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Introduction
Bone undergoes continuous remodeling through the sequential 
activity of osteoblast (bone-forming) and osteoclast (bone-
resorbing) cells. The dynamic equilibrium between osteoblasts 
and osteoclasts is crucial to maintain the integrity of the mus-
culoskeletal system.1,2 It is a highly complex process governed 
by several endogenous and exogenous factors, such as nutrients 
and environmental factors.3 Nutrient metabolites and environ-
mental factors (pollutants) can activate transcription factors 
(eg, aryl hydrocarbon receptor) to regulate gene expression and 
alter physiological processes. The aryl hydrocarbon receptor 
(AhR) is one of the well-known receptors that mediate various 
biological actions through different endogenous, natural, and 
synthetic molecules and environmental pollutants.4 Recently, 
several studies have focused on the above-mentioned factors, 
AhR signaling, and age-related diseases. The build-up of dam-
age to intracellular macromolecules is the hallmark of aging, 
which is influenced by genetic, environmental, and dietary 
variables.5 These elements impact mitochondrial function and 
induce premature senescence, accelerating aging. It’s interest-
ing to note that many environmental and dietary variables, 
such as flavonoids and carotenoids, alter AhR signaling and 
mitochondrial function.

Aryl hydrocarbon Receptor, a highly conserved transcrip-
tion factor (AhR), plays an important role in aging.6-10 Aryl 
hydrocarbon receptor is a ligand-activated transcription factor, 
and it belongs to the Per-Arnt-Sim superfamily of proteins.11 
AhR is composed of 848 residues and consists of three func-
tional domains, namely basic helix-loop-helix (bHLH domain), 
Per-ARNT-Sim (PAS) domains (A and B), and the transacti-
vation domain (TAD).12 The amino-acid sequence is highly 
conserved among these domains.13 The bHLH domain is 
located at N-terminal, and it can divide into the basic domain 
and HLH domain that determines the dimerization of protein 
molecules and the combination of AhR with DNA.14 PAS A 
and PAS B domains are mainly involved in binding to ligands 
along with the release of heat shock protein 90 (HSP-90), and 
these domains enhance the stability of heterodimer AhR-
ARNT (aromatic hydrocarbon receptor nuclear transfer pro-
tein), which causes conformational alterations in DNA.15 AhR 
combines with Hsp90, p23, ARA9, and several other proteins 
in an inactive form. The binding of AhR to its ligand causes a 
conformational change, facilitating AhR translocation into the 
nucleus, where it undergoes heterodimerization with ARNT. 
Once inside the nucleus, AhR-ARNT dimer activates xenobi-
otic response elements (XRE), which promotes transcription 
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and mediates various biological processes such as immune 
response, toxicity, and bone remodeling.2 The aryl hydrocarbon 
receptor is unique in itself because of its omnipresent nature as 
it is expressed in the retina, liver, spleen, pancreas, kidney, lungs, 
esophagus, testis, epithelial cells, placenta, heart, brain, and 
skeletal muscles.16,17

Several inflammatory genes have varying frequencies of 
xenobiotic response elements (XREs) in their promoter 
regions, suggesting that AhR modulates inflammatory 
responses.18-21 Through interactions with other signaling 
pathways like the NF-κB system, AhR controls inflammatory 
signals.22 It has long been understood that this route regulates 
the expression of the inflammatory genes IL-1β, IL-6, IL-8, 
TNF-α, and others. Even though there is substantial evi-
dence about AhR and its activation in various physiological 
processes, its role in bone remodeling is not well known. 
Considering this aspect, our study explicitly summarizes AhR 
role in osteoblast and osteoclast biology and identifies the 
novel signaling pathways through GEO dataset analysis in 
musculoskeletal pathobiology.

Bone Remodeling
Bone remodeling is a perpetual and essential process that per-
sists throughout an individual’s life. This cyclic activity primar-
ily encompasses the removal of mineralized bone facilitated by 
osteoclasts, succeeded by the generation of bone matrix through 
the action of osteoblasts.23 During the resorption phase, osteo-
clasts break down old bones, and in the reversal phase, bone 
formation occurs as osteoblasts deposit new bone matrix until 
the resorbed bone is entirely replaced.24 This dynamic process 
consistently adapts the microarchitecture of the bone to main-
tain its integrity.

Bone remodeling is influenced by major systemic regulators, 
including parathyroid hormone (PTH), growth hormones, sex 
hormones, glucocorticoids, and notably calcitriol.25 Various 
growth factors such as insulin-like growth factors (IGFs), 
tumor growth factor-beta (TGF-beta), and cytokines like 
interleukin-1 (IL-1) and interleukin-6 (IL-6), along with 
prostaglandins and bone morphogenic protein (BMP), intri-
cately modulate the activity of osteoblasts.26 Additionally, key 
proteins like type-1 collagen, osteocalcin, osteopontin, osteo-
protegerin, and sialoprotein play crucial roles in regulating 
bone remodeling.27 The receptor activator of nuclear factor 
kappa-B ligand (RANKL) assumes a pivotal role in bone 
remodeling, while osteoprotegerin (OPG), secreted by osteo-
blasts, serves a protective function for skeletal integrity against 
excessive bone resorption. OPG achieves this by binding to 
RANKL, thereby preventing the activation of RANKL signal-
ing with the Receptor activator of nuclear factor-κB (RANK).28 
Maintaining the integrity of the skeletal system necessitates a 
delicate balance between the processes of bone formation and 
bone resorption.29 It is crucial to uphold equilibrium between 
the rates of bone formation and bone resorption. If the bone 

resorption rate is higher than bone formation, then it will lead 
to bone loss resulting in osteoporosis and increase fracture 
rates.30,31 The underlying mechanism driving heightened bone 
resorption involves an upregulation in the expression of inflam-
matory cytokines and RANKL.32

AhR Signaling Pathway
The AhR exerts its downstream change in gene expression 
through canonical and non-canonical signal transduction 
mechanisms.33 In the canonical signaling pathway, AhR  
forms a complex comprising AhR, heat shock proteins 90, 
X-associated protein 2 (XAP-2), and p23 in the cytosol.34 
After activation through ligands, AhR is translocated from the 
cytoplasm to the nucleus and dissociates itself from the com-
plex. Further, the ligand-AhR complex combines with the 
AhR nuclear translocator (ARNT) and binds to a specific 
DNA promoter sequence called a xenobiotic responsive ele-
ment (XRE), which leads to the activation of genes.35 In the 
non-canonical pathway, AhR forms a complex with various 
other transcription factors in the nucleus. This leads to the 
binding of AhR to non-XRE elements, which further regu-
lates the expression of target genes.36 For instance, evidence 
has shown crosstalk between AhR and estrogen receptor (ER), 
which subsequently binds to DNA elements in the absence of 
ER ligand.37-40 AhR can also bind to Kruppel-like factor 6 
(KLF-6), a transcription factor that forms the AhR-KLF-6 
complex and regulates the cell cycle.41 Following exposure to a 
diverse range of exogenous and endogenous ligands, AhR col-
laborates with numerous nuclear factors to regulate gene 
expression. This intricate molecular interplay allows AhR to 
modulate the expression of specific genes in response to vari-
ous environmental and internal cues (Figure 1). Some of the 
important pathways regulated by AhR signaling are summa-
rized below.

AhR and NF-κB Signaling Pathway
The transcriptional factor NF-κB is essential for cell survival, 
cytokine production, and transcription regulation. The associa-
tion of AhR and NF-κB is complicated and still not clear. 
Although, recent studies demonstrated that the binding site of 
AhR overlaps with the NF-κB binding site. AhR can bind to 
various subunits of NF-κB and activate the AhR- NF-κB sign-
aling pathway.42 RelB, a subunit of NF-κB, combines with AhR 
and acts as a coordinator of the inflammatory response.43,44 A 
substantial amount of evidence suggests that AhR can regulate 
NF-κB activity directly via the association with RelA or RelB 
and indirectly by suppressing SOX2.42,45-47 It has also been 
reported that different ligands of AhR, such as 3 -MC, BaP, 
TCDD, and β-NF, can directly interact with AhR and regulate 
the NF-κB signaling pathway.33 Furthermore, various studies 
have pointed out that AhR directly influences NF- κB pathway 
through AhR ligands such as 3 -MC, BaP, and β-NF, which 
bind to NF-κB membrane receptors and further inhibit 
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osteoclast formation48-50 (Figure 2). Naruse et  al showed that 
3 -MC inhibited the formation of mono and multi-nuclear oste-
oclast-like cells in a dose-dependent manner. The 3 -MC 
decreased the levels of RANKL mRNA in ST2 cells but did not 
affect the mRNA levels of osteoprotegerin (OPG), M-CSF, and 
the receptor of 1α,25(OH)2 Vitamin D3.48 Voronov et al sug-
gested that inhibition of osteoclasts by BaP could be due to 
crosstalk between the receptor activator of NF-κB ligand 
(RANKL) and AhR signaling cascades competing for NF-κB, a 
common transcription factor for both pathways. RAW264.7 
cells were exposed to various concentrations of RANKL and 
BaP. The effect on NF-κB activation, nuclear translocation and 
the effect of NF-κB inhibitors on BaP-mediated CYP1B1 gene 
expression was assessed. Their results demonstrated that BaP 
inhibited RANKL-induced NF-κB activation and nuclear 
translocation. Furthermore, BaP-induced CYP1B1 gene expres-
sion was inhibited by 2 NF-κB inhibitors in a dose-dependent 
manner, exhibiting that NF-κB is involved in a BaP-mediated 
signaling pathway.49 The study performed by Hsu et al evaluated 
the anti-oxidative and anti-inflammatory potential of β-NF in 
human endothelial cells treated with TNF-α. β-NF pretreat-
ment significantly reduced TNF-α-induced intracellular ROS 
and TNF-α-induced monocyte binding and transmigration. 
The suppression of nuclear translocation of NF-κB, p65, and 
Akt, as well as the phosphorylation of ERK1/2 and p38, was 
associated with the inhibition of adhesion molecules. The study’s 

findings revealed that β-NF (β-naphthoflavone), a potent ago-
nist of AhR, suppresses TNF-α-induced NF-kB and ERK1/2 
activation and ROS generation, thereby suppressing the expres-
sion of adhesion molecules.50

AhR and Wnt Signaling Pathway
Similarly, as AhR signaling, Wnt signaling is activated by 
ligand-receptor binding, but instead of chemical ligands, 
Wnt signaling is activated by Wnt and R-spondin families.51 
Wnt signaling is crucial for cell growth, proliferation, and 
differentiation and has emerged as a key regulator for bone 
formation.52 Wnt proteins are highly conserved across all the 
species, ranging from mice, humans, Zebrafish, drosophila, 
and Xenopus.53 Well-established evidence suggests that AhR 
regulates Wnt signaling pathways through canonical Wnt 
signaling.54-57 AhR ligand TCDD binds to aryl hydrocarbon 
receptor 2 (AhR2) and up-regulates R Spondin 1 (Rspo1) 
expression, further causing activation of the Wnt signaling 
pathway.58-60 Wnt signaling activates in an AhR-dependent 
manner, directly influencing osteoblast proliferation and dif-
ferentiation.61 Wnt proteins bind to lipoprotein receptor 
protein 5 (LRP5) and lipoprotein receptor protein 6 (LRP6) 
ligands. After binding, it stabilizes and enriches β-catenin in 
the cytoplasm. Furthermore, this activated β-catenin enters 
the nucleus and interacts with the osteoblast transcription 
factor, Runx2, and engages in bone formation (Figure 3). 

Figure 1.  Schematic representation of AhR canonical signaling pathway. AhR forms a complex comprising of AhR, 2 heat shock protein 90, and 

X-associated protein 2 (XAP-2) in the cytosol. After activation through ligands, AhR is translocated from the cytoplasm to the nucleus, where it dissociates 

itself from the complex. Further, the ligand-AhR complex combines with the AhR nuclear translocator (ARNT) and binds to a specific DNA promoter 

sequence called a xenobiotic responsive element (XRE), which leads to the activation of genes (CYP1A1, CYP1A2, CYP1B1, IDO).
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Suppression of Wnt signaling leads to decreased osteogenic 
differentiation, resulting in various bone-related complica-
tions such as osteoporosis, osteoarthritis, bone tumors, and 
inflammatory arthritis.62

AhR and MAPK Signaling Pathway
Mitogen-activated protein kinases (MAPKs) are responsible 
for cell differentiation, proliferation, and survival.63 MAPK 
family is mainly composed of ERK, p38, and c-JUN-N. There 
is a direct relation between AhR and MAPK pathway. AhR 
activates the MAPK pathway by binding to its ligand 
(TCDD).64 Upon ligand binding, the inactivated AhR, which 
is localized in cytoplasm as a complex comprising of HSP90 
dimer, XAP-2, p23, and SRC (steroid receptor coactivator) 
protein kinase, dissociates itself from the complex and translo-
cates into the nucleus by ARNT which leads to conformational 
changes. Further, the dissociated components of the complex, 
such as SRC, activate the MAPK pathway through Ras-Raf 
signaling.63 Once SRC is activated, it leads to a series of cas-
cade events and further initiates ERK, p-38, and C-JUN-N 
signaling, which induces phosphorylation and activation of 

Runx2. Runx2 is the main transcription factor for bone devel-
opment, leading to osteoblast proliferation, differentiation, and 
bone matrix formation65 (Figure 4).

A substantial amount of evidence shows the regulation of 
MAPKs through AhR ligands, such as TCDD, and bone 
development.66 MAPK’s can regulate bone formation and act 
directly on the osteoblasts, which indicates the importance of 
MAPKs in bone homeostasis.67,68 Thompson et  al reported 
that activation of ERK1 and ERK2 is essential for bone 
growth and development.69 Studies conducted by Bozec et al 
and Stevenson et al demonstrated that ERK, p38, and c-JUN-
n promote osteoclast differentiation.70,71 Induction of ERK1/
ERK2 signaling increases eNOS production and decreases 
RANKL, which results in augmentation of bone formation 
and thus reduces bone loss.72,73 In vitro findings indicate that 
p38 and c-JUN-N positively regulate osteoblast proliferation 
and differentiation.74,75 Wang et al demonstrated that another 
AhR agonist, Napthoflavone, activated ERK/MAPK signal 
pathways in an AhR-dependent manner.66 Furthermore, Yu 
et  al showed that activated AhR inhibited the proliferation 
and differentiation of osteoblast by enhancing ERK/MAPK 

Figure 2.  Schematic representation of AhR-NF-κB signaling pathway. AhR binds to different NF-κB subunits, and the AhR-NF-κB signaling pathway is 

activated. RelB, an NF-κB component, interacts with AhR to coordinate the AhR pathway. AhR ligands, including 3 -MC, BaP, and β-NF, bind to NF-κB 

membrane receptors and further restrict the development of osteoclasts by direct effect on the NF-κB pathway.
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phosphorylation.76 Based on the literature review, most studies 
have pointed out the beneficial effects of MAPKs on bone 
formation through an AhR-dependent manner, suggesting 
the crucial role of AhR in shaping overall bone homeostasis. 
Several endogenous and exogenous metabolites can act as 
AhR ligands and affect the above-mentioned signaling path-
ways and biological processes.

AhR Role in Bone Homeostasis
Bone-related disorders such as osteoporosis and osteoarthritis 
cause significant health and socioeconomic burdens. With age, 
osteogenic differentiation of mesenchymal stem cell (MSC) 
potential decreases, and elevated adipogenic differentiation in 
the bone marrow.77,78 The build-up of fat in the bone marrow 
speeds up the disease process.

The defining characteristic of mesenchymal stem cells 
(MSCs) is their capacity to maintain the ability to differentiate 
into multiple cell types, including osteoblasts. The 2 key pathways 
that regulate this differentiation are bone morphogenic protein 
(BMP) and Wnt pathways. Several transcription factors, such as 
Runt-related transcription factor 2 (RUNX2), govern these pro-
cesses. RUNX2 stimulates differentiation into osteoblasts and 
inhibits adipogenesis.79,80 Some reports indicate that TCDD-
activated AhR influences the variety of these downstream effects 

that alter the course of osteogenic differentiation.81,82 Several 
groups have shown that activation of AhR by its ligands (eg, 
TCDD, FICZ) inhibits in-vitro differentiation of bone marrow-
derived stem cells into osteoblasts.83-85 The well-known AhR 
ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) activates 
AhR and negatively affects osteoblast differentiation.81,86 
Monnouchi et al reported that treatment of human periodontal 
ligament cells with benzo[a]pyrene (BaP) reduced mRNA 
expression of osteogenic genes, alkaline phosphatase activity, 
mineralization, and collagen synthesis.87 The study by Liu et al 
demonstrated that TCDD treatment in human fetal palate 
MSCs reduced cell proliferation through AhR-induced inhibi-
tion of BMP-2/transforming growth factor β 1 (TGFβ 1)/
SMAD pathway. Their findings highlighted that TCDD reduced 
the expression of RUNX2 and BMP-2, which is required for 
osteogenic differentiation, suggesting that the crosstalk between 
BMP-2/TGFβ1/SMAD and AhR is crucial for osteogenesis.88 
It is well known that TCDD is a component of cigarette smoke 
and has a high affinity for AhR. Therefore, keeping this aspect  
in mind, Yun et  al performed a study to analyze the effect of 
TCDD on bone regeneration and explored AhR antagonism as a 
potential therapeutic approach to alleviate the effects of TCDD 
on Bone. Their results demonstrated that TCDD inhibited ALP 
activity, migratory capacity, and matrix mineralization.

Figure 3.  Schematic representation of AhR-Wnt signaling pathway. The Wnt signaling pathway is activated when the AhR ligand TCDD binds to the aryl 

hydrocarbon receptor (AhR) and increases the expression of R Spondin 1 (Rspo1). Wnt signaling activation happens in an AhR-dependent way and 

directly affects osteoblast differentiation and proliferation. Lipoprotein receptor protein 5 (LRP5) and lipoprotein receptor protein 6 (LRP6) ligands are 

recognized by Wnt proteins. After binding, it causes β-catenin to be stabilized and enriched in the cytoplasm. Additionally, this activated β-catenin moves 

into the nucleus, where it interacts with the Runx2 transcription factor for osteoblasts to promote bone production.
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In contrast, treatment with the AhR antagonists (α-
Naphthoflavone, resveratrol, 3,3′-Diindolylmethane, and lute-
olin) mitigated these effects, suggesting that AhR should be 
investigated as a therapeutic target to counter the adverse 
effects of cigarette smoke on bone healing.83 Another study 
conducted by Watson et al demonstrated the impact of TCDD 
on osteogenic differentiation in human bone-derived MSCs 
(hBMSCs). Exposure of hBMSCs to 10 nm TCDD resulted in 
decreased ALP activity and a reduced matrix mineralization at 
the terminal stages of osteogenic differentiation. They found 
attenuated expression in DLX5 and reduced expression of 
osteogenic markers such as ALP, OPN, and IBSP. Moreover, 
they used GNF351 AhR antagonist, which blocked TCDD 
enhancing matrix mineralization and rescued expression of 
genes associated with osteogenic regulation, extracellular 
matrix, and/or maintenance of multipotency.85 Yun et al used 
TCDD to activate AhR and study its effects on osteogenic 
markers using a human osteoblast-like cell line. They found 
that TCDD inhibits osteogenic differentiation, whereas 

co-treatment with an AhR antagonist showed a protective 
effect against TCDD. Treatment with AhR antagonist restored 
the migratory capacity. Their findings suggested that AhR may 
be a potential therapeutic target for patients who smoke ciga-
rettes and those exposed to secondhand smoke or other envi-
ronmental sources of aryl hydrocarbons.84

In the last decade, several studies demonstrated the impor-
tant role of AhR in bone homeostasis. Jämsä et al reported that 
TCDD affects bone remodeling by altering the structure of the 
AhR transactivation domain and further reduces overall bone 
strength in Han/Wistar (H/W) and Long-Evans (L-E) rat 
strains.89 Yoshikawa et al investigated the roles of AhR ligands, 
l6-formylindolo[3,2-b] carbazole (FICZ), in subchondral bone 
metabolism and temporomandibular joint osteoarthritis. They 
studied the mechanisms behind smoking-induced bone loss in 
temporomandibular joints using a temporomandibular joint-
osteoarthritis (TMJ-OA) mouse model. Yoshikawa et  al 
showed the protective role of FICZ-an endogenous AhR 
ligand, which prevented mandibular subchondral bone loss by 

Figure 4.  Schematic representation of AhR-MAPK signaling pathway. AhR binds to its ligand (TCDD) to activate the MAPK pathway. When a ligand binds 

to the inactivated AhR, which is present in the cytoplasm as part of a complex with HSP90 dimer, XAP-2, p23, and SRC (steroid receptor coactivator) 

protein kinase, the complex dissociates, and the inactivated AhR is transported into the nucleus by ARNT, causing conformational changes. Additionally, 

the complex’s dissociated components, like SRC, further stimulate the MAPK pathway through Ras-Raf signaling. Once SRC is activated, it triggers 

cascade events and starts ERK, p-38, and C-JUN-N signaling, which causes Runx2 to be phosphorylated and activated. Runx2 is thought to be the 

primary transcription factor to produce bone matrix, osteoblast differentiation, and proliferation.
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repressing osteoclast activity.90 Our group showed that kynure-
nine (KYN) elevates miRNAR-29b-1-5p levels in BMSCs, 
which negatively affects osteogenic differentiation. We also 
reported KYN mediates the anti-osteogenic effect regulated 
through AhR signaling.8 Our group also demonstrated that 
AhR plays a vital role in the induction of osteoclastogenesis. 
We showed that blocking AhR signaling using an AhR antag-
onist, or AhR siRNA, downregulates the KYN/RANKL-
mediated increase in c-fos and NFATc1 and inhibits the 
formation of multinucleated osteoclasts.9

Few studies demonstrated an important role of AhR in oste-
oclast differentiation.49,76,91-93 Liu et al showed that a low dose 
of indoxyl-sulfate for a short period (3 days) stimulated osteo-
clast precursor cell differentiation. On the other hand, longer 
exposures (5 days) resulted in suppressed osteoclast differentia-
tion.91 Iqbal et al demonstrated that Bap and TCDD interact 
with AhR and induce osteoclastic bone resorption by activating 
cytochrome P450 1a/1b (Cyp1) enzymes. Bap and TCDD aug-
mented osteoclast formation in bone marrow cell cultures, and 
oral gavage with Bap and TCDD stimulated bone resorption 
and osteoclastogenesis in vivo.92 Voronov et  al demonstrated 
that Bap at higher concentrations (10−5M) reduced osteoclas-
togenesis in the RAW264.7 cell line.49 Ilvesaro et al reported 
that a short duration of exposure to TCDD does not cause any 
alterations in the function of osteoclasts.94 The study performed 
by Fu et al demonstrated that the treatment of bone marrow 
cells with 6-formylindolo[3,2-b] carbazole (FICZ) and TCDD 
promoted osteoclastogenesis.93 In a separate study, we reported 
elevated levels of KYN involved in muscle loss with age.10 We 
demonstrated a 2-fold increase in reactive oxygen species levels 
(ROS) and a reduction in muscle size and strength followed by 
an increase in muscle lipid peroxidation in young mice after 
kynurenine treatment. Moreover, we reported that inhibition of 
Ahr in vitro and Ahr knockout in vivo did not prevent a KYN-
induced increase in ROS, indicating that kynurenine can 
directly enhance ROS independent of Ahr activation.10 
Recently, our group demonstrated the involvement of male sex 
hormones in AhR signaling.6 We reported that the Kyn-
activated AhR signaling and testosterone prevent transcrip-
tional activity in mesenchymal linage cells, suggesting the 
protective function of male sex hormones in reducing Kyn’s 
negative effects on cortical bone. Testosterone may be crucial for 
regulating Kyn/AhR signaling in musculoskeletal tissues, indi-
cating that the interaction between Kyn signaling and male sex 
hormones may affect age-related musculoskeletal fragility.6

The findings are inconsistent, and this might be because of 
different ligands that bind to AhR and play diverse roles. This 
might be due to several reasons, such as the affinity of ligands, 
combining efficiency, duration, and pathways that these ligands 
not only activate but also play a crucial role in regulating them.

Recent studies in vitro studies showed role of AhR in the 
pathogenesis of osteosarcoma, a malignant bone tumor preva-
lent among children, adolescents, and young adults.95,96 

Vorontsova et al investigated AhR functional activity in 3 pri-
mary cell cultures derived from osteosarcoma patients. Their 
findings demonstrated functional AhR activity in all cell lines 
but with variable activation patterns of target genes in 
response to ligand stimulation.97 Yang et al demonstrated that 
treatment of the MG-63 osteosarcoma cell line led to the 
degradation of AhR expression via activation of the AhR 
signaling pathway98. They observed elevated levels of cycloox-
ygenase-2 and receptor activator of nuclear factor-κB ligand 
at both protein and mRNA levels after 24 and 72 hours of 
TCDD treatment. Furthermore, TCDD-treated MG-63 
cells exhibited increased prostaglandin E2 production and 
upregulation of the chemokine receptor CXCR4. These 
TCDD-induced alterations in RANKL, COX-2, PGE2, and 
CXCR4 expression were mitigated by CH223191, an AhR 
inhibitor98. These findings underscore the significance of 
AhR signaling in osteosarcoma and advocate for further 
exploration of AhR-targeted therapies for malignancy.

Role of Endogenous Metabolites in AhR Signaling
Aging is an accumulation of changes, leading to slow physio-
logical, metabolic, and physical functions.5 Aging is acceler-
ated by several factors, such as genetic, environmental, and 
nutritional factors.99 With age, a change in cellular metabo-
lism affects AhR signaling. It is known that several endoge-
nous cellular metabolites act as AhR ligands, such as 
tryptophan metabolites. Tryptophan is degraded into several 
metabolites, such as kynurenine (KYN), kynurenic acid 
(KYNA), and quinolinic acid (QUIN). Kynurenine and its 
metabolites act as an AhR ligand.100 Alterations in the kynure-
nine pathway accelerate age-related diseases.101 Previously, our 
group demonstrated that kynurenine reduces the proliferation 
of bone marrow mesenchymal stem cells (BMSCs), inhibiting 
osteoblast proliferation and differentiation.102 Our group 
recently reported that increased KYN levels are detrimental 
and induce bone loss in mouse models103 suggesting a role for 
AhR. We also demonstrated that activation of the AhR path-
way through kynurenine increases senescence-associated β-
galactosidase activity and p21, suggesting an important role in 
premature senescence.104

Another endogenous metabolite of the Kyn pathway, the 
3-hydroxy anthranilic acid (3-HAA), possesses pro-oxidant 
properties.105 Forrest et al measured the concentrations of vari-
ous kynurenine pathway metabolites in the plasma of osteopo-
rosis patients before, during, and after 2 years of treatment with 
the raloxifene or etidronate drugs. They discovered that patients 
with osteoporosis had lower baseline levels of 3-hydroxyan-
thranilic acid than healthy controls but higher levels of 
anthranilic acid and lipid peroxidation products. In parallel, 
both drug treatments studied restored the levels of 3-hydroxy-
anthranilic acid, anthranilic acid, and lipid peroxidation prod-
ucts to control levels, while tryptophan levels increased 
significantly when compared to baseline values.105 It has been 
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demonstrated that 3-hydroxykynurenine can reduce the viabil-
ity of osteoblast-like cells.106 A recent study conducted by Wu 
et  al identified 2 novel AhR endogenous ligands 3α,5α-
tetrahydrocorticosterone and 3α,5β-tetrahydrocorticosterone 
(5α- and 5β-THB), which can modulate neural development 
and differentiation of neuroblastoma. They treated zebrafish 
embryos with 5α- and 5β-THB and found an increase in HuC, 
a neurogenesis marker.107 Furthermore, they found that 5α- 
and 5β-THB augmented the expression of myelinating glial 
cell markers, sex-determining region Y-box 10, and myelin-
associated proteins myelin basic protein and improved the 
mobility of zebrafish larvae via the AhR2 pathway. The  
findings of their study indicate that AhR regulates zebrafish 
neurogenesis and gliogenes and the differentiation of oligo-
dendrocyte or Schwann cells. In a nutshell, 5α- and 5β-THB 
are endogenous ligands of AhR and have therapeutic potential 
for neuroblastoma treatment.107 Besides, tryptophan metabo-
lites, other endogenous AhR ligands regulate various metabolic 
pathways. For instance, Lumichrome is a riboflavin metabolite 
identified as an AhR ligand in rats as early as the 1980s.108 
Heme degradation products such as bilirubin and its metabolic 
precursor biliverdin are recognized as AhR endogenous ligands 
that directly activate AhR transformation and CYP isozymes 
transcription.109 Yao et al reported that in the hyperhomocyst-
einemia (HHcy) mouse model, lipoxin A4, a metabolite of ara-
chidonic acid, markedly increases AhR activity and upregulates 
CD36 expression.110 Further studies are required to elucidate 
and provide deeper insight into these complex mechanisms of 
bone metabolism, which will help design the therapeutic strat-
egy for treating various bone diseases.

Role of Exogenous Metabolites in AhR Signaling
Many agonists of AhR (Table 1), such as 6-formylindolo2, 
3carbazole (FICZ), TCDD, and Bap are known to play an 
important role in musculoskeletal diseases such as rheumatoid 
arthritis, osteoporosis, inflammatory arthritis.111 In rheuma-
toid arthritis (RA), AhR activation by TCDD and FICZ can 
increase the severity and disease progression, followed by bone 
destruction and osteoclast differentiation.112 The study per-
formed by Kazantseva et  al demonstrated the effects of  
smoking on inflamed rheumatoid synovial tissue. Various car-
cinogenic chemicals present in cigarette causes AhR activation. 
Higher expression of CYP1A1 and AHRR was reported in the 
patients who smoke compared to healthy subjects.112 
Altogether, these findings highlight that AhR plays a vital role 
in deciding the severity and progression of RA. A variety of 
AhR agonists play a critical role in regulating osteogenic dif-
ferentiation. It has been reported that bone-derived MSCs 
treated with TCDD amend the transcriptomic profile of vari-
ous osteogenic biomarkers, Extracellular matrix synthesis 
(ECM) markers and lead to suppressing osteogenic differenti-
ation.85 Benzo[a]pyrene (BAP), another activator of AhR, is a 
carcinogen found in cigarette smoke and grilled meats. Zhou 
et  al reported that BAP altered the TGFβ1/SMAD4 and 
TGFβ 1/ERK/AKT pathways, reducing the proliferation rate 
and self-renewal of MSCs.113

Studies conducted in mouse models of arthritis revealed 
that AhR nuclear translocation and expression are upregu-
lated.114,115 Study performed by Tong et al demonstrated that 
the AhR suppresses the osteogenesis of stem cells in collagen-
induced arthritic mice through the inhibition of β-catenin.114 

Table 1.  A list of common Exogenous and Endogenous AhR ligands with their abbreviations and their source (Table adapted from Neavin et al111).

Ligand Abbreviation Exogenous/Endogenous Source

2,3,7,8-Tetrachlorodibenzo-p-dioxin TCDD Exogenous Chemical contaminant

6-Formylindolo[3,2-b] carbazole FICZ Exogenous Ultraviolet derivative of tryptophan

Benzo[a]pyrene BaP Exogenous Product of burning of organic compounds and 
cigarette smoke

3-Methylcholanthrene 3-MC Exogenous Product of burning of organic compounds

Kynurenine KYN Endogenous Tryptophan metabolite

β-napthoflavone BNF Exogenous Flavone derivative

α-napthoflavone ANF Exogenous Flavone derivative

Indolo[3,2-b] carbazole ICZ Endogenous Indole-3-carbinol derivative

Diindolylmethane DIM Exogenous Indole-3-carbinol derivative

Tryptophan TRP Exogenous Essential amino acid

Indole-3-acetic acid IAA Exogenous & Endogenous Microbiome product Tryptophan metabolite

Tryptamine TRYP Endogenous Tryptophan metabolite
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Procházková et al showed that levels of β-catenin were reduced 
in both TCDD-induced AhR activation and arthritic mice, 
suggesting the Wnt pathway is affected.115 Furthermore, docu-
mented evidence highlights that long-term use of certain AhR 
ligands (FICZ, TCDD, Bap) might cause severe side effects 
such as liver toxicity, carcinogenicity, and high embryo 
mortality.116,117

Therapeutic Utility of Natural AhR Ligands for 
Musculoskeletal Health
Many natural AhR ligands are being studied extensively by the 
scientific community worldwide (Table 2) . These natural AhR 
ligands can directly or indirectly activate AhR through differ-
ent mechanisms. For instance, Quercetin, a natural plant-
derived AhR ligand, demonstrated that life span could be 
extended in Caenorhabditis elegans by directly activating AhR 
through a ligand binding mechanism.118 Similar findings were 
reported, indicating the positive effect of quercetin on aging in 
an AhR-dependent manner in Drosophila melanogaster.119 
Another natural AhR ligand, curcumin (Polyphenol com-
pound) can bind to AhR directly and block downstream sign-
aling by inhibiting AhR phosphorylation by protein kinase 
C120 or by binding with endogenous AhR ligand-FICZ thereby 

activating AhR indirectly.121 Curcumin is reported to have 
anti-inflammatory properties, making it an attractive drug 
against arthritis. The study conducted by Zheng et al demon-
strated that curcumin was effective in alleviating the pain 
caused due to arthritis in Lewis rats.122 Green tea is a product 
of the dried leaves of Camellia sinensis, has anti-inflammatory 
properties.123 Fukuda et al reported that catechins in green tea 
suppress the activity of cytochrome P450 1A1 through the 
AhR activation pathway.124 The polyphenolic compounds iso-
lated from green tea (aqueous extract) reduced the progression 
of arthritis in mice.125 The study carried out by Hasan et  al 
demonstrated that Indole-3-carbinol (I3C) alleviated arthritis 
by decreasing the level of inflammatory markers in adjuvant-
induced arthritis rats.126 Resveratrol, another natural AhR 
ligand, is a polyphenol compound in red wine and grape 
skins.127 Resveratrol acts as an AhR inhibitor and inhibits the 
binding of AhR to TCDD, further leading to a reduction in 
CYP1A1 expression.127

Berberine, another natural alkaloid, is reported to have ben-
eficial effects against rheumatoid arthritis. Oral administration 
of berberine in rats reduced the progression of collagen-
induced arthritis by encouraging the differentiation of Treg 
cells due to the activation of AhR signaling.131 Tetrandrine is a 

Table 2.  Natural Ahr ligands and their mechanism of action in Ahr dependent manner (Table adapted from Hui and Dai).128

Ligand Ligand type Mechanism of action Reference

Quercetin Natural Directly activates Ahr through ligand binding mechanism Proshkina et al119

Curcumin Natural Directly binds to Ahr receptor and block downstream 
signaling by inhibiting Ahr phosphorylation by protein 
kinase C; also has ability to bind FICZ and activate Ahr 
pathway

Ciolino et al120; Mohammadi-
Bardbori et al121

Green tea Natural 20 Fukuda et al124

Resveratrol Natural Acts as Ahr inhibitor and inhibits binding of Ahr to TCDD 
further leading to reduction in CYP1A1 expression

Byun et al129; Diaz-Gerevini 
et al127

Tetrandrine Natural By interacting with AhR, tetrandrine encourages AhR 
localization in the nucleus of T cells, augments the 
expression of AhR-related reporter genes, and improves 
the transcription of target genes

Jia et al132; Hui and Dai128

Sinomenine Natural Sinomenine encourages Ahr/Hsp90 dissociation and Ahr 
nuclear translocation by stimulating the development and 
function of Treg cells in an Ahr-dependent way

Wang et al134; Feng et al135

Indole-3-carbinol (I3C) Natural I3C promotes the generation of Tregs cells and down-
regulates the percentages of Th17 cells in vivo and in vitro 
in an Ahr-dependent manner

Hasan et al126

Norisoboldine Natural Norisoboldine binds to Ahr and activates Ahr further 
causing subsequent suppression of NF-κB and hypoxia-
inducible factor-1 signaling pathways, and protects against 
bone and cartilage damage

Wei et al130

3,3′-diindolylmethane Natural Anti-tumorigenic and anti-inflammatory activities through 
regulation of Ahr

Dong et al138

Berberin Natural Berberin activates Ahr and promotes the differentiation of 
Treg cells and leads to up-regulation of CYP1A1 
expression.

Dinesh et al131
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bis benzylisoquinoline alkaloid discovered in the roots of 
Stephania tetrandra S. Moore and is currently being utilized in 
Chinese medicine to treat arthralgia and rheumatalgia.132 
Interacting with AhR encourages AhR localization in the 
nucleus of T cells, increases the expression of AhR-related 
reporter genes, and improves the transcription of target 
genes.133 The study performed by Yuan et  al showed that 
tetrandrine relieved collagen-induced arthritis in mice by 
restoring the balance between Th17 and Treg cells via AhR 
signaling.133 Since the 1960s, Sinomenine, an alkaloid derived 
from the roots of Sinomenium acutum, has been utilized in 
China as an anti-rheumatoid arthritis treatment. By boosting 
the expression of AhR target genes, encouraging AhR/Hsp90 
dissociation, and encouraging AhR nuclear translocation, it 
attenuates arthritis by stimulating the development and func-
tion of Treg cells in an AhR-dependent way.134,135 Numerous 
cruciferous vegetables contain the compound indole-3-carbi-
nol (I3C). Studies have shown that I3C attenuated arthritis by 
reducing inflammatory markers and ameliorates the histo-
pathological changes of the tibiotarsal joints in adjuvant-
induced arthritis rats by promoting the generation of Tregs 
cells and down-regulating the percentages of Th17 cells in vivo 
and in vitro in an AhR-dependent manner.126,136 3,3′-diin-
dolylmethane has been linked to having anti-tumorigenic and 
anti-inflammatory activities through the regulation of AhR, 
making it one of the best-characterized and most bioactive 
components in the widely utilized cruciferous plants.137 Dong 
et al reported that 3,3′-diindolylmethane lowered the levels of 
inflammatory cytokines such as IL-1, NO, and TNF-alpha, as 
well as the expression of RANKL in osteoclasts and fibroblast-
like synoviocytes (FLS) to prevent osteoclastogenesis, it also 
attenuated the clinical and histologic indicators of inflamma-
tion and tissue damage.138

The Natural AhR agonists with fewer side effects will be 
promising candidates for the therapeutic approach against 
rheumatoid arthritis. Future studies are needed to decipher and 
understand the exact mechanisms regarding the functioning of 
these natural ligands and identify new targets for treating vari-
ous bone diseases. AhR plays a crucial role as a contributing 
factor in many bone diseases; therefore, AhR can be used as the 
target for novel pharmacotherapeutic agents. Nevertheless, 
more studies still need to be carried out to understand the clin-
ical aspects and molecular mechanism of AhR to consider its 
use in clinical trials in the near future.

Identification of Novel Genes Regulated by AhR 
Signaling in Bone Homeostasis by GEO2R Analysis
We performed GEO data analysis to understand the molecu-
lar mechanism involved in bone biology. The primary purpose 
of using the Gene Expression Omnibus (GEO) dataset was to 
find the studies that align with our notion suggesting that 
AhR is essential for bone biology and homeostasis. We 
searched the published literature through the GEO dataset for 

studies demonstrating AhR’s importance in bone formation 
and development. We used the search terms “AhR-bone devel-
opment”; “AhR-bone formation” and found 2 studies aligned 
with our notion. The GEO dataset archived by Xiong et  al  
was analyzed to determine differentially expressed genes, 
highlighting the importance of AhR in bone biology (GEO 
accession GSE11893).139 Briefly, the study investigated tran-
scriptional response in zebrafish larvae exposed to TCDD 
(1,2,4 and 12 hours). The study’s findings suggested that 
TCDD activation of AhR downregulated numerous chondro-
genic transcripts, leading to jaw malformation in zebrafish 
embryos. We performed the GEO2R analysis for 4 groups 
( Jaw Vehicle Control- 1 Hour vs Jaw TCDD- 1 Hour; Jaw 
Vehicle Control- 2 Hours vs Jaw TCDD- 2 Hours; Jaw 
Vehicle Control- 4 Hours vs Jaw TCDD- 4 Hours; Jaw 
Vehicle Control- 12 Hours vs Jaw TCDD- 12 Hours). An 
expression density plot was generated using GEO2R to check 
data normalization to complement boxplot analysis. The 
GEO2R interactive tool was used to determine common 
genes involved in the AhR pathway in both treatment and 
control groups by calculating log base 2 of fold change 
(log2(FC)). No alterations were made in Benjamini & 
Hocheberg false discovery rate method for p-value adjustment 
as it is widely used to perform GEO2R analysis. The rest of 
the parameters were set to default settings. The GEO2R anal-
ysis identified 8 genes (CYP1C1, SULT6B1, CYB5A, EDN1, 
CXCR4B, CTGFA, TIPARP, and CXXC5A) involved in the 
AhR pathway, which play a crucial role in bone remodeling. 
These genes were found in all treatment conditions: Jaw 
Vehicle Control- 1 Hour versus Jaw TCDD- 1 Hour; Jaw 
Vehicle Control- 2 Hours versus Jaw TCDD- 2 Hours; Jaw 
Vehicle Control- 4 Hours versus Jaw TCDD- 4 Hours and 
Jaw Vehicle Control- 12 Hours versus Jaw TCDD- 12 Hours. 
AhR was significantly expressed after 4 and 12 hours; the 
expression was not detected during the first 1 to 2 hours. The 
AhR was expressed from 4 to 12 hours, which correlated with 
significant upregulation of CYP1C1, SULT6B1, and CYB5A. 
Therefore, this indicated that, in turn, these 3 genes are AhR-
dependent/AhR-associated. It signifies that AhR is involved 
in bone morphogenesis, as these 3 genes are critical for normal 
bone biology. However, after 12 hours of TCDD exposure, the 
expression of osteogenic genes like EDN1, CXCR4B, CXC5A, 
TIPARP, and CTGFA was downregulated (Figure 5). Another 
GEO dataset archived by Bennett et  al (GEO accession 
GSE76276) was analyzed to emphasize the importance of 
AhR in maintaining the integrity of hematopoietic stem cells 
and how it affects overall bone biology.140 Briefly, the study 
investigated the effect of AhR gene knockout on expression 
profiles of hematopoietic stem cells from young and old mice. 
The study’s findings indicated that conditional deletion of 
AhR resulted in the alteration of several gene and signaling 
networks crucial for the normal function of hematopoietic 
stem cells. We performed GEO2R analysis for 2 groups 
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(Young AhR KO vs Young Floxed AhR and Old AhR KO vs 
Old Floxed AhR). Initially, we performed GEO2R analysis 
for Old AhR KO versus Old Floxed AhR. We identified the 
top 250 differentially expressed genes. Based on the fold 
change, out of the top 250, the top 20 most upregulated (Table 
S1) and most downregulated genes (Table S2) were selected. 
Moreover, based on the GEO2R analysis and literature review, 
out of the top 20 most upregulated genes, we found 3 novel 
genes, namely, Defb14, ZNF 51, and Chrm5, involved in bone 
physiology and development (Figure 6a-c). It has been 
reported that Defb14 is involved in controlling bone mineral 
density.141 ZNF 51 mainly regulates skeletogenesis and plays 
an important role in tooth, cartilage, and bone development. It 
is responsible for maintaining the structural integrity of the 
skeletal system.142 A study by Kauschke et  al demonstrated 
that Chrm5 is crucial for bone homeostasis as it enhances 
bone formation and decreases bone resorption.143 Furthermore, 
out of the top 20 most downregulated genes, based on the 
GEO2R analysis and literature review, we found 7 novel 
genes, namely Cdh2, Oosp1, Ttc30b, Fabp4, Cldn5, H28, and 
Epcam, which are involved in bone homeostasis. Out of 7 
genes, we selected the top 3 genes (Cdh2, Oosp1, and Ttc30b) 
for further analysis based on their fold change (Figure 6d-f ). 
A study reported by Marie et al showed that Cdh2 is essential 
for cell-cell adhesion and signaling in bone remodeling.144

Furthermore, we performed GEO2R analysis for Young 
AhR KO versus Young AhR-FLoxed. We identified the top 
250 differentially expressed genes. Out of the top 250, 20 most 

upregulated (Table S3) and the top 20 most downregulated 
(Table S4) were selected based on their fold change. Based on 
the literature review and GEO2R analysis, out of the top 20 
most upregulated genes, we found 15 genes involved in bone 
physiology. Out of those 15 genes, we discussed here the top 3 
(Cdk7, Eed, and Raasf5) most upregulated genes involved in 
bone biology based on their fold change as well as literature 
review and their ability to influence bone remodeling for fur-
ther analysis (Figure 7a-c). Cyclin-dependent kinase-7 (Cdk-
7) is the master regulator of all the cyclin-dependent kinases 
through the phosphorylation of T-loops. Cdk-7 is crucial for 
bone homeostasis because it is vital in maintaining hematopoi-
etic stem cells. Studies have pointed out that deleting Cdk-7 
leads to abnormalities in bone marrow, such as adipose tissue 
deposition and reduction in bone mineral content.145 Rassf5 is 
essential for osteoblastogenesis. It facilitates the proliferation 
and differentiation of osteoblasts and suppresses osteoclasts. A 
study by Song et al demonstrated the significance of Rassf5 in 
bone remodeling.146 The embryonic ectoderm development 
gene (Eed) is responsible for chondrocytes’ proliferation and 
differentiation. It plays a crucial role in preserving the overall 
structure of the growth plate. A study conducted by 
Mirzamohammadi et al showed that Eed is necessary for the 
proliferation and differentiation of chondrocytes and plays a 
key role in preserving the overall integrity of growth plates.147 
In the top 20 most downregulated genes, we selected 
Haptoglobin (Hp), Rnf114, and Rab27b based on the litera-
ture review and their ability to impact bone remodeling  

Figure 5.  AhR activation regulates bone remodeling genes in Zebrafish. GEO2R data analysis showing 8 bone homeostasis-related genes (CYP1C1, 

SULT6B1, CYB5A, EDN1, CXCR4B, CTGFA, TIPARP, and CXXC5A) differentially regulated after activation of AhR signaling in jaw of Zebrafish. The data 

were retrieved from the GEO dataset uploaded by Xiong et al (GEO accession GSE11893); significance was determined by GEO2R adjusted  

*P-value < .05. **P-value < .001 (n = 3/group).
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(Figure 7d-f ). Haptoglobin is responsible for maintaining 
bone microarchitecture and bone volume. Haptoglobin pre-
vents excessive osteoclastogenesis.148 Ring finger protein 114 
(Rnf114) regulates the RANKL signaling pathway and medi-
ates osteoclastogenesis. Rnf114 suppresses osteoclast prolifera-
tion and differentiation, thereby augmenting bone formation.149 
Rab27b is a small GTPase that regulates the RANKL release 
pathway. It decreases bone resorption and enhances bone 
volume.150

AhR Pathway Affected Gene Ontology Enrichment 
Analysis of Biological Processes Involved in Bone 
Formation
We performed gene ontology enrichment analysis and path-
way annotation using DAVID (Database for Annotation, 
Visualization, and Integrated Discovery) for those genes 

involved in the AhR pathway to gain a deeper understanding 
of the biological process and functions regulated by these 
genes (Table S5). Our analysis revealed that the annotation 
cluster mainly consisted of the xenobiotic metabolic process, 
p450 pathway, oxidation-reduction, and nitric oxide biosyn-
thesis process, which were significantly enriched as compared 
to other functions. Moreover, we also performed Gene 
Ontology Enrichment Analysis using the GO consortium for 
the genes involved in the AhR pathway to check their role 
specifically in bone biological processes using the Gene 
Ontology Resource software tool. All the parameters were set 
at default settings (Analysis Type: Panther, Annotation 
Version, and Release Date: GO Ontology database DOI: 
10.5281/zenodo.4735677 Released 2021-05-01, Analyzed 
List: Homo Sapiens, Reference List: Homo Sapiens-all genes 
in the database, Annotation Set: GO biological process, Test 

Figure 6.  Identification of novel bone-related genes involved in AhR signaling with age: GEO2R study (Young AhR KO vs Young Floxed AhR) showing 

elevated levels of (a) Defb14, (b) ZNF 51, and (c) Chrm5 genes and top 3 genes (d) Cdh2, (e) Oosp1, and (f) Tth30b downregulated in AhR knock out mice. 

The data were retrieved from the GEO dataset uploaded by Welle et al (GEO accession 76276). The significance was determined by GEO2R adjusted 

*P-value < .05. **P-value < .001 (n = 5-6).
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Type: Fisher, Correction: False Discovery Rate). Gene 
Ontology Enrichment Analysis for the genes involved in the 
AhR pathway identified 54 biological processes associated 
with bone homeostasis. Mainly, these processes include bone 
morphogenesis, bone development, bone trabeculae forma-
tion, bone resorption, bone maturation, bone mineralization, 
and bone marrow development (Table S6). Overall, our analy-
sis showed a strong correlation between AhR signaling path-
ways and their role in bone development and homeostasis.

Conclusion
With an enhanced comprehension of the relationship between 
AhR signaling and bone homeostasis, it is tempting to con-
clude that AhR signaling indeed influences bone biology. 

However, conflicting evidence also highlights the positive and 
adverse effects of AhR signaling on bone. Some studies indi-
cate positive effects, while others demonstrate detrimental 
effects on bone homeostasis. These conflicting findings chal-
lenge the scientific community to reach a consensus regarding 
the utilization of AhR as a therapeutic option for bone disor-
ders and diseases. Nevertheless, evidence suggests that AhR 
plays a significant role in osteogenic differentiation, bone for-
mation, and remodeling, indicating its potential as a target for 
designing diverse treatment strategies against various bone 
ailments. The effects of AhR agonists and antagonists on bone 
remain unclear, hindering the clinical application of AhR-
related therapies for bone disorders. The inconsistencies in 
findings may be attributed to several factors, including 

Figure 7.  Identification of novel bone-related genes involved in AhR signaling: GEO2R study (Old AhR KO vs Old Floxed AhR) showing elevated levels of 

(a) Cdk7, (b) Rassf5, and (c) Eed genes and top 3 genes (d) Hp, (e) Rnf114, and (f) Rab27b downregulated in AhR knock out mice. The data were retrieved 

from the GEO dataset uploaded by Welle et al (GEO accession 76276). The significance was determined by GEO2R adjusted *P-value < .05.  

**P-value < .001 (n = 5-6).
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differences in ligand binding affinity to AhR, binding sites, 
half-life, chemical structure, and various unknown factors. 
However, further research is still required to investigate the 
underlying mechanisms of AhR action and its influence on 
bone remodeling.
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