the elucidation of
the nature of the disease from the perspective of metabolic research. Moreover, previous
studies on the heart are limited compared to those on the lungs [22,23], while the heart is
one of the important target organs in this syndrome. Based on the above considerations,
we hypothesized that cardiac energy metabolism may be altered in broiler chickens with
ascites syndrome. We focused on cardiac energy metabolism in clinical cases with ascites
syndrome from the perspective of energy metabolism.

2. Materials and Methods
2.1. Source and Screening of Ascitic Cases

A total of forty clinical ascitic broilers were obtained from AA broilers of poultry farms
in the district of Taigu from the Da Xiang Group, Shanxi Province, China. The broilers were
25~42 days old, and their weight ranged from approximately 0.5 to 1.0 kg.

Suspected cases of ascites syndrome were selected and brought back to the laboratory.
These chickens showed the following clinical signs: low mood, fluffed-out feathers, signif-
icantly enlarged abdomen, thinning skin (in some cases, fluid was even observed in the
peritoneal cavity), and an obvious fluctuating sensation when pressed, but no other abnor-
mal conditions [24]. The cases were first anesthetized using an intraperitoneal injection
of urethane (1.5 g/kg of body weight) and then euthanized by vein bloodletting. Broilers
were ultimately considered ascitic cases upon postmortem examination when the ratio of
the weight of the right ventricle-to-total ventricle was not less than 0.30 (ascites heart index,
AHI) [25]. We selected the same number of healthy broilers from the same flock to form the
control group every time we picked suspected cases. The control and ascitic groups each
included at least three replicates. The healthy chickens were treated identically.

The hearts of broilers were harvested, and the heart ventricles were cut out and
weighed. Then, the right heart ventricles were cut out, weighed, and washed with sterilized
saline. Next, one portion of the sample was stored at −80 ◦C, while the other was fixed
in Bouin solution. All experiments involving the broilers were formally approved by the
Institutional Animal Care and Use Committee of Shanxi Agricultural University, Taigu
branch on 13 March 2018.
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2.2. Antibodies and Chemicals

The phosphofructokinase 1 (PFK1) (sc-31711) antibody was purchased from Santa
Cruz Biotechnology (Santa Cruz, CA, USA), while the phosphofructokinase 2 (PFK2) (bs-
3528R), carnitine palmitoyltransferase-1A (CPT-1A) (bs-2047R), AMP-activated protein
kinase (AMPK) (bs-1115R), β-actin (bs-10966R), phosphorylated PFK2 at Ser467 (bs-3331R),
and phosphorylated pyruvate kinase M2 (p-PKM2) at Tyr105 (bs-3334R) antibodies were all
purchased from Bioss Biotechnology (Beijing, China). The antibodies against PKM2 (15822–
1-AP), hexokinase 2 (HK2) (22029–1-AP), α-ketoglutarate dehydrogenase (OGDH) (15212–
1-AP), citrate synthase (CS) (16131–1-AP), isocitrate dehydrogenase 2 (IDH2) (15932–1-AP),
lactate dehydrogenase B (LDHB) (14824–1-AP), and pyruvate dehydrogenase E1(PDHE1)
(18068–1-AP) were all purchased from Proteintech Group (Chicago, IL, USA). The phos-
phorylated AMPK (Tyr172, 2531) antibody was acquired from Cell Signaling Technology
(Beverly, MA, USA). The macrophage migration inhibitory factor (MIF) antibody was
produced in our laboratory. Hematoxylin (AR11180–1) and eosin (AR11180–2) staining
solutions were purchased from Boster Bioengineering Co. Ltd. (Wuhan, China), while
the RIPA protein buffer and BCA protein assay kit (P0010) were procured from Beyotime
Biotechnology (Shanghai, China). ECL-plus reagent (AR1111) was obtained from Bioss
Biotechnology.

2.3. Hematoxylin and Eosin (HE) Staining

Myocardial tissues were fixed in Bouin solution for 48 h and then rinsed in running
water for 24 h. Next, the tissues were dehydrated in an increasing alcohol gradient and
cleared in xylene to remove residual alcohol. The tissues were ultimately embedded in
paraffin, sectioned at a thickness of 4 µm, incubated in a water bath at 45~47 ◦C, and baked
at 50 ◦C for 6~7 h. Finally, sections were stained with hematoxylin and eosin and observed
under a light microscope.

2.4. Western Blotting

Western blotting was performed to detect the expression levels of proteins. Frozen
myocardial tissue (100 mg) was powdered in liquid nitrogen and lysed in ice-cold RIPA
buffer. The lysates were centrifuged at 4 ◦C and the supernatant (protein sample) was
collected and stored for further use. The concentration of protein samples was determined
using a BCA protein assay kit, and the proteins were separated according to their molecular
weight using appropriate concentrations of sodium dodecyl sulfate-polyacrylamide gel
(SDS-PAGE). Next, the proteins were transferred onto nitrocellulose membranes on an
ice bath and blocked using 5% non-fat milk at room temperature for 2 h. Samples were
incubated with primary antibodies at 4 ◦C overnight, followed by incubation with the
corresponding secondary antibodies at room temperature for 2 h. The dilutions of primary
antibodies are listed as follows: MIF (1:500), AMPK (1:500), p-AMPK (1:750), HK2 (1:2000),
PFK1 (1:150), PFK2 (1:500), p-PFK2 (1:500), PKM2 (1:1000), p-PKM2 (1:300), OGDH (1:3000),
CS (1:3000), IDH2 (1:1000), ACC (1:500), p-ACC (1:500), CPT-1A (1:300), PDHE1 (1:4000),
LDHB (1:1000), β-actin (1:4000), and GAPDH (1:3000). The goat anti-mouse and goat
anti-rabbit secondary antibodies were used at a dilution of 1:5000 and 1:4000, respectively.
Finally, the protein bands were observed using an ECL-plus reagent.

2.5. Statistical Analysis

The target protein bands of Western blotting were detected using ImageJ (National
Institutes of Health, Bethesda, MD, USA) to analyze the gray values. Data from at least
three independent experiments are presented as the means ± SEM. Statistical analyses
were performed using paired-sample t-tests with SPSS 19.0 (IBM Corp, Armonk, NY, USA).
p < 0.05 is indicated by *; p < 0.01 is indicated by **.
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3. Results
3.1. The Performance of Clinical Ascitic Broilers

The clinical observations and a preliminary judgment were followed by the post-
mortem of the clinical ascitic broilers, which revealed the following features: the accumu-
lation of large amounts of yellowish fluid in the abdominal cavity without any fibrous
clots (Figure 1A), 30 to 200 mL ascites, a significantly enlarged right ventricle showing a
flabby and poorly elastic myocardium (Figure 1B), and pericardial effusion observed in
the heart (Figure 1C). Meanwhile, the AHI in ascitic broilers was 0.303 ± 0.050, which was
significantly higher (p < 0.01) than that of the control group (0.213 ± 0.024).
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Figure 1. Autopsy results of AS broilers: (A) accumulation of large amounts of yellowish and clear
fluid in the abdominal cavity without any fibrous clots; (B) the right ventricle shows flaccidity and
poor elasticity; (C) pericardial effusion was observed in the heart.

3.2. Myocardial Histopathology

HE staining of the control group showed neatly arranged myocardial fibers and
structurally dense myofibrils, with no blood cells being deposited in the blood vessels
between the myofibrils (Figure 2A). Compared to the control group, the ascitic group
showed a neat arrangement of myofibrils. However, some cardiomyocytes exhibited
disoriented myofibrils, with a large number of blood cells being deposited in the blood
vessels between the myofibrils. This suggested the presence of myocardial injury and right
heart ventricular dysfunction (Figure 2B,C).
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3.3. Expressions of MIF and p-AMPK in Ascitic Broilers

Western blotting showed a significantly upregulated expression level of MIF (Figure 3A)
and p-AMPK (Figure 3B) in the myocardial tissues of ascitic broilers compared to that of
the control broilers of the same flock (p < 0.05).
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3.4. Expressions of Key Enzymes of the Energy Metabolic Pathway of Myocardial Tissue in
Ascitic Broilers

Western blotting showed significantly enhanced activities of the key enzymes PKM2,
HK2, PFK1, and PFK2 in the glycolytic pathway of the ascitic broilers’ myocardial tissue
compared to those of the control broilers of the same flock (p < 0.05) (Figure 4A). This
suggested that ascites in broilers led to enhanced energy supply in cardiac glycolysis.

As shown in Figure 4B, the expression levels of the key enzymes of the TCA cycle,
OGDH, IDH2, and CS, were significantly decreased in the myocardial tissues of ascitic
broilers compared to those of the control broilers in the same flock, indicating diminished
aerobic oxidative energy supply to the heart in ascitic broilers.

As shown in Figure 4C, the expression levels of key enzymes of the fatty acid oxidation
pathway, CPT-1A and p-ACC, were significantly higher in the myocardial tissues of ascitic
broilers compared to those of the control broilers (p < 0.01). These results indicated an
enhanced energy supply of the cardiac fatty acid oxidation process in ascitic broilers.

Additionally, the expression levels of both PDHE1 and LDHB were significantly
decreased in the myocardial tissue of ascitic broilers compared to those of the control
broilers (Figure 4D, p < 0.05). The weakened expression of LDHB suggested that pyruvate
produced by the glycolytic pathway was mainly converted into lactate, which enhanced
anaerobic oxidation. Meanwhile, the decreased expression of PDHE1 weakened the acetyl-
CoA production entering the TCA cycle from the pyruvate of glycolysis origin, weakening
the aerobic oxidation of glucose.
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independently. * p < 0.05 and ** p < 0.01 indicate a significant difference from the control group.

4. Discussion

Currently, ascites syndrome is still a clinically challenging disease: it has a detrimental
impact on both humans and broilers [2]. Broiler ascites syndrome remains an important
disease that cannot be ignored in broiler farming production due to its increasing incidence
and mortality [26,27]. As we know, ascites syndrome is a nutritional, metabolic disease in
broiler chickens, and the heart is among its important target organs; our study evaluated
the cardiac energy metabolic status of clinical ascitic broilers. Conducting this research
may not only improve the prevention and control of the disease, but can also improve the
standard of broiler breeding, and may provide a reference for future research on similar
diseases (including pulmonary hypertension syndrome and heart failure) in humans and
domestic animals.

The clinically suspected cases of broiler ascites syndrome were screened based on the
birds’ characteristics, including depression, fluffed-out feathers, and markedly enlarged and
fluctuating abdomens [1,2,28]. An observed difference of this disease from other infectious
diseases was that the body temperature of the birds was normal [29]. The results of patho-
logical autopsy were characterized by the presence of a certain amount (more than 20 mL)
of yellowish, clear, and transparent fluid in the peritoneal cavity as well as the hypertro-
phied right ventricle [25], with an AHI value of not less than 0.3. AHI is considered the
gold-standard indicator for the diagnosis of broiler ascites syndrome. In the present study,
combined with histopathological findings and the AHI result for the right ventricle in ascitic
broilers, damaged myocardial structures were observed, suggesting right heart failure. These
observations were similar to those of other researchers [7,30]. In addition, we also found
some “suspected” cases, including those with a low volume of ascites (less than 20 mL), an
enlarged right ventricle, and an AHI of less than 0.3, which were likely to be in a “transitional”
period of disease onset and progression. Although they were of important research value, we
excluded such “suspected” cases due to their atypical nature. However, for a more in-depth
study in the future, we may also need to focus our attention on this aspect.
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The heart beats every moment and is an extremely important organ that consumes a
great amount of energy in both resting and exercising states. It is also one of the important
target organs in broiler ascites syndrome, where hypoxia acts as the primary cause of its
formation. Therefore, studying changes in energy metabolism in the heart of ascitic broilers
is of great importance since it reveals the mechanism of pathogenesis of this syndrome. In
eukaryotes, AMPK is considered a highly conserved “energy level sensor”. It is activated in
energy deficit cases and inhibited in the case of energy excess conditions [31,32]. It is known
as the “master switch” or “barometer” of energy metabolism, which protects the cells from
“energy crisis”. Combining the results of our study with those of other researchers, right
heart failure is an important feature of broiler ascites syndrome, and the cardiac energy
metabolism may change accordingly. MIF is considered to be a vital link between these
conditions. Many studies on mammalian cells have shown that MIF is a multifunctional
cytokine with hormonal properties. It is highly expressed in cardiac myocytes and is closely
related to hypoxia [33,34], with an important role in the regulation of myocardial energy
metabolism [35]. Myocardium MIF is reported to improve myocardial energy metabolism
by activating intracellular AMPK via acting on its membrane receptors [35,36], which in
turn protects the heart from injury. Accordingly, we hypothesized that MIF may also play
an important role in the regulation of energy metabolism and functional activities in the
hearts of broilers. Therefore, in this study, we investigated the protein expression levels of
both MIF and p-AMPK in ascitic broiler hearts.

Our results showed that, compared to the control group, the levels of MIF and p-
AMPK were significantly increased in the myocardial tissues of ascitic broilers, suggesting
a state of relative energy deficiency in the myocardia of ascitic broilers, where the feedback
mechanism increased MIF secretion and elevated p-AMPK levels (Figure 5). This was
consistent with the findings of other mammalian studies [36]. Activated AMPK produces
more ATP through the regulation of key enzymes of glucose metabolism and fatty acid
metabolism. Therefore, to investigate the effects of MIF and AMPK on the myocardial
energy metabolism in ascitic broilers, we examined the key enzyme activities in glucose
and fatty acid metabolic pathways in their myocardial tissues.
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In the glucose metabolism pathway, the results showed that the activities of key
enzymes of the glycolytic pathway, HK2, PFK1, PFK2, and PKM2, were significantly
increased in ascitic broiler myocardial tissues compared to those of the control group,
whereas the expression of the key enzymes of the TCA cycle, OGDH, IDH2, and CS,
showed a significant decrease. These results indicated enhanced anaerobic glycolysis and
reduced oxidative phosphorylation in the TCA cycle of myocardial tissues in the ascitic
broilers. Therefore, under hypoxic conditions, the body adapts to the above-mentioned
mechanism to produce more ATP when there are limited oxygen supply levels.

The expression levels of the key enzymes in the fatty acid oxidation pathway, CPT-1A
and p-ACC, were significantly increased in the myocardia of the ascitic broilers compared
to those of the control broilers. This suggested that the energy supply in the myocardia
of the ascitic broilers was biased toward fatty acid oxidation. However, the occurrence of
these phenomena may be attributed to the following explanations:

According to the available research reports and our observations, absolute or relative
hypoxia stimulates increased autocrine MIF in the heart of broiler chickens with ascites,
which, in turn, activates AMPK by phosphorylation (Figure 5). Activated AMPK further
affects multiple enzymes in the myocardial energy metabolism through substrate phos-
phorylation, especially by regulating hypoxic myocardial energy metabolism through the
following two pathways: In the first pathway, the activated AMPK directly augments gly-
colysis by phosphorylating and activating an important signaling enzyme in the glycolytic
pathway PFK2 [37]. Additionally, PFK1 is the most important rate-limiting enzyme in the
glycolytic pathway that catalyzes fructose-6-phosphate (F-6-P) to fructose-1,6-bisphosphate
(F-1,6-BP), while PFK2 catalyzes F-6-P to fructose-2,6-bisphosphate (F-2,6-BP), a glycolytic
stimulator, which is also the strongest allosteric activator of PFK1 [37]. Thus, PFK2 is also
considered a potential activator of PFK1. The glycolytic pathway was regulated by PFK2 by
affecting F-2,6-BP levels. Overall, we hypothesized that the cardiac energy metabolism in
ascitic broilers may promote glycolysis via the MIF-AMPK-PFK2-PFK1 pathway (Figure 5),
which is consistent with the results of Benigni (2000) [38]. The second pathway included the
activated AMPK phosphorylating and inhibiting ACC, eventually inhibiting the synthesis
of malonyl-CoA. This, in turn, alleviated the inhibition of CPT-1 transporting fatty acyl-
CoA to the mitochondrion, eventually promoting fatty acid oxidation [39,40]. Hence, these
results suggested that the cardiac energy metabolism in ascitic broilers may promote fatty
acid metabolism via the MIF-AMPK-ACC-CPT-1 pathway (Figure 5), which is consistent
with the findings of Stanley (1997) [41].

Pyruvate produced by glycolysis reaches two main destinations: first, it produces
lactate in the presence of LDH; second, it enters the mitochondrion and produces acetyl-
CoA, under the action of the pyruvate dehydrogenase complex (PDHC), which enters the
TCA cycle and continues to be oxidized for energy supply. Therefore, we measured the
expression levels of both LDHB and PDHE1 to determine the destinations of pyruvate
generated by glycolysis.

LDH in animals is a tetramer, which is composed of two kinds of subunits, A and B,
which can be assembled into four combinations. LDH exhibits five isozyme forms [42].
Among them, LDHB is mainly present in the myocardium, which catalyzes lactate and
generates pyruvate. Our results showed a decreased expression level of LDHB, suggest-
ing the enhanced conversion of pyruvate to lactate by glycolysis in the right hearts of
ascitic broilers.

PDHC is a multi-enzyme complex, which catalyzes the oxidative decarboxylation of
pyruvate to acetyl-CoA. PDHE1 is one of the components of this complex and is the main
site of regulation of PDHC activity, which directly affects the production of acetyl-CoA
by pyruvate [43]. The activity of PDHE1 is inhibited by its catalytic product acetyl-CoA
through a feedback mechanism. The results showed a decreased expression level of PDHE1,
suggesting a relatively high concentration of acetyl-CoA. In vivo biochemical reactions
demonstrated that the negative feedback regulation of enzyme activity by enzymatic
catalytic products is an important mechanism for maintaining a relatively stable reaction
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rate. The activity of PDHC, a key enzyme in the glucose metabolism pathway [44], is
regulated by the negative feedback of its product, which is important for maintaining the
relative stability of glucose metabolism. Our results suggested that the high concentration
of acetyl-CoA in the myocardia of ascitic broilers resulted in feedback that inhibited the
activity of PDHC, which reduced the rate of glucose metabolism. This entire phenomenon
is attributed to the fact that, during the complete oxidative metabolism of glucose and
fatty acids, acetyl-CoA, an intermediate product of both pathways, eventually enters the
TCA cycle for aerobic oxidation. In other words, acetyl-CoA, the intermediate product of
energy metabolism in mitochondria, has two main sources, namely, glycolysis and fatty
acid oxidation [45]. However, as an energy molecule, the main destination of acetyl-CoA
is the TCA cycle for complete oxidation. The TCA cycle is an aerobic catabolic process,
and, since ascitic broilers are in a relatively anoxic state, the rate of the TCA cycle is low,
indicating the low efficiency of acetyl-CoA entering the TCA cycle. However, glycolysis
and fatty acid oxidation occurring before the production of acetyl-CoA require relatively
less oxygen to produce more acetyl-CoA. Although the source of acetyl-CoA changes only
a little, the destinations are reduced, and more acetyl-CoA is accumulated. This feedback
mechanism, in turn, inhibits and reduces the activity of PDHC.

5. Conclusions

In summary, our results showed that the myocardial energy supply in ascitic broiler
chickens occurs mainly through glycolysis and fatty acid metabolism. Both MIF and AMPK
are involved in the process. However, since the oxidation of the TCA cycle remains blunted,
it results in insufficient energy metabolism in the right heart, causing a state of functional
failure. This finding indicates that cardiac energy metabolism in broiler chickens is altered
during the development of the syndrome. These results may provide useful information to
elucidate the pathogenesis of broiler ascites syndrome and may also provide a reference for
future research on similar diseases in humans and domestic animals.
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