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Abstract

PUMA, which belongs to the BH3-only protein family, is an intrinsically disordered protein

(IDP). It binds to its cellular partner Mcl-1 through its BH3 motif, which folds upon binding

into an α helix. We have applied a structure-based coarse-grained model, with an explicit

Debye—Hückel charge model, to probe the importance of electrostatic interactions both in

the early and the later stages of this model coupled folding and binding process. This model

was carefully calibrated with the experimental data on helical content and affinity, and

shown to be consistent with previously published experimental data on binding rate changes

with respect to ionic strength. We find that intramolecular electrostatic interactions influence

the unbound states of PUMA only marginally. Our results further suggest that intermolecular

electrostatic interactions, and in particular non-native electrostatic interactions, are involved

in formation of the initial encounter complex. We are able to reveal the binding mechanism

in more detail than is possible using experimental data alone however, and in particular we

uncover the role of non-native electrostatic interactions. We highlight the potential impor-

tance of such electrostatic interactions for describing the binding reactions of IDPs. Such

approaches could be used to provide predictions for the results of mutational studies.

Author summary

Intrinsically disordered proteins (IDPs) are typically enriched in charged residues, with a

general “coupled folding and binding” mechanism. We uncover the importance of non-

native long-range electrostatic interactions between PUMA and Mcl-1 in the early stage

of binding, by using the coarse-grained molecular dynamic simulations with charged

model, which reveals the reason of the obviously increased binding rate at low ionic

strength. However, intramolecular electrostatic interactions within PUMA can not influ-

ence the folding extent of unbound states of PUMA significantly. The results of binding-

folding energy landscapes support an “induced fit” mechanism of binding. The critical
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residues and interactions between PUMA and Mcl-1 suggested here will be helpful for fur-

ther mutational and mechanism studies.

Introduction

The discovery of intrinsically disordered proteins (IDPs) [1–3], requires a reconsideration of

the principles of protein-protein interactions, which have largely been examined using well-

defined structured proteins. IDPs are involved in many critical physiological processes, in par-

ticular within protein interaction networks such as transcriptional and translational regula-

tion, cellular signal transduction, protein phosphorylation, and molecular assembly [4]. Whilst

disordered/unstructured at physiological conditions, IDPs that play such roles often undergo

conformational changes to upon binding to their biomacromolecular partners [4, 5] in a pro-

cess known as “coupled folding and binding” [5].

In the cell correct folding and binding of many proteins is essential for biological function.

Since the 1890s the dominant descriptions of binding mechanisms are based on those

described by Fischer: “lock and key” [6], “induced fit” [7] and “conformational selection” [8]

(flexible binding). The lock and key mechanism, which involves rigid binding, is excluded for

reactions that couple folding and binding. Recent kinetic studies have started to investigate the

applicability of the “induced fit” and “conformational selection” mechanisms, which differ in

whether the ligand is folded before or after binding.

Electrostatic interactions are known to play important roles in binding processes [9–11].

However so far only a limited number of experiments have investigated these interactions

within coupled folding and binding reactions [12–14]. One of the most extensively experimen-

tally studied coupled folding and binding processes is that between PUMA and Mcl-1. It is

already known that electrostatic interactions are involved in association of PUMA with Mcl-1

as association rates are affected by salt concentrations [12]. Here we study the process of cou-

pled folding and binding of PUMA with Mcl-1 using coarse-grained simulations that are spe-

cifically designed to include contributions from electrostatic interactions to uncover the

nature of their involvement.

Mcl-1 is a stable folded pro-survival Bcl-2 protein that plays a critical role in development

and tissue homeostasis. It is expressed in a range of tissue types, and is induced by a variety of

stimuli to block apoptosis [15]. Gene knockout studies have demonstrated that Mcl-1 is

required for embryonic and immune cell development [16, 17], while its over-expression is

implicated in cancer and resistance to cancer treatments [15]. Pro-apoptotic BH3-only pro-

teins such as PUMA, many of which are intrinsically disordered in their unbound state [18],

form α-helices upon binding to Mcl-1.

Molecular dynamic simulations can gain many essential characteristics of IDPs that can not

be obtained in experiments. However, the results of IDPs simulations are strongly influenced

by the force field used [19–22]. Structure-based modeling can be a powerful tool for under-

standing coupled binding and folding of IDPs [23–27]. Classical structure-based models

(SBMs) are established based on the native protein structure according to the conceptual

framework of minimally frustrated energy landscapes. Therefore, the accuracy of IDP simula-

tions is strongly dependent on parameters of SBM in the force field [27, 28]. Simple SBMs,

with only a single energy basin, may not be appropriate for the systems of IDP complexes or

systems with many conformational states of similar energy. As a result, we applied an

advanced SBM based on the stable IDP complex structure, and treated IDP and folded protein

differently. For the accuracy of the simulations, we carefully recalibrated the strengths of
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intramolecular and intermolecular interactions based on the experimental structural charac-

teristics of IDP in solution and the binding affinity of the IDP complex, which have been suc-

cessfully applied in many IDP complex systems [25, 27, 29, 30]. Besides, multi-basin models

are also perfect choices to study the binding induced conformational changes of IDPs [31–34].

Here in this study, with a structure-based coarse-grained model [35–37] of the Mcl-1 and

PUMA complex and a Debye—Hückel model to describe the electrostatic interactions at a

moderate range of ionic strength, we investigate the contribution of ionic strength to the com-

pactness of PUMA, and how this affects its rate of association with Mcl-1. Our results provide

a residue level of detail for the mechanism of this modeled coupled folding and binding pro-

cess, including the role of non-native electrostatic contacts in the formation of the encounter

complex.

Results

Coupled folding and binding of PUMA with Mcl-1

We aimed to describe the process of PUMA folding upon binding to its partner Mcl-1 in resi-

due level detail using a simulation strategy that included consideration of electrostatic forces.

To obtain the free energy landscape of the binding process between PUMA and Mcl-1,

exchanges between unbound and bound states are needed in the thermodynamical simula-

tions. Bias was added on the native contact pairs, aiming to enhance exchange rates between

the unbound and bound states. After simulations, bias was removed to obtain the true free

energy distribution. Firstly, the free energy of Mcl-1 and PUMA complex was projected on

one reaction coordinate of intermolecular contact (Qinter) to provide an overview of the bind-

ing/unbinding process. A series of simulations were performed to calibrate the strength of

intermolecular contacts (β). As shown in Fig 1B, when β = 0.9, the binding free energy of Mcl-

1�PUMA complex is converged to about 7.93 kJ/mol, which matches the experimentally deter-

mined value of Kd [12, 38]. Using β = 0.9 we then investigated the nature of the coupled folding

and binding process through two replicas of well-tempered metadynamics [39]. Fig 1A shows

the free energy of the Mcl-1�PUMA complex as a function of the proportion of formed native

intermolecular contacts (Qinter). There is a relatively small energy barrier of about 4 kJ/mol
from the unbound state to the transition state, which is located at about 0.1 of Qinter. In con-

trast the energy of the system declines very sharply towards the bound state, which is located at

about 0.72 Qinter. The bound state of Mcl-1�PUMA complex is so stable that the exchange

between bound and unbound states is very slow (there are about only round 10 transitions

from bound to unbound in each 128 ns simulation).

Snapshots of PUMA binding to Mcl-1 with various Qinter are shown in Fig 1C to illustrate

the process of binding although there are many potential structures for each value and simula-

tions do not always involve the same contacts being formed first (see later).

The free energy landscape for coupled folding and binding was further examined using

additional reaction coordinates to examine the nature of the process. Taken together intermo-

lecular and intramolecular contact formation (Qinter and Qintra) demonstrates a typical two-

state system without populated intermediates (Fig 1) as has previously been suggested by

experimental studies [12]. In its unbound state, the IDP PUMA is partly disordered with Qintra

about 0.4. Reflecting the coupling between folding and binding, within complex with Mcl-1

Qintra of PUMA increases to about 0.7 (Qinter about 0.72). Notably the Qintra of PUMA does not

change considerably between the unbound and transition states, demonstrating that the

majority of PUMA folding takes places after binding i.e. via an induced fit mechanism. We

previously postulated this mechanism after a F-value analysis for PUMA binding to Mcl-1

showed little structure formation was present in the transition state [30]. However as noted in
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Fig 1. Parameter calibration and thermodynamic results. (A) Free energy profiles of Mcl-1 and PUMA complex using fraction of intermolecular

native contact between Mcl-1 and PUMA (Qinter) as well as the standard deviation. The standard deviation is calculated with the free energy data of the

last 10 ns. (B) The convergence of binding free energy of Mcl-1 and PUMA with different β. The binding free energy was calculated by the energy

difference between bound state (Qinter * 0.7) and unbound state (Qinter = 0). (C) Representative frames throughout the binding process. The bound

state in our simulations is consistent with the NMR structure 2ROC (right). Mcl-1 and PUMA is depicted with dark blue and orange tubes, respectively.

(D) Free energy landscape of Mcl-1�PUMA complex on both fraction of intermolecular native contact (Qinter) and fraction of intramolecular native

contact of PUMA (Qintra). (E) Free energy landscape of Mcl-1 and PUMA complex on both fraction of intermolecular native contact (Qinter) and helix

content of PUMA. The helix content is calculated using torison angles. The z axis is the free energy (kJ/mol) calculated by the probability using WHAM

[40] without the effect of bias potential.

https://doi.org/10.1371/journal.pcbi.1005468.g001
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the article experimental kinetic measurements are not able to determine mechanism unambig-

uously as we are able to here. With the aim of maximizing comparison of our results with

those obtained previously through experiment we also considered an further reaction coordi-

nate; the helical content of PUMA. In the bound state the IDP PUMA is folded as a part of reg-

ular alpha helix so Qintra is related to the change of secondary structure of PUMA. Within the

unbound and bound states the minima of the alpha helix content are about 10-20% and 40-

60%, respectively. These results are consistent with the CD results of experiment [30]. In addi-

tion we are able to estimate the alpha helical content within the (unpopulated) transition state

as approximately 18%.

The effects of electrostatic interactions on unbound states of PUMA

IDPs are typically enriched in charged residues, and the PUMA BH3 domain is no exception.

Within our 34 amino acid peptide there are 10 negatively charged residues and 5 positively

charged residues (PUMA sequence is included in supplementary materials S1 Fig). Such an

abundance of charged residues suggests that electrostatic interactions may play an important

role in determining the structure of PUMA in its unbound ensemble. We therefore examined

the effect of increasing the ionic strength upon the structure of unbound PUMA. High salt

concentrations act to shield charges from each other and hence reduce intramolecular electro-

static interactions. We calculated the radius of gyration (Rg) as a crude descriptor of the ran-

dom coil ensemble of IDP PUMA. Fig 2 shows that Rg of PUMA does decrease with ionic

strength, although the decrease is only small (from about 1.34 nm to 1.32 nm). Thus electro-

static interactions cause PUMA to be marginally more expanded than it would otherwise be.

To probe this finding further we examined inter-residue distances within unbound PUMA.

Distance maps (Fig 2B) reveal a lack of overall structural features. Instead inter-residue dis-

tance appears to be determined simply by separation distance in the amino acid sequence.

This is highly consistent with its description as an IDP. However a more detailed examination

demonstrates that electrostatic interactions modulate the inter-residue distances. Most nota-

bly, the distance maps for simulations with and without electrostatic interactions show that the

distance between the two termini of PUMA increases slightly when charges are switched on.

When electrostatic interactions are marginally shielded (IS = 10 mM) the distance between the

two ends is about 2 Å larger when compared with no electrostatic interactions (Fig 2B). Other

features are also apparent in the difference distance map, particularly for the arginine-contain-

ing region 12-18, which moves (up to) 1 Å closer to the negatively charged N-terminal region,

and the region 18-30 when charges are introduced to the simulation.

We further probed the simulations for evidence of more local changes by examining resi-

due-specific electrostatic interactions within unbound PUMA. The distance between head and

tail of PUMA is very large, suggesting a long extended coil with no hairpins/turns (as shown in

Fig 2B). The change of structure is largely related to the local interactions. We considered con-

tacts made between oppositely and similarly charged residues i.e. both attractive and repulsive

intra-peptide interactions. For structures, we considered intra-PUMA contacts as fully formed

(contact number 1) if the distance between the “atoms” was under 4.5 Å. We considered intra-

contacts as partially formed (contact number 0.5) if the distance was larger than 4.5 Å but

under 6.0 Å. The distribution of contact numbers for the two interaction types shows that con-

siderably more repulsive contacts (8 on average) are formed than attractive contacts (4 on

average) (Fig 3A). However most of the contacts are between directly connected charged resi-

dues (black, Fig 3C) that must always be within 6.0 Å of each other. Excluding these there is an

average of only one attractive and one repulsive contact being formed at any point (Fig 3B).

Without electrostatic interactions, the probability of former opposite-charged contacts

Mechanism of binding progress between PUMA and Mcl-1
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Fig 2. Radius of gyration and distance map results. (A) Average radius of gyration (Rg) with standard error of

unbound PUMA depends upon ionic strength. Simulations were performed using models of various ionic

strengths from 10 mM to 250 mM (red dots). Blue dot indicates Rg obtained when charge-charge interactions are

not included in the model. (B) Distance map of Cα-Cα atoms of unbound PUMA with no charge-charge

interactions (left) and high charge interactions of IS = 10 mM (right). The value of distance increases from 0 Å
(blue) to 35 Å (red). The difference of residue-residue distance between the PUMA without charge interaction

and PUMA in 10 mM salt solution is shown in (bottom).

https://doi.org/10.1371/journal.pcbi.1005468.g002
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decreases, but the probability of former same-charged contacts increases. By contrast, the

probability of intra-PUMA contacts when charges are switched off is shown in Fig 3A and 3B.

A contact map showing the probability of each individual interaction being present demon-

strates that most of the charge contacts are between residues relatively close together within

the PUMA sequence (Fig 3C and S2 Fig).

The effects of electrostatic interactions on kinetics

To reveal the role of electrostatic interactions on the binding behaviour of Mcl-1�PUMA com-

plex, we performed kinetic simulations without explicit electrostatic interactions, and in the

presence of electrostatic interactions at 6 different ionic strengths (from 10 to 250 mM). For

each ionic strength 200 simulations with different initial velocities and structures were per-

formed to ensure efficient sampling. The nature of our simulation approach meant that each

Fig 3. Contact information within PUMA. Repulsive charge contacts between directly connected residues dominate charge interactions within PUMA

peptide. (A) the contact number distribution with standard deviation between all charged residues of PUMA i.e. between i and j atoms with ji − jj� 1. (B) the

contact number distribution with standard deviation between non-connected residues of PUMA i.e. between i and j atoms with ji − jj> 1. Data of PUMA system

in 10 mM ionic strength are shown with solid lines; data of PUMA system without charge interactions are shown with dashed lines. (C) the probability of each

charge-charge interaction within PUMA in 10 mM ionic strength. Attractive and repulsive contacts are depicted by dots and asterisks, respectively.

https://doi.org/10.1371/journal.pcbi.1005468.g003
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simulation contained a single binding event. In the absence of electrostatic interactions this

binding event took place on average 1330 ± 90 ps into each simulation, which is equivalent to a

binding rate of (1.3 ± 0.1) × 109 s−1. As shown in Fig 4 this rate is increased when electrostatic

interactions are included, and in an ionic strength dependent manner. The mean time

increases quickly between 10 and 50 mM ionic strength and plateaus at higher ionic strengths,

approaching the time observed in the absence of electrostatic interactions. At 10 mM ionic

strength the binding takes place around 2.0 times faster with a rate of (2.6 ± 0.1) × 109 s−1.

To probe the basis of this phenomenon we then considered the binding process as two

parts: an encounter (or capture) step and a further evolution step [41]. Broadly speaking bind-

ing rates could be modulated through changes in three separate key parameters: rate of forma-

tion of encounter complex (capture), rate of evolution from encounter complex to bound

complex, and probability of progression from encounter complex to bound complex. We

examined the dependence of each of these separate stages on the ionic strength.

Fig 4. Role of electrostatic interactions in the binding process. Binding rate (A) and capture rate (B) for PUMA interacting with Mcl-1 at different

ionic strengths depend upon ionic strength, whereas complex evolution rate (C) and relative success probability that proceed to bound complex (D)

display little or no dependence upon ionic strength. Bind rate, capture rate, and evolution rate are obtained by calculating the reciprocals of FPTon,

MPTcap and FPTevo. All the units of rates are s−1. Red data points represent results from simulations performed with no charges included. Successful

collision rate is calculated by mean value of each quotient of bind rate and capture rate. Relative success probability is the ratio of successful collision

rate with successful collision observed without electrostatic interactions. Lines to guide the eye.

https://doi.org/10.1371/journal.pcbi.1005468.g004
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PUMA formed multiple encounter complexes before successful binding occurred. The rate

of capture events without electrostatic interactions is (2.2 ± 0.1) × 1010 s−1. Similarly to the

binding rate, this is increased in the presence of electrostatic interactions in an ionic strength

dependent fashion, with a 2.1-fold rate enhancement at 10 mM ionic strength, (4.6 ± 0.2) ×
1010 s−1 (Fig 4). Thus the binding rate and capture rate have remarkably similar behaviour

with ionic strength, suggesting that electrostatic forces enhance binding rates essentially

entirely through altering collision rates. Consistent with this proportion of successful capture

events appears independent of ionic strength (Fig 4D). The evolution rate is also relatively

insensitive to electrostatic interactions, ranging only from (4.3 ± 0.2) × 1010 s−1 without elec-

trostatic interactions to (3.6 ± 0.14) × 1010 s−1 at 10 mM ionic strength (Fig 4C).

For PUMA systems at low ionic strength (ionic strength = 10 mM), we have shown electro-

static interactions can accelerate the binding process. However there are very few native elec-

trostatic intermolecular contacts within the encounter complex in our simulations (average

number of contacts is only 0.1). However, the average of native charged contacts within 6 Å is 0

(Fig 5B), which suggests that the distances of the native charged contacts are all longer than 6.0

Å. The contact map of native opposite-charged contacts (Fig 5D) indicates that there is only

one native opposite-charged contact with high probability, which is between residue Lys66 of

Fig 5. Contact number distribution and contact map at 10 mM ionic strength. Distribution of electrostatic and non-electrostatic interactions within

the encounter complex (A-C). Contact frequencies for various interaction types within encounter complex (at 10 mM ionic strength). Standard errors of

data are shown. (D) Observed opposite-charged contacts within encounter complex (at 10 mM ionic strength). Encounter complex structures were

defined according to Huang et al. [41]. Native contacts are illustrated as triangles, non-native contacts are illustrated as circles.

https://doi.org/10.1371/journal.pcbi.1005468.g005
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Mcl-1 and Glu9 of PUMA (Fig 6A). In contrast there is a much wider distribution for the num-

ber of non-native opposite-charged contacts, with a much higher average contact number (5.1)

than that for native contacts. This contact number is also somewhat higher than that for non-

native same-charged contacts (3.5) (Fig 5A). The non-native charged interactions are almost all

long-range (6.0—10.0 Å) (Fig 5A and 5B), and whilst it appears that many different interactions

can be present in the encounter complex, some interactions are more likely than others. In par-

ticular interactions between the negatively charged residues in the N-terminal region of PUMA

and Arg65/Lys66 of Mcl-1 are all present in over 20% of encounter complexes, and interactions

between Arg15/Arg16 of PUMA and Glu57 of Mcl-1, and between Glu3/Glu4 of PUMA and

Arg80 of Mcl-1 are present in over 10% of encounter complexes (see Figs 5D and 6A). Interest-

ingly the N-terminal region of PUMA is also the region which we were previously able to show

had formed some structure within the transition state for binding [30].

Therefore, PUMA firstly gets close to Mcl-1 with long-ranged electrostatic formed by its N-

terminal residues (negatively charged) with positively charged residues (Arg65, Lys66, and

Arg80) of Mcl-1.

There are more native non-electrostatic contacts (2.1) than native electrostatic contacts

(0.1) in the encounter complex. Likewise, all the native non-electrostatic contacts are long-ran-

ged (distance longer than 6.0 Å, Fig 5C). We note that there are also many non-native non-

electrostatic interactions within the encounter complex (average 7.5, Fig 5C). However, none

of the non-native non-electrostatic interactions has a probability > 0.05 (S3 Fig).

Fig 6. Critical residues within the encounter complex. Residues for opposite-charged (A) and vdw interactions (B) frequently

observed within the encounter complex (probability over 0.1) at low ionic strength (10 mM). The one native opposite-charged

contact pair with high probability is shown with spheres. Mcl-1 residues are labeled in black; PUMA residues are labeled in red.

https://doi.org/10.1371/journal.pcbi.1005468.g006
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To dissect more fully the role of electrostatic forces from non-electrostatic ones in forma-

tion of the encounter complex we also performed simulations in the absence of charges for

comparison. As previously very few native contacts were formed between previously charged

residues. However the average number of non-native electrostatic contacts, both “opposite-

charged” and “same-charged”, decreased to 2.1 and 1.9 respectively. The probability distribu-

tion of contact numbers has also changed so that the most likely number of contacts is 0 (Fig

7A and 7B), rather than 7 and 4 as obtained in simulations including electrostatics (10 mM).

Most of the contacts formed are long-range. Examining the changes at the residue specific

level indicates that this is mainly a result of a large decrease in “opposite-charged” contacts

between Glu2/Glu3/Glu4/Glu5 of of PUMA and Mcl-1 (Fig 7D and S4A Fig), which will also

affect the non-electrostatic interactions at this region (S4C Fig).

Discussion

Mechanism of PUMA folding upon Mcl-1 binding

We used coarse-grained molecular dynamics simulations to describe the mechanism of

interactions between the natural intrinsically disordered PUMA BH3 peptide and its Bcl-2

Fig 7. Contact number distribution and contact map without electrostatic interactions. Simulations in the absence of electrostatic forces

indicate altered properties for the encounter complex. (A-C) Probability distributions of contact numbers within encounter complex. Standard errors of

data are shown. (D) Contact map of opposite-charged contacts within encounter complex for simulations without electrostatic forces included. All other

parameters are the same as simulations performed with charges (IS = 10 mM).

https://doi.org/10.1371/journal.pcbi.1005468.g007
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partner protein Mcl-1. Our findings portray an induced fit binding process, with PUMA

being relatively disordered at the transition state. This is in good agreement with previous

experimental kinetic analyses that have suggested a relative unstructured transition state on

the basis that the dissociation rate constant is much more sensitive to denaturant concentra-

tion than the association rate constant is [12]. Our simulations suggest the helical content of

the transition state is approximately 18%, much closer to that of minima of the unbound

state (10-20%) than the bound state (40-60%). This is highly consistent with, but extends,

our knowledge of helical contents on the folding landscape from experimental studies that

are fundamentally limited to populated states [30]. This compares favourably with Leffler α
= 0.10 ± 0.01 determined from a recent F-value analysis, which aims to estimate the propor-

tion of global structure formation at the transition state [30]. This work also showed the tran-

sition state to contain almost no structure at the C-terminus and only partial structure at the

N-terminus [30]. This is highly consistent with the view formed of the encounter complex,

formed before the transition state, from our simulations. These show the most probable con-

tacts are formed between the N-terminus of PUMA with Mcl-1 residues that are close to its

final position in the bound state.

Role of electrostatic interactions in structure of unbound PUMA

Inter-residue distance maps of PUMA support its overall structural characterisation as an

IDP since the largest determinant of the distance between any two residues is their

sequence separation. Chebaro et al. [42] obtained a description of the energy landscape of

PUMA and showed that the helix was unstable in the unbound state. The high proportion

of charged residues within the PUMA sequence prompted us to examine whether structural

changes might result from altering the ionic strength of the surrounding medium. Within

our sequence of PUMA, there are 66 potential opposite-charged contact pairs and 70 poten-

tial same-charged contact pairs (including termini). The fraction of positive charged resi-

dues (f+) is 0.147 and the fraction of negative charged residues (f−) is 0.294. Then, the

fraction of charged residues (FCR) and the net charge per residue (NCPR)/mean net charge

are 0.441 and 0.147 (FCR = (f+ + f−); NCPR = |f+ − f−|), respectively. The mean hydrophobic-

ity of PUMA is computed via the online tools ProtScale of ExPASy [43] (http://web.expasy.

org/protscale/) with a window size of 5 residues and rescaled to fit between 0 and 1, which

is 0.340. In addition, the intra-chain distance (Rij) has a relationship with chain separation

(|i − j|), which can fit to the line of y = 0.331 x0.683. As shown in the Uversky diagram [44]

and Das and Pappu diagram [45] of supplementary materials S5 Fig, PUMA is classified as

the strong polyampholytes of IDPs [45–47]. Therefore, the characteristic of PUMA

sequence is consistent with its behavior of Rg at different ionic strengths. However both

measures of large-scale structural tendencies we employed, Rg and inter-residue distance

maps, demonstrated only relatively small changes due to electrostatic interactions. Notably

after 150 mM ionic strength there is no further decrease in radius, so the physiological situ-

ations may be well represented by simulations that do not include electrostatic contribu-

tions explicitly.

We are able to examine the subtle changes in PUMA structure in more detail.

Unbounded PUMA is shown to be a extended coil. However the most significant contribu-

tion to the minor increase in PUMA radius when electrostatics are included in simulations,

appears to be interactions between the two ends of the PUMA peptide. Both termini are

negatively charged overall due to the presence of multiple glutamic acid residues (Glu2,

Glu3, Glu4, Glu5, Glu31 and Glu32), and the difference inter-residue distance map indicates

these move around 2 Å apart when charges are introduced and only slightly screened
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(IS = 10 mM). Indeed, the C-terminus (residue 30-34) moves further apart from the rest of

the peptide in general.

We have shown that intra-chain electrostatic interactions within PUMA enlarge its

radius. Thus at low ionic strengths the radius of interaction between Mcl-1 and PUMA may

be increased. For induced fit processes such increased capture radii has been theoretically

proposed to accelerate binding processes, a phenomenon termed the “fly-casting effect”

[48, 49]. This phenomenon is thought to alter association rates less than 2-fold when com-

paring folded and random coil versions of the same protein. Thus small modifications in

the radius such as those observed here may be expected to produce only tiny changes in

association rates. Nonetheless we note that particular structural changes, especially those

that alter the accessibility of charged residues, could impact on the efficiency of any “steer-

ing” of a protein towards its partner.

Enhancement of association rates through electrostatics

Electrostatic interactions lead to both attractive and repulsive forces. Our simulations indicate

that in the case of the PUMA�Mcl-1 complex the binding process is accelerated by electrostatic

interactions i.e. attractive forces dominate. We observed that association rates decreased at

higher ionic strengths where charges are more efficiently screened from each other and elec-

trostatic interactions weakened. This behaviour is similar to that observed in many kinetic

experiments of protein-protein association where association rates are found to vary depend-

ing upon the salt concentration. In fact such rate enhancement has already been observed

experimentally for PUMA association with Mcl-1, though the effect was slightly more pro-

nounced [12]. Whilst in experiment kon decreases roughly 2-fold from 10 mM to 50 mM

(about 9.8 × 107 and 4.4 × 107 M−1 s−1), in our simulations, the binding rate decreases only just

over 1.3-fold over the same range. This may be due to the peptide differing by a single charged

residue from that used in the experiments, or missing fine structural details as a result of our

coarse-grained molecular dynamics approach.

Examining this behaviour through simulation allows us to separately consider the role of

electrostatic interactions in capture and evolution parts. Our data suggest that electrostatic

forces assist the initial formation of the encounter complex, and play a lesser role in subse-

quent progression to the bound state. Simulations from the group of Jianhan Chen for p27

with Cdk2/cyclin A [26], and for p53-TAD1 with TAZ2, HIF-1a with TAZ1, and NCBD

with ACTR [50] all demonstrated that electrostatic forces act to reduce energy barriers

between the various states, thus enhancing collision rates. In contrast to our findings they

also suggested an important role of electrostatic contacts in progression from the collision

complex to the fully bound state [26, 50]. In fact we observe a 1.2-fold decrease in evolution

rate upon introducing partially screened charges to the simulation, suggesting electrostatic

interactions are actually retarding progression from the encounter complex to the bound

state. Nonetheless this change remains smaller than the effect upon binding and capture

rates, and given that the evolution time remains appreciably lower than the timescale for

binding this is unlikely to have a meaningful contribution to binding rates in our

simulations.

Non-native contacts dominate within the encounter complex

Since the effect of altering ionic strength is mainly on the long-range electrostatic interac-

tions of capture process we investigated the nature of the charge interactions within the

encounter complex. In our model of the Mcl-1�PUMA complex there are only 3 native oppo-

site-charged contacts (between Lys66 of Mcl-1 and Glu9 of PUMA, Asp88 of Mcl-1 and
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Arg15 of PUMA, Arg95 of Mcl-1 and Asp19 of PUMA) and 3 native same-charged contacts

(between Lys87 of Mcl-1 and Arg15 of PUMA, Asp88 of Mcl-1 and Asp19 of PUMA, Arg95

of Mcl-1 and Arg15 of PUMA). Rate constants for binding reactions between pairs of folded

proteins have been described to depend strongly upon charges located in the binding inter-

face [51]. As an intrinsically disordered protein that undergoes induced fit binding to Mcl-1,

PUMA does not have a well-defined binding interface in its unbound state. Nonetheless if

the native interfacial contacts are involved in electrostatic rate enhancement of the capture

rate then they will be present within the encounter complex. In contrast we observed only

one native opposite-charged interaction (between Lys66 of Mcl-1 and Lys9 of PUMA) with

long-range distance (distance larger than 6 Å) in encounter complex, which indicates the

entrance for PUMA. Most native interactions formed in encounter complex are non-electro-

static in nature.

Long-range electrostatic interactions do play an important role in the capture event

though, as evidenced by the ionic strength dependence of the capture rate. Instead non-

native opposite-charged interactions contribute a lot on the capture process. On average

over 5 such contacts are formed in each encounter complex at 10 mM ionic strength. There

is a wide distribution of probable contact numbers, ranging from 1 to 7, which reflects the

non-uniformity of encounter complex structures. The most commonly observed opposite-

charged contacts are between Arg65/Lys66/Arg80 of Mcl-1 and Glu2/Glu3/Glu4/Gl5 of

PUMA. Each charged residue has been found to form multiple different intermolecular

contacts within the encounter complex, however mapping these contacts onto the final

structure demonstrates that contacts are more likely where residues are close to each other

in the final structure. Similar coarse-grained simulations of the Mcl-1 and PUMA complex

have been performed earlier by Rogers et al. [30]. The N-terminus was demonstrated to be

important for the early stages of PUMA binding, even without electrostatic interactions.

Here we show further that the non-native electrostatic interactions between N-terminus

of PUMA and Mcl-1 can act as a “steering force” for binding, especially at low ionic

strengths. A similar finding was reported recently for a peptide of RA-GEF2 binding to its

PDZ domain partner where various non-native dynamic salt bridges were found within the

encounter complex [52]. Further evidence for the importance of these contacts is that

excluding electrostatic forces from our simulations alters the distribution of PUMA over

the Mcl-1 surface in the encounter complex, with less focussed “charged interactions”.

Materials and methods

Initial model of simulation

NMR coordinates of Mcl-1 complexed with PUMA (PDB ID 2ROC [53]) were prepared for

constructing the model. In this structure, the PUMA is 27 a.a. length. According to the

experiments of Rogers et al. [12], a full-length PUMA (34 a.a.) was build by using Chimera

software [54] (S1 Fig). The initial coarse-grained Cα structure-based model (SBM) of Mcl-1

and PUMA complex was generated using SMOG on-line toolkit, which included one bead

on the Cα atom of each residue of the complex [35, 36, 55, 56]. This model contains Mcl-1

(162 residues) and PUMA (34 residues), 424 and 36 intramolecular contacts within each of

them, as well as 77 intermolecular contacts between them. The native contact map was built

by the Shadow Algorithm [55]. The potential energy function consists of both bonded and

nonbonded terms. Additionally, we introduced the charge characterization into our SBM

model to study the electrostatic interactions in this system. As a result, the potential energy
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form used in this study is given in the following equation:

V ¼
X
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In Eq 1, �r = 100 �, �θ = 20 �, Kð1Þ� ¼ � and Kð3Þ� ¼ 0:5�. The interaction strength of Lennard-

Jones-type potential is proportional to the statistical potential reported for the residue types

of i and j by Miyazawa and Jernigan to generate the flavored model. [57] Therefore, the

coefficient of nonbonded contacts, �ij is set as follows:

�ij ¼ g
�MJ

ij

��MJ
� 1

� �

þ 1

� �

ð2Þ

where �MJ
ij is the original MJ potential, ��MJ is the mean value of the entire set of MJ weights

in the complex system, and γ is set to 1.0 corresponding to the “flavored model” [58]. As

with similar strategies in previous studies [25, 27, 29], the native nonbonded potential can

be separated into intramolecular and intermolecular terms, which should be rescaled

according to the experimental data (see the part of Method in supplementary materials).

The electrostatic interaction is calculated by the Debye—Hückel model, which can quantify

the strength of charge-charge attractions and repulsions at various salt concentrations:

VDebye� H€uckel ¼ GDH � KcoulombBðkÞ
X

i;j

qiqj exp � krij

� �

�rij
ð3Þ

In Eq 3, Kcoulomb = 4 π�0 = 138.94 kJ�mol−1�nm�e−2 is the electric conversion factor; B(κ) is the

salt-dependent coefficient; κ−1 is the Debye screening length, which is directly influenced by

the solvent ionic strength (IS)/salt concentration Csalt (k � 3:2
ffiffiffiffiffiffiffiffi
Csalt

p
); � is dielectric constant,

which is set to 80 during the simulations. ΓDH is the energy scaled coefficient which aims to

make the total energy balanceable. In our model, Lys and Arg have a positive point charge

(+e), Asp and Glu have a negative point charge (-e). All the charges are placed on the Cα
atoms. Besides the systems in altering ionic strengths, there is also a system with no electro-

static interactions. Under physiological ionic strengths (Csalt * 0.15 M), κ is 1.24 nm−1, so we

set ΓDH = 0.535 in our simulations, so that VDH for two opposite charged atoms located at a

distance of 0.5 nm matches the native contact energy. More details of Debye—Hückel model

can be found in these papers [34, 59–61].

Analysis of contact formation

Our definition of native contact cutoff is the same as that used in many previous structure-

based model simulations, and is based on the distances between the residues in the experimen-

tal structures. In contrast, there is no universal standard for the definition of the cutoffs of

non-native contacts. It is important that we analyze the native and non-native interactions in a

consistent manner. For intermolecular non-native contacts, we checked all the native distances
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of the native contacts. We find that in the native complex the average distances between two

Cα atoms in two chains that form a contact is about 8.6 Å. In addition, the minimum of native

distance between two Cα atoms in two chains is 4.9 Å. As a result, when analysing contact

number within the encounter complex we considered a contact between Mcl-1 and PUMA as

fully formed (contact number 1) if the distance between the “atoms” was less than or equal to

6.0 Å (about 1.2 times of lowest distance of native inter-chain contacts); we considered con-

tacts as partially formed (contact number 0.5) if the distance was larger than 6.0 Å but under

10.0 Å (non-native contacts, about 1.2 times of mean distance of native inter-chain contacts)

[38]. This method was chosen to allow the same way of counting contact number for both

native and non-native interactions.

Analysis of ionic strength dependence of rates

ln (bind rate), ln (capture rate), and ln (evolution rate) were obtained from FPTon, MPTcap,

and FPTevo, respectively,

ln k ¼
1

n

Xn

i

ln
1

taui

� �

ð4Þ

here, k represents bind rate/capture rate/evolution rate, tau represents FPTon/MPTcap/FPTevo,

and n is 200 runs at each ionic strength. Collision success probability is obtained from bind

rate and capture rate,

collision success probability ¼
bind rate

capture rate

� �

I

bind rate
capture rate

� �

0

ð5Þ

where I is the ionic strength.

Supporting information

S1 Fig. Sequence and structure information of Mcl-1 and PUMA complexed model. Upper:

the sequence of full-length PUMA (34 a.a.) used in the simulations. Positive charged and nega-

tive charged residues are colored in blue and red. The region of helix in bound state is shown

in light green box. Lower: The Mcl-1 � PUMA complex with full-length PUMA, constructed

based on the NMR structure 2ROC (27 a.a. PUMA). Mcl-1 and PUMA are shown in green

and red cartoons, respectively.

(TIF)

S2 Fig. The probability of each charge-charge interaction within PUMA without charge

interactions. Attractive and repulsive contacts are depicted by dots and asterisks, respectively.

(TIF)

S3 Fig. Contact map at 10 mM ionic strength. Contact map of opposite-charged (A), same-

charged (B), and vdw (C) interactions within encounter complex at 10 mM ionic strength, as

well as the contact map of opposite-charged interactions within the beginning of the evolution

part (D). The beginning of evolution is collected for the complexes with only 1-2 number of

inter contacts in the evolution part. The cutoff of the contact distance is 10.0 Å. Native contacts

are illustrated as triangles, non-native contacts are illustrated as circles.

(TIF)

S4 Fig. Contact map without electrostatic interactions. Contacts are more evenly distributed

within the encounter complex for simulations performed without electrostatic forces included.
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Contact map of opposite-charged (A), same-charged (B), and vdw (C) interactions within

encounter complex, as well as the contacp map of opposite-charged interactions within the

beginning of the evolution part (D). All other parameters are the same as simulations per-

formed with charges and IS = 10 mM.

(TIF)

S5 Fig. Charged residue distribution and structure information of PUMA. Top left:

Uversky diagram [44] of IDPs (under dashed line) and globular proteins (above dashed line),

Top right: Das and Pappu diagram [45] of IDPs. Bottom: Intra-chain distance (Rij) profiles of

PUMA with respect to chain separation. Theoretical polymer scaling limit and fitting function

are labeled.

(TIF)

S1 File. Additional information of methods.

(PDF)
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