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Abstract: The normal mode model is important in computational atmospheric acoustics. It is often
used to compute the atmospheric acoustic field under a time-independent single-frequency sound
source. Its solution consists of a set of discrete modes radiating into the upper atmosphere, usually
related to the continuous spectrum. In this article, we present two spectral methods, the Chebyshev-
Tau and Chebyshev-Collocation methods, to solve for the atmospheric acoustic normal modes,
and corresponding programs are developed. The two spectral methods successfully transform the
problem of searching for the modal wavenumbers in the complex plane into a simple dense matrix
eigenvalue problem by projecting the governing equation onto a set of orthogonal bases, which can
be easily solved through linear algebra methods. After the eigenvalues and eigenvectors are obtained,
the horizontal wavenumbers and their corresponding modes can be obtained with simple processing.
Numerical experiments were examined for both downwind and upwind conditions to verify the
effectiveness of the methods. The running time data indicated that both spectral methods proposed
in this article are faster than the Legendre-Galerkin spectral method proposed previously.

Keywords: Chebyshev polynomial; normal modes; tau method; collocation method; computational
atmospheric acoustics

1. Introduction

The propagation of sound waves in the atmosphere is a basic subject of atmospheric
acoustics [1]. Sound waves in the atmosphere undergo a series of complex processes,
including ground reflection, atmospheric scattering, refraction, and absorption [2]. In fact,
the propagation of sound waves in the atmosphere satisfies the wave equation, but it is
difficult to strictly solve the wave equation. Thus, scientists make approximations to the
wave equation for specific situations, thereby obtaining easy-to-solve equations, which
can be solved numerically to obtain a solution of the sound field. Numerical sound fields
have the advantages of intuitiveness and clarity, and they are widely used in acoustic re-
search. Based on this idea of solving the numerical sound field, computational atmospheric
acoustics, a sub-discipline of atmospheric acoustics, has been developed. Numerical mod-
els have many forms. Different models are suitable for different environments, and the
results are not exactly the same. Mainstream numerical models include the parabolic
Equation (PE) [3,4] model, the wavenumber integration method (the fast field program
(FFP)) [5–7], and ray [8] and Gauss beam [2] approaches. The normal mode model is also
a fundamental method for solving for the acoustic field in the atmosphere with a finite
ground impedance and horizontally stratified sound speed [1,2,5]. A horizontally stratified
atmosphere allows the wave equation to be solved by the separation-of-variables method.
After using Hankel integral transforms, the sound field can be expressed in terms of the
sum of normal modes [9,10]. When the ground impedance is complex or there is sound
attenuation in the atmosphere, it is complicated to use the finite difference method to solve
for the atmospheric normal modes, and the result is not very accurate [2].
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In recent years, progress has been made on using spectral methods to solve underwater
acoustic problems, and small-scale research has begun to link the spectral methods with
the normal modes of underwater acoustics. Dzieciuch [11] developed MATLAB code for
computing normal modes based on Chebyshev approximations. Although he only realized
the calculation of the simple Munk waveguide, this was the first step in the application
of the spectral methods to computational ocean acoustics. In 2016, Evans [12] used the
Legendre-Galerkin spectral method to develop a sound propagation calculation program
in a layered ocean environment. Subsequently, Tu et al. [13–15] used the Chebyshev-Tau
spectral method to develop a program for calculating sound propagation in single-layer
and layered ocean environments. They subsequently solved for the normal modes in
underwater acoustics using the Legendre-Collocation method and proved that both of the
spectral methods had high accuracy [16]. They also applied the spectral methods to the
parabolic approximation of underwater acoustics [13,17,18]. The results of these studies
indicated that it is feasible to apply spectral methods for the calculation of underwater
acoustics, and in many cases, it has higher accuracy than the finite difference method.
Monographs on spectral methods have also confirmed this [19–22]. Throughout the history
of the development of atmospheric acoustics, many methods in underwater acoustics have
been introduced [1,2]. In computational atmospheric acoustics, spectral methods are rarely
used to calculate the numerical sound field. In 2017, Evans [23] successfully introduced the
Legendre-Galerkin spectral method to construct atmospheric acoustic normal modes. He
then further improved the method [24] and proved the convergence of the method [25].
In 2019, Sabatini [26] used the Chebyshev-Collocation method to discretize the governing
equation of atmospheric acoustics into quadratic eigenvalue problems.

In this article, we propose two spectral methods for calculating atmospheric acoustic
normal modes. The results are compared with Evans’s code [24], the correctness of the
two spectral methods proposed in this article was verified, and computational speeds of
the two spectral methods were demonstrated. The text is organized as follows. Section 2
describes normal modes in the atmosphere mathematically. Section 3 provides brief
descriptions of the Chebyshev-Tau and Chebyshev-Collocation spectral methods and
introduces the discretization of atmospheric acoustic normal modes. In Section 4, two
numerical experiments are shown to verify the correctness of the methods proposed in
this article. Section 5 analyzes the running speed of the spectral methods, and Section 6
concludes this article.

2. Atmospheric Normal Modes

Acoustic theory reveals that the core of solving the acoustic field with a time- indepen-
dent single-frequency sound source is the following wave Equation [5]:

∆p + k2 p = 0. (1)

In the above homogeneous Helmholtz equation, p is the sound pressure in the frequency
domain to be solved, and k represents the wavenumber, which is related to the frequency
of the source and the spatial position. p and k are the functions of the spatial position, i.e.,
p(x, y, z) and k(x, y, z), respectively.

We consider the medium of sound propagation to be the atmosphere depicted in
Figure 1.

The ∆ operator in Equation (1) in cylindrical coordinates is taken to obtain the acoustic
governing equation in the cylindrical coordinate system (r, z), where r is the range, and z
is the depth. Considering the case in Figure 1 where the wavenumber k(z) is only related
to depth (range-independent), Equation (1) becomes

1
r

∂

∂r

(
r

∂p
∂r

)
+

∂2 p
∂z2 + k2(z) = 0, (2)

where k(z) = ω/c(z), ω = 2π f is the angular frequency of the sound source, f is the
frequency of the source, and c(z) is the sound speed profile. When considering the atten-
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uation of sound waves by the atmosphere, k(z) = [1 + iηα(z)]ω/c(z), where α(z) is the
attenuating coefficient in units of dB per wavelength, and η = (40π log10 e)−1. Through
separation of variables, the acoustic pressure p(r, z) can be decomposed as follows:

p(r, z) = ψ(z)R(r), (3)

where R(r) can be approximated by the analytical form of the Hankel function of the first
kind H(1)

0 (krm r) and ψ(z) satisfies the following modal equation:

d2ψ(z)
dz2 + k2(z)ψ(z) = k2

r ψ(z). (4)

The modal equation is a Sturm-Liouville equation, and its characteristics are well known;
that is, after adding appropriate boundary conditions, it has a series of modal solutions
(kr, ψ), where k2

r is a constant. When the considered medium has attenuation, k(z) is a
complex function. The lower boundary of the atmosphere is the ground, and sound waves
on the ground usually need to meet the following impedance boundary conditions:

dψ(0)
dz

+ Gψ(0) = 0, G = ik(0)/Z, (5)

where Z is the normalized ground impedance. The upper boundary of the atmosphere
can be regarded as a free boundary at infinity, or it can be called an acoustic half-space
condition. In 2019, Sabatini [26] used the Chebyshev-Collocation method to discretize the
governing equation with a half-space condition into quadratic eigenvalue problems, which
were mathematically solved perfectly. However, in actual calculations, the complexity of
this solution process is relatively high. In addition, the solution of the quadratic eigenvalue
problem is inherently unstable [27–29]. To make the problem finite and solvable via spectral
methods, we add an artificial absorber layer [h, H] above the interest area [0, h], where
the acoustic parameters in [h, H] and [0, h] must be continuous. The artificial absorber
layer is usually set to be thick enough to attenuate the sound energy propagating upward,
and no energy is reflected back to the area of [0, h]. This technique is called the perfectly
absorbed layer, which is very common in underwater acoustics. In this way, the following
air impedance condition should be satisfied at z = H:

dψ(H)

dz
+ βψ(H) = 0, β = −ik(H). (6)

Solving the standard Sturm-Liouville problem will yield multiple sets of solutions (krm , ψm),
m = 1, 2, . . . , where krm is called the horizontal wavenumber and ψm is called the eigen-
mode or mode. The modes of Equation (4) are arbitrary up to a nonzero scaling constant,
so they should be normalized [5] as follows:∫ H

0
[ψm(z)]2dz = 1, m = 1, 2, . . . . (7)

Finally, the fundamental solution to the acoustic governing Equation (2) in the atmosphere
can be approximated as follows [23]:

p(r, z) ≈
√

2π
M

∑
m=1

ψm(zs)ψm(z)
exp(ikrm r)√

krm r
, (8)

where M is the number of modes used to synthesize the sound field and the Hankel
function H(1)

0 (krm r) related to R(r) adopts its asymptotic form (see Equations (2.39), (5.13),
and (5.14) of Reference [5]).
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Figure 1. Atmospheric sound propagation environment, where c(z) and α(z) are the sound speed
profile and attenuation profile, respectively; h is the thickness of the sound field of interest; and H is
the height of the absorbing layer.

The core of solving for the normal modes of atmospheric acoustics is the solution
of the differential equations in Equations (4)–(6). Solving for the normal modes of the
atmospheric acoustics requires the discretization of Equations (4)–(6). Traditionally, the
domain of the problem solved by the spectral method is usually in the interval [−1, 1],
so we first use x = 2z/H − 1 to scale the domain z ∈ [0, H] 7→ x ∈ [−1, 1]. Noting that
dz/dx = H/2, we let the operators L,P ,Q have the following forms:

L =

[
4

H2
d2

dx2 + k2(x)
]

, P =

[
2
H

d
dx

+ G
]

, Q =

[
2
H

d
dx

+ β

]
.

Equations (4)–(6) can be written in the following form:

Lψ(x) = k2
r ψ(x), x ∈ (−1, 1),

Pψ(−1) = 0, Qψ(1) = 0.
(9)

Next, we develop two spectral methods to solve this system.

3. Discretized Atmospheric Normal Modes by Two Spectral Methods

A spectral method is a kind of weighted residual method, and it can provide accurate
solutions to differential equations [20,21]. In the spectral method, the unknown function to
be solved ψ(x) is expanded by a set of linearly independent bases φk(x). When the number
of bases tends to infinity, an accurate representation of ψ(x) can be obtained. However,
in actual calculations, it is usually necessary to truncate to the first N-order terms, thus
obtaining an approximation of ψ(x) as follows:
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ψ(x) =
∞

∑
k=0

ψ̂kφk(x) ≈ ψN(x) =
N

∑
k=0

ψ̂kφk(x), (10)

where ψ̂k represents the expansion coefficients. Obtaining the value of ψ̂k is equivalent to
obtaining the approximate solution ψN(x) of ψ(x). Inserting ψN(x) from Equation (10) into
Equation (9), Equation (9) is no longer strictly true, and there is a residual Res(x), defined
as follows:

Res(x) = LψN(x)− k2
r ψN(x). (11)

To make ψN(x) as close to ψ(x) as possible, we need to minimize the residual through
a certain principle [22]. Setting the weighted integral of the residuals equal to zero is a
widely used principle [20]: ∫ 1

−1
Res(x)w(x)dx = 0. (12)

From Equation (10), the residual Res(x) can be minimized only by adjusting the value
of the expansion coefficients ψ̂k. The choice of the weight function w(x) is also crucial.
In the two spectral methods developed in this article, the basis functions φk(x) are both
Chebyshev polynomials Tk(x), and the difference is the selection of weight functions. The
Chebyshev polynomial basis functions are provided in [14,20–22].

3.1. Discretized Atmospheric Normal Modes by Chebyshev-Tau Spectral Method

In the Chebyshev-Tau spectral method, in addition to the basis functions being Cheby-
shev polynomials (φk(x) = Tk(x)), the weight functions are also Chebyshev polynomials
(w(x) = Tk(x)). Inserting Equations (10) and (11) into Equation (12), we obtain the new
form of Equation (12) for the Chebyshev-Tau spectral method:

∫ 1

−1

Tj(x)
√

1− x2

(
L

N

∑
k=0

ψ̂kTk(x)− k2
r

N

∑
k=0

ψ̂kTk(x)

)
dx = 0, j = 0, 1, · · · , N − 2, (13)

where 1√
1−x2 is the orthogonal weighting factor of the Chebyshev polynomial basis function

space. This equation is also known as the weak form of Equation (9). It will form (N − 1)
algebraic equations (excluding the boundaries of x), the two boundary conditions will pro-
duce two algebraic equations, and the unknowns to be solved for are ψ̂0 to ψ̂N . The integral
formulas listed in the above equations can be computed by the Gauss-Chebyshev-Lobatto
quadrature [21] to obtain accurate results. To include the two end points of the domain x,
the Chebyshev-Gauss-Lobatto nodes on x ∈ [−1, 1] are taken [21]:

xj = − cos
(

jπ
N

)
, j = 0, 1, · · · , N. (14)

There are two forms of Gauss-Chebyshev-Lobatto quadrature [21]:

∫ 1

−1

f (x)√
1− x2

dx ≈
N

∑
j=0

f (xj)ωj,

∫ 1

−1
f (x)dx ≈

N

∑
j=0

f (xj)ωj

√
1− x2

j ,

ωj =

{
π

2N , j = 0, N
π
N , otherwise

,

(15)

where f (x) is the function to be integrated. In fact, using Chebyshev-Gauss-Lobatto nodes
has additional advantages. As shown in Figure 2, Chebyshev-Gauss-Lobatto nodes are
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dense at both ends and sparse in the middle, so the discrete points are more densely
distributed near the ground [0, h]. Owing to the interaction of temperature, humidity,
turbulence, and other factors in the atmosphere near the ground, acoustic profiles are
usually more complex and changeable. Figure 3 shows the entropy of the 2018 annual
sound speed profile in Guangzhou, China (22.5◦ N, 112.9◦ E), calculated using the ERA-40
reanalysis data provided by the European Centre for Medium-Range Weather Forecasts
(ECMWF). It can be seen from the figure that the entropy of sound speed near the ground
is much higher than that at the upper air. Therefore, the more densely distributed discrete
points of Chebyshev-Gauss-Lobatto nodes near the ground are conducive to accurately
simulating the sound field.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Chebyshev-Gauss-Lobatto nodes

Figure 2. The CGL nodes when N = 10.
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Figure 3. The entropy of the 2018 annual sound speed profile in Guangzhou, China (22.5◦ N,
112.9◦ E), calculated using the ERA-40 reanalysis data provided by the European Centre for Medium-
Range Weather Forecasts (ECMWF).

We convert the original solution of the unknown function ψ(x) into solving for its
expansion coefficients ψ̂k under the Chebyshev polynomial basis. The only difficulty is the
discretization of the operator L. The conclusions used in the following text are directly
given here. For detailed derivations, readers can refer to References [19–22].

The derivative d
dx is included in the L operator, and the expanded coefficients ψ̂′k of

ψ′(x) satisfy the following relationship with ψ̂k:

ψ̂′k ≈
2
ck

N

∑
j=k+1,

j+k=odd

jψ̂j, ψ̂′ = D̂ψ̂, (16)

where “′” denotes derivative, and the second formula is the vector form of the first formula,
where column vectors ψ̂ = [ψ̂0, · · · , ψ̂N ]

T and ψ̂′ = [ψ̂′0, · · · , ψ̂′N ]
T, respectively. D̂ is a

square matrix of order (N + 1). To distinguish it from the differential matrix D in the
Chebyshev-Collocation spectral method, a hat symbol is added to the relationship matrix.

The known function k2(x) is included in the L operator. Letting v(x) = k2(x), there
will be a product term y(x) = v(x)ψ(x), and the expanded coefficients ŷk of y(x) satisfy
the following relationship with ψ̂k:
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ŷk ≈
1
2

N

∑
m+n=k

ψ̂mv̂n +
1
2

N

∑
|m−n|=k

ψ̂mv̂n, ŷ ≈ Ĉvψ̂. (17)

Similarly, the second formula is the equivalent vector form, and Ĉv is also a square matrix
of order (N + 1), and the subscript v indicates that the known function in the operator is
v(x).

We show the discretization of the operator L. In the Chebyshev-Tau spectral method,
applying Equations (16) and (17) to Equation (9), we can obtain the discrete forms of the
operator L and Equation (9) as follows:

L̂ =

(
4

H2 D̂2 + Ĉv

)
, L̂ψ̂ = k2

r ψ̂. (18)

The boundary conditions produce algebraic equations about the expansion coeffi-
cients in the Chebyshev-Tau spectral method as follows. In the Tau method, the function
ψ(x = ±1) in the boundary conditions is also expanded by Equation (10). The discretiza-
tion of the boundary operatorsP andQ is similar to that of operatorL, so the two boundary
conditions generate two equations related to ψ̂k. To facilitate the description of the pro-
cessing of the boundary conditions, the following intermediate row vectors are defined
as follows:

t̂1 = [T0(−1), T1(−1), · · · , TN(−1)], p̂ =
2
H

t̂1D̂ + Gt̂1,

t̂2 = [T0(1), T1(1), · · · , TN(1)], q̂ =
2
H

t̂2D̂ + αt̂2.

The matrix form of the discrete ground and air boundary conditions Equations (5) and (6)
in the Chebyshev-Tau spectral method can be written as follows:

p̂ψ̂ = 0, q̂ψ̂ = 0. (19)

The algebraic equations formed by these two boundary conditions and the (N− 1) algebraic
equations obtained from the weak form are solved simultaneously, and we can then solve
for ψ̂k and obtain ψ(x).

The row vectors p̂ and q̂ are used to replace the last two rows of the L̂ matrix in
Equation (20), and the last two elements of the column vector ψ̂ on the right-hand side of
Equation (18) are replaced with 0, so that the boundary conditions are strictly met. We let
the matrix composed of the first (N− 1) rows and (N− 1) columns of L̂ be L̂11. The matrix
composed of the first (N − 1) rows and the last two columns of L̂ is L̂12. The row vectors
composed of the first (N − 1) elements of the row vectors p̂, q̂, and ψ̂ are p̂1, q̂1, and ψ̂1,
respectively. The row vectors composed of the last two elements of the row vectors p̂, q̂,
and ψ̂ are p̂2, q̂2, and ψ̂2, respectively. Thus, Equation (18) can be changed to the following
block form:  L̂11 L̂12

p̂1 p̂2
q̂1 q̂2

 ψ̂1
ψ̂N−1

ψ̂N

 = k2
r

 ψ̂1
0
0

. (20)

According to the horizontal and vertical lines in the above formula, Equation (20) can be
abbreviated as follows: [

L̂11 L̂12
L̂21 L̂22

][
ψ̂1
ψ̂2

]
= k2

r

[
ψ̂1
0

]
. (21)

Equation (21) can be solved as follows:

ψ̂2 = −L̂−1
22 L̂21ψ̂1, (L̂11 − L̂12L̂−1

22 L̂21)ψ̂1 = k2
r ψ̂1. (22)
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Therefore, a set of (k2
r , ψ̂) can be solved for by the (N − 1)th-order matrix eigenvalue prob-

lem in Equation (22). For each set of eigenvalues/eigenvectors (k2
rm , ψ̂m), an eigensolution

(krm , ψm) of Equation (4) can be obtained by Equation (10). In this process, each eigenmode
should be normalized by Equation (7). Finally, the sound pressure field is obtained by
applying Equation (8) to the chosen modes.

3.2. Discretized Atmospheric Normal Modes by Chebyshev-Collocation Spectral Method

The Collocation method uses the Dirac function δ(x) as the weight function in
Equation (12). The characteristics of the δ(x) function are well known. In the Colloca-
tion method, Equation (12) becomes the following:∫ 1

−1
Res(x)δ(x− xj)dx = Res(xj) = Lψ(xj)− k2

r ψ(xj) = 0, j = 0, 1, 2, . . . N. (23)

The above formula shows that in the Collocation method, the weighted residual principle
becomes that the residuals are all 0 at the selected discrete points xj. Its essence is to only
make the original differential Equation (9) strictly hold on this set of discrete points, so as
to solve for the function value ψ(xj) of the modal function ψ(x) on this set of discrete
points as an approximation. In the Collocation method, there is no need to expand the
function to be sought as Equation (10). This is why the Collocation method is considered
to be a special spectral method, sometimes called the pseudospectral method [21]. In the
Chebyshev-Collocation method, we also take the discrete points of the Chebyshev-Gauss-
Lobatto nodes in Equation (14). In this case, the only difficulty is the discretization of
operator L. The conclusions used in the following text are directly given here as in the
introduction of the Chebyshev-Tau spectral method. For a detailed derivation, readers can
refer to References [19–22].

The derivative terms ψ′(x) and ψ(x) have the following relationship:

ψ′ = Dψ, D =



cj(−1)j+l

ck(xj−xk)
, j 6= k

−xk
2(1−x2

k)
, 1 ≤ j = k ≤ N − 1

2N2+1
6 , j = l = 0

− 2N2+1
6 , j = l = N

, ck =

{
2, k = 0
1, k > 0

, (24)

where ψ′ = [ψ′(x0), ψ′(x1), ψ′(x2), · · · , ψ′(xN)]
T represents the function value of the

derivative term ψ′(x). Similarly, ψ = [ψ(x0), ψ(x1), ψ(x2), · · · , ψ(xN)]
T . Matrix D is

also called the Chebyshev-Collocation differential matrix.
The product y(x) = v(x)ψ(x) can be processed as follows:

y = Cvψ, (25)

where y = [y(x0), y(x1), y(x2), · · · , y(xN)]
T , Cv is a (N + 1)× (N + 1) diagonal matrix,

and (Cv)ii = v(xi), i = 0, 1, . . . , N.
For the Collocation method, the boundary conditions are only related to the endpoints

of the domain x, so the discrete points on the boundaries (x0 and xN) only need to satisfy the
boundary conditions, not the differential equation. The discretized forms of the operators
P and Q are similar to that of operator L. Similar to the Chebyshev-Tau spectral method,
the operator L also needs to be discretized in the Chebyshev-Collocation method. With
reference to Equations (24) and (25), in the Chebyshev-Collocation method, the L operator
and Equation (9) have the following forms:

L =

(
4

H2 D2 + Cv

)
, Lψ = k2

r ψ. (26)
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To facilitate the description of the processing of the boundary conditions, the first and last
rows of D are defined as row vectors d1 and d2, respectively. The following intermediate
(N + 1)-dimensional row vectors are defined as follows:

t1 = [1, 0, · · · , 0], p =
2
H

d1 + Gt1,

t2 = [0, 0, · · · , 1], q =
2
H

d2 + αt2.

The matrix form of the discrete ground and air impedance conditions Equations (5) and (6)
in the Chebyshev-Collocation method can be written as follows:

pψ = 0, qψ = 0. (27)

In the Collocation method, the row vectors p and q are used to replace the first row
and the last row of the L matrix in Equation (26), so that the boundary conditions are
satisfied. We let the block matrix formed by the second row to the N-th row of the matrix L
be L1, and the column formed by the second to the N-th elements of ψ be ψ1. Equation (26)
can then be written as follows: p

L1
q

 ψ0
ψ1
ψN

 = k2
r

 0
ψ1
0

. (28)

We only need to perform a simple row transformation and column transformation on
Equation (28) to transform it to a form similar to Equation (21), and then we use the
same method used for Equation (22) to find the eigenvalues/eigenvectors. A set of (k2

r , ψ)
can be solved by the (N − 1)th-order matrix eigenvalue problem in Equation (22). Each
eigenmode should be normalized by Equation (7). Finally, the sound pressure field is
obtained by applying Equation (8) to the chosen modes.

4. Numerical Experiment and Analysis

To verify the correctness of the spectral methods presented above in solving the normal
modes of atmospheric acoustics, the authors developed the corresponding programs based
on the above derivation. The programs based on Chebyshev-Tau spectral method and
Chebyshev-Collocation method are called “AtmosCTSM” and “AtmosCCSM”, respectively.
The code was written in FORTRAN/MATLAB and is available at the author’s GitHub
homepage (https://github.com/tuhouwang/Atmospheric-normal-modes, accessed on 4
May 2021). For comparison, we considered the program “aaLG” based on the Legendre-
Galerkin spectral method, which was developed by Richard B. Evans in FORTRAN and
verified by comparison with PE and FFP [24].

Sound propagation is sensitive to the atmospheric state, particularly to the temperature
and wind. Thus, to model sound propagation, one must know the state of the atmosphere
at the time of propagation [30]. The two examples shown by Evans [23] can be used as
benchmark examples. The source frequency of both cases was f = 100 Hz at a height
of zs = 5 m above the ground. The normalized ground impedance Z (related to the
constant G in Equation (6)) is the same as the value used by Gilbert [4], and the value is
Z = 12.97 + 12.38i. In the following two experiments, the order of the spectral truncation
in the three spectral methods was taken as N = 1500. Using the TL to express the acoustic
field [5], the relationship between it and the sound pressure is TL = −20 log10(|p|/|p0|),
where p0 is the sound pressure at a distance of 1 m from the sound source.

4.1. Downwind Case

The first numerical experiment was a downwind case. The piecewise linear acoustic
parameter profile used in this numerical experiment, which was presented by Evans [23],

https://github.com/tuhouwang/Atmospheric-normal-modes
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is shown in Table 1. The table clearly reveals that the thickness of the atmosphere is 700 m,
and the artificial absorber layer is located between 700 and 2000 m.

Table 1. Piecewise linear acoustic parameter profile used in experiment 1, cited from Evans [23].

Height (m) Sound Speed (m/s) Attenuation (dB/Wavelength)

2000 344.0 2.50
1500 344.0 0.10
900 344.0 0.01
700 344.0 0.00
500 341.5 0.00
100 349.0 0.00
0 345.0 0.00

Figure 4 shows the horizontal wavenumbers kr calculated by the Legendre-Galerkin
spectral method and the two spectral methods developed in this article on the complex
plane. The consistency of the eigenvalue distribution in the figure illustrates the correctness
of the horizontal wavenumbers calculated by the three methods. Figure 5 shows the
first four normal modes of experiment 1. It reveals that the modes obtained by the two
spectral methods proposed in this article were highly consistent with those obtained by the
Legendre-Galerkin spectral method. Figure 6 presents an overview of the acoustic fields
obtained by the three methods. We used the first 552 modes with phase velocities between
341.7 and 391.2 m/s to synthesize the sound fields. The horizontal wavenumbers of these
modes are shown in Figure 4. The acoustic fields calculated by the three methods were
very similar. Figure 7 shows the TL curves versus the range for a receiver at a height of 1 m
over the range interval 0–5 km. The results of the two spectral methods presented in this
article were very similar to those of the Legendre-Galerkin spectral method, and there may
have been small differences only in the acoustic shadow areas.
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Figure 4. Horizontal wavenumbers calculated by the Legendre-Galerkin spectral method and the
two spectral methods proposed in this article for experiment 1.
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Figure 5. The first four normal modes calculated by the three spectral methods in experiment 1.
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Figure 6. Atmospheric acoustic fields obtained by the three spectral methods in experiment 1; units
are dB.
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Figure 7. TL versus range for a receiver at a height of 1 m over the range interval 0–5 km from
the Legendre-Galerkin spectral method [24], Chebyshev-Tau spectral method, and Chebyshev-
Collocation method.

4.2. Upwind Case

The second numerical experiment is an upwind case. The piecewise linear acoustic
parameter profile used in this numerical experiment was presented by Evans [23], and it
is shown in Table 2. The table clearly illustrates that the thickness of the atmosphere was
900 m, and the artificial absorber layer was located between 900 and 2000 m.

Table 2. Piecewise linear acoustic parameter profile used in experiment 2, cited from Evans [23].

Height (m) Sound Speed (m/s) Attenuation (dB/Wavelength)

2000 346.0 1.00
1500 346.0 0.10
1200 346.0 0.01
900 346.0 0.00
500 348.0 0.00
350 344.0 0.00
100 340.0 0.00
0 344.0 0.00

Figure 8 shows four modes computed by the Legendre-Galerkin spectral method,
Chebyshev-Tau spectral method, and Chebyshev-Collocation method. The modes obtained
by the three methods are drawn in the same figure. The three lines almost completely
overlap in the subfigures, and the differences between them are insignificant. Figure 9
presents the acoustic fields calculated by the three spectral methods, where 553 modes
with phase velocities less than 393.2 m/s were used to synthesize the sound field. In the
atmosphere layer, the sound fields calculated by the three methods were highly consistent.
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Figure 10 shows the TL curves versus the range for a receiver at a height of 1 m over the
range interval 0–10 km from the Legendre-Galerkin spectral method; the figure shows
that the results of several methods were very similar. The differences between the three
methods are indistinguishable at this plotting accuracy, and there may have been small
differences only in the acoustic shadow area.
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Figure 8. The first, second, fourth, and sixth modes obtained by Legendre-Galerkin, Chebyshev-Tau
spectral and Chebyshev-Collocation methods for experiment 2.
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(c)

Figure 9. Atmospheric acoustic fields obtained by the Legendre-Galerkin (a), Chebyshev-Tau (b)
and Chebyshev-Collocation (c) spectral methods in experiment 2; units are dB.
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Figure 10. TL versus range for a receiver at a height of 1 m over the range interval 0–10 km from the
Legendre-Galerkin [24], the Chebyshev-Tau and Chebyshev-Collocation spectral methods.

From the numerical results displayed above, we can see that three methods with
different theoretical foundations all yielded very similar acoustic fields and normal modes,
regardless of whether the sound speed profile was downwind or upwind. The consistency
of these three methods proved that the two spectral methods proposed in this article are
feasible for solving the atmospheric normal modes.

5. Discussion of Computational Speed

To further compare the characteristics of the two spectral methods proposed in this
article, we divided each method into four steps, and we discuss the running time and
complexity of each part separately. The four steps are as follows: discretizing the equation,
solving eigenvalue problems, obtaining normal modes, and synthesizing the sound field.
Table 3 lists the time consumption of each step of the programs in the two experiments.
The time listed in the table is the average of ten tests. In the tests, the three programs
were run on a Dell XPS 8930 desktop computer equipped with an Intel i7-8700K CPU. The
FORTRAN compiler used in the test was gfortran 7.5.0.

In terms of speed, the AtmosCCSM was slightly faster than the AtmosCTSM. This
is because the Tau method requires forward and backward Chebyshev transformations,
unlike the Collocation method. The aaLG program was much slower than the two newly
developed programs. Solving the eigenvalue problem was the most time-consuming
step for the three programs. Moreover, the aaLG program spent much more time than
the other two programs on solving the eigenvalue problem. However, the aaLG uses a
subroutine developed by Evans [24,31] to solve the matrix eigenvalue problem, while both
the AtmosCTSM and AtmosCCSM solve the eigenvalue problem by calling the Lapack
numerical library. In fact, matrix eigenvalue problems have the same computational
complexity O(N3). It is apparent from this table that the subroutine written by Evans is
much slower than the Lapack numerical library, which is the main reason that the aaLG
consumed much more time than the other two programs.
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Table 3. Time consumption of each step of each program in two experiments in units of seconds.

Experiment Part of Program aaLG aaLG-M AtmosCTSM AtmosCCSM

downwind

1. discretize 105.344 104.691 0.522 0.468
2. solve eigenvalues 2017.324 34.289 34.091 34.331
3. normal modes 35.587 35.292 0.867 0.237
4. synthesis 10.021 8.714 0.518 0.421
Total 2138.276 182.986 35.998 35.184

upwind

1. discretize 125.429 123.892 0.482 0.361
2. solve eigenvalues 2039.324 36.119 34.886 34.017
3. normal modes 36.501 38.181 0.911 0.334
4. synthesis 11.669 10.648 0.806 0.616
Total 2212.923 208.840 37.085 35.328

We modified aaLG to also call the Lapack numerical library when solving the eigen-
value problem. The modified program was named “aaLG-M”. The fourth column of Table 3
lists the running time of aaLG-M. The aaLG-M took roughly the same time to solve the
matrix eigenvalue problem as the other two programs. However, the aaLG-M was still
slower than the other two programs. The most significant difference in the running time
between the three programs was in the first step (discretizing the equation). In the first
step, each element of the matrix finally obtained by the Legendre-Galerkin spectral method
must be numerically integrated for every piecewise linear acoustic profiles, which means
the number of calculations is very large, and its computational complexity is O(N2). In
contrast, the two methods proposed in this article only need to perform simple interpo-
lation of the acoustic profiles and matrix multiplication to obtain the discrete equations;
the computational complexity of linear interpolation is O(N). In the mode-obtaining
and sound-field-synthesizing steps, the two spectral methods devised in this article still
required less time than the Legendre-Galerkin method; part of the reason for this is that
the authors used certain skills in programming to optimize them. It is worth mentioning
that the AtmosCTSM.m and AtmosCCSM.m programs (developed in MATLAB, which is
better at matrix operations) could obtain the results of the above experiments in less than
4 s (run on the same platform in MATLAB 2019a), which is an attractive result.

6. Conclusions

In this article, we propose two spectral methods for solving for atmospheric acoustic
normal modes. An artificial absorber layer was added above the atmosphere of interest to
reduce the impact of the truncated half-space on the area of interest. Next, we designed
two examples, performed a detailed analysis of the results of each example, and finally
verified the correctness and reliability of the proposed methods. Tests on the running
time of the programs developed based on the three spectral methods showed that, in
terms of the running time, the methods proposed in this article had better speeds than the
Legendre-Galerkin spectral method.
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