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Abstract
SESN3 has been implicated in multiple biological processes including protection against

oxidative stress, regulation of glucose and lipid metabolism. However, little is known about

the factors and mechanisms controlling its gene expression at the transcriptional level. We

performed in silico phylogenetic footprinting analysis of 5 kb upstream regions of a diverse

set of human SESN3 orthologs for the identification of high confidence conserved binding

motifs (BMo). We further analyzed the predicted BMo by a motif comparison tool to identify

the TFs likely to bind these discovered motifs. Predicted TFs were then integrated with

experimentally known protein-protein interactions and experimentally validated to delineate

the important transcriptional regulators of SESN3. Our study revealed high confidence set

of BMos (integrated with DNase I hypersensitivity sites) in the upstream regulatory regions

of SESN3 that could be bound by transcription factors from multiple families including

FOXOs, SMADs, SOXs, TCFs and HNF4A. TF-TF network analysis established hubs of

interaction that include SMAD3, TCF3, SMAD2, HDAC2, SOX2, TAL1 and TCF12 as well as

the likely protein complexes formed between them. We show using ChIP-PCR as well as

over-expression and knock out studies that FOXO3 and SOX2 transcriptionally regulate the

expression of SESN3 gene. Our findings provide an important roadmap to further our under-

standing on the regulation of SESN3.
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Introduction
Sestrins belong to a small family of evolutionally conserved proteins. They are distinct from
any other characterized eukaryotic protein families because they do not have any previously
identified domain structures[1]. Mammals express three sestrin genes (SESN1/2/3), while most
invertebrates contain only a single sestrin gene[2]. Sestrins do not contain any known struc-
tural domains/catalytic motifs; only a partial homologous sequence to bacterial oxidoreduc-
tases is identified, suggesting an antioxidant function of this protein[1]. Sestrins regulate
multiple signaling pathways for metabolic and cellular homeostasis[3]. First, sestrins reduce
oxidative stress through either their intrinsic oxidoreductase activity or NRF2 (nuclear factor
erythroid derived 2 like 2)-regulated pathway [4,5]. Second, sestrins modulate glucose and
lipid metabolism through AMPK (AMP-activated protein kinase) andmTORC1 (mechanistic
target of rapamycin complex 1)[1]. Third, Sestrins regulate autophagy through activation of
AMPK and inhibition ofmTORC1 [2]. Deletion of a single SESN gene in fruit fly leads to tri-
glyceride accumulation in its body [2], equivalent to the liver in mammals. We have observed
that ethanol suppresses SESN3 gene expression and function in hepatocytes and mouse livers.
Over expression of SESN3 dramatically reduces the ethanol-induced hepatic steatosis [6]. In
addition, SESN2 and SESN3 have also been shown to regulate insulin sensitivity and glucose
homeostasis [7,8]. However, to date, the factors that control SESN3 expression are not well
studied. Understanding the complex regulatory mechanisms that regulate the SESN3 is of
importance, as new therapeutic targets for metabolic diseases might be discovered.

Transcription factors (TFs) are known to bind specifically to gene’s promoters at the regula-
tory positions (binding motifs) and thus contribute to its transcriptional regulation and cellular
function. Various in vitro [9], in vivo [10] and in silico [11] approaches have been developed
for identifying TF binding motifs. Typically, potential TFs bind to its high affinity binding sites
(represented as a weight matrix), however, little is known about the tissue specific binding pat-
tern of most TFs in higher eukaryotes [12].

In this study, we used the upstream regulatory regions of human SESN3 orthologs from a
diverse set of primates and rodents (with at least 85% sequence homology with human) to per-
form phylogenetic footprinting [13]. We employed the MEME-SUITE of tools [14,15] which
allowed the identification of high confidence conserved binding motifs and corresponding
position specific weight matrices. We also tested the feasibility (i.e. TF binding tendency) of
these binding motifs (BMo) in open chromatin region of human cell lines and mouse liver
using DNase Hypersensitive Sites (DHS) in SESN3 upstream region. Predicted binding motifs
were further analyzed by Tomtom (a motif comparison tool fromMEME-SUITE) to identify
motif specific potential transcription factors. Predicted TFs were integrated with documented
protein-protein interaction in BioGRID [16] to decipher the important regulators and the net-
work of interactors controlling the expression of the SESN3 gene.

Materials and Methods
Human-SESN3 orthologs and their upstream regulatory regions were extracted (FASTA
sequences) from ENSEMBL. These SESN3 sequences from human and its 10 orthologs (Pri-
mates and Rodents) were taken and executed using MEME-SUITE, an open source hub of bio-
informatics tools. Prediction of novel regulatory motifs was performed by using phylogenetic
footprinting, an in silico method coupled with downstream computational analysis. Based on
this, consensus sequences in upstream region were discovered by MEME analysis. These con-
sensus sequences were further analyzed using the Tomtom tool which enables the comparison
of predicted motifs with Position Weight Matrices (PWM) of TFs for overlap. Further, pro-
tein-protein interaction network was constructed between the potential TFs by utilizing the
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available physical interactions in BioGRID to delineate the important regulators and the net-
work of interactors controlling the expression of SESN3 gene.

Sestrin 3 transcripts and their expression profile
Human SESN3 gene is located on chromosome 11. We obtained DNA sequences for the
human SESN3 gene (Ensembl ID ENSG00000149212) from the ENSEMBL database. There are
5 transcripts reported for the human SESN3 gene (Table 1); of which 4 have been reported to
be protein coding. Expression profile of this gene was obtained from open source database–
GeneCards [17], for further examination.

Identification of human SESN3 orthologs and their upstream regulatory
regions for phylogenetic footprinting
Phylogenetic footprinting is one of the classical methods applied for DNA binding motif dis-
covery [13,18,19]. It involves the upstream regulatory sequence of a gene of interest across pos-
sible orthologs to search for highly conserved consensus DNA binding sites. We selected
orthologs of the human SESN3 gene from primates and rodents using Ensembl Compara gene
trees [20]. These dataset allows the identification of orthologous sequences across species with
high sequence resemblance as shown in S1 Table. Gene expression is controlled by various cis-
acting transcriptional regulatory factors by binding mostly in close proximity to the transcrip-
tion start sites (TSS) in the promoter regions of a gene [21]. Based on previous studies from
others [22,23] and our group, we found that most functional TF binding sites occur within the
5kb upstream region of the gene TSS (data not shown). So we focused our study on 5kb
upstream regions of the SESN3 gene for motif discovery. Upstream regulatory regions for
human and its 10 selected SESN3 orthologs were obtained from Ensembl database (S1 Table).

MEME analysis for discovering DNA binding motifs
DNA binding motif discovery using the in silico phylogenetic footprinting approach covered
regulatory regions in the promoters of orthologous genes from multiple species. This is under
the notion that regulatory elements would be conserved in the background of non-functional
sequences and hence could be discriminated as footprints contributing to regulatory control.
To facilitate the motif finding in these regions, we used the MEME-suite of tools [14, 15].
MEME is a tool for discovering motifs in a group of related DNA or protein sequences, which
detects the frequently occurring conserved sequence across a group of related DNA sequences,
using expectation maximization[24]. These motifs are typically represented as position-depen-
dent letter-probability matrices in logos which describe the probability of each possible letter at
each position in the pattern to incorporate the variation in the detected motif instances across
sequences. In this study, we used 5kb upstream sequences of human SESN3 and its 11 ortho-
logs compiled as a FASTA file and used as an input data for MEME to identify significantly
over-represented motifs (E-value< e-34). Here we limit the width of discovered binding motifs

Table 1. Transcripts of Human SESN3 gene reported in ENSEMBL database.

Name Transcript ID Length Protein Biotype

SESN3-001 ENST00000536441 9531 bp 492 aa (view) Protein coding

SESN3-003 ENST00000278499 1710 bp 353 aa (view) Protein coding

SESN3-002 ENST00000416495 1408 bp 321 aa (view) Protein coding

SESN3-004 ENST00000542176 607 bp 70 aa (view) Protein coding

SESN3-005 ENST00000537480 541 bp No protein product Processed transcript

doi:10.1371/journal.pone.0160228.t001
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in MEME analysis to reflect the widths of most established PWMs—which typically vary in
length between 4bp to 30bp [25–28].

Prediction of TFs associated with discovered motifs
Transcription Factors (TFs) are thought to bind specifically to their corresponding binding
motif (BMo)[18] and regulate the expression of a target gene. DNA binding motifs were repre-
sented as PWM (Position-Specific Weight Matrix) based logos. Nucleotide constituent of each
consensus motif has its own probability of occurrence within the site. Since PWMs for various
TFs have already been reported in JASPAR [25], UniPROBE [26], Jolma et al [27] and TRANS-
FAC [28] public databases, based on a comparison of the similarity between the reported
PWM of a TF to the footprinted PWM in the orthologous upstream regions, it is possible to
predict the TFs which are most likely to bind to these predicted binding sites. Tomtom [29] is a
tool in the MEME-suite which compares discovered DNAmotifs to known motifs of such
databases.

We used a set of 2201 DNA motifs ranging between 4bp and 30bp in length (average length
12.7) from TRANSFAC, 843 DNA motifs ranging between 7bp and 23bp in length (average
length 12.7) in Jolma et al and 979 DNA motifs ranging between 5bp and 30bp in length (aver-
age length 13.0) in JASPAR CORE and UniPROBE Mouse. Hence, we rationalized that a motif
length between 4bp to 30bp for the discovered motifs, would be able to capture most of these
recognition sequences in the SESN3 upstream regions.

PWMs of various discovered motifs were used as input file for Tomtom and compared with
already reported PWMs of TFs in the above described databases to identify the potential TFs
binding to the SESN3 upstream regions. Only the TF associations which are identified at
p� 1e-03 with E-value< 10 were considered as statistically significant for the 5kb upstream
regions.

Analysis of DNase I hypersensitive site in SESN3 upstream region
DNase I hypersensitive sites (DHS) are open chromatin region of DNA, sensitive to DNase I
cleavage. It is believed that, the occurrence of DHS, notably in the promoter region [30] is an
indicator of potential binding site for transcription factor. We extracted the available DHS data
in various human cell lines and mouse (14.5 days and 8 week) liver from ENCODE project
[31] and visualized them for upstream regions of SESN3 genes in UCSC genome browser
(http://genome.ucsc.edu/cgi-bin/hgFileUi?db=mm9&g=wgEncodeUwDnase). The images
generated from the browser were positioned according to the coordinate of the SESN3
upstream region of block diagram and studied for active BMo.

Experimental validation of potential transcription factors
Human HEK293 cells were transfected with plasmid DNAs carrying coding sequences for
control GFP (green fluorescent protein), human FOXO3 and SOX2 genes. The constructs also
contained FLAG tag sequence on the N-terminus. After 48 hours of transfection, cells were
processed for chromatin immunoprecipitation (ChIP) analysis for the predicted TF binding
sequences as previously described [32]. The sequences for the PCR primers are: FOXO3 ChIP
forward primer 5’-ACAAATCCTGGTACGCTGGA-3’, reverse primer 5’–CAGGACTGTGC
ATTATGACATCA– 3’; SOX2 ChIP forward primer 5’–CCAGTAGGCGATGCAAGTTA– 3’,
and reverse primer 5’–CTAGACGCCCGCAACCTG– 3’.
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CRISPR/Cas9 gene knockout
Human FOXO3 and SOX2 CRISPR/Cas9 single guide RNA (sgRNA) sequences were designed
using an online program at crispr.mit.edu (Dr. Feng Zhang lab) for gene knockout. The
selected two sgRNA sequences for the human FOXO3 and SOX2 genes are: 5’-CACTTCGAGC
GGAGAGAGCG-3’ (FOXO3 sgRNA1), 5’-TCCACTTCGAGCGGAGAGAG-3’ (FOXO3
sgRNA2), 5’-TGGGCCGCTTGACGCGGTCC-3’ (SOX2 sgRNA1), and 5’-ATGGGCCGCTT
GACGCGGTC-3’ (SOX2 sgRNA2). The DNA oligonucleotides were cloned into a lenti-
CRISPRv2 vector (a gift from Dr. Feng Zhang, Addgene plasmid #52961) as described previ-
ously [33,34]. To generate gene knockout stable cell lines, we transfected HEK293T cells with
control GFP, FOXO3, or SOX2 sgRNA plasmids. The transfected cells were selected using
puromycin (1 μg/ml) for 7 days, and then maintained in the culture medium containing
0.5 μg/ml puromycin.

DNA constructs preparation
The coding sequences for GFP, human FOXO3, and SOX2 genes were cloned into a pcDNA3
vector using PCR amplification and restriction digestion.

Cell culture and transfection
Human HEK293T and HepG2 cells were cultured in DMEM/high glucose medium containing
10% FBS. HEK293T cells were transfected with plasmid DNA using polyethylenimine and
HepG2 cells were transfected using TurboFect reagent (Thermo Fisher Scientific).

mRNA analysis
Total RNAs were isolated from cultured cells using TRI Reagent (Sigma). mRNA levels for
selected genes were analyzed by real-time PCR. Peptidylprolyl isomerase A (PPIA) was chosen
as an internal control gene. Primer sequences are listed as follows: human PPIA forward
primer: 5’- AGGTCCCAAAGACAGCAGAA-3’, human PPIA reverse primer: 5’-GAAGTCA
CCACCCTGACACA-3’, human SESN3 forward primer: 5’-GTACCAACTGCCGGAAAGTG-
3’, and human SESN3 reverse primer: 5’- CCACTGTGTTTGCTTGGACA.

Mapping protein interactions between the potential TFs
Eukaryotic TFs often regulate the expression of genes by forming protein complexes and sev-
eral examples have been documented in the literature including that of FOXOs interacting with
SMAD3 [35],HNF4a[36] etc to modulate the transcription of their target genes. We employed
the currently available manually curated set of protein-protein interactions for the human
genome available from the BioGRID database [37] to map the physical associations between
the predicted TFs from the Tomtom analysis for the 5kb upstream region. This not only
allowed the construction of a protein interaction network between the predicted TFs but
allowed the dissection of the major TFs based on their number of protein interactions in the
network.

Results and Discussion
SESN3 has similar pattern of expression (RNA seq based) across most of the body fluids like
blood, liver secretome, and multiple tissue types (S1 Fig, GeneCards[17]) indicating the consis-
tent and universal transcriptional regulation of this gene. However, little is known about the
factors and mechanisms controlling its expression. Our study attempts to identify the cis-
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regulatory binding sites controlling SESN3 and all possible regulatory proteins which may be
involved in regulating the expression of SESN3 gene at transcriptional level.

Identification of potential binding motifs by in silico phylogenetic
footprinting in the regulatory regions of SESN3 across primates and
rodents
Human SESN3 consists of multiple protein coding transcripts as outlined in Table 1 extracted
from ENSEMBL database. In Ensembl, a gene start refers to the earliest start co-ordinate of all
the transcripts associated with a given gene. Phylogenetic footprinting analysis facilitates the
search for regions of conserved chromosomal fragments where the likelihood of transcription
factor binding is high. These protein-binding sites, which are short fragments of DNA, often
range from 6–30 bp in length[18, 38–40]. We identified the set of binding sites and corre-
sponding TFs controlling the SESN3 gene by performing motif discovery based on phyloge-
netic alignments of orthologous sequences from a diverse set of primates and rodents using the
human SESN3 gene as a reference (see Materials and Methods, S1 Table). In silico phylogenetic
footprinting [18], was applied for identifying the best conserved motifs in those orthologous
regions [13]. This approach has its shortcoming as it may miss some of the binding motifs
which are not conserved in upstream region of SESN3. However, this approach has several
advantages because of the limited information currently available regarding the transcription
regulators controlling this gene. Further, this analysis also limits the false discovery of motifs as
well as associated TFs. Briefly, 5kb upstream sequences of SESN3 gene for human and its ortho-
logs (S1 Table) were analyzed by MEME, an expectation maximization-based motif-finding
algorithm, to identify the potential binding sites conserved across the species. We have used
the gene start as the reference to obtain the 5kb upstream. Based on the alignments, PWMs
representing each of the 20 most significant BMo enriched across the analyzed sequences were
identified. We observed that most of the established binding motif PWMs in publically avail-
able databases ranges in length between 4 bp to 30 bp (See Materials and Methods) therefore,
we believe that the discovered motifs in current study would be able to capture most of these
recognition sequences, including large co-complex TF binding sites or palindrome motifs, if
they are present in the SESN3 upstream. Motif logos[41] corresponding to each of these 20 sig-
nificantly conserved ones along with the number of occurrences of the motifs across the 11
sequences were shown in Fig 1. Consensus sequences representing these discovered motifs
were shown in S2 Table.

Distribution of binding motifs for SESN3 across species
Genes of many eukaryotes display a more complex architecture of associated regulatory ele-
ments, including cis-promoter elements with binding sites for basal transcription factors, and
distal /trans elements with host specific transcription factors binding sites [42]. Several elegant
studies on developmentally regulated [43] and immune-response genes [44,45] have revealed
an important role for combinatorial interactions between different transcription factors (TFs)
in establishing the complex sequential patterns of gene expression. Hence, increasing evidence
now suggests the importance of not only knowing the binding location of a eukaryotic TF [46]
but also the complex combinatorial interplay between them [47]. Therefore, we first mapped
the identified conserved novel motif sites across multiple species. These binding motifs were
quite different from each other; as indicated by the Pearson correlation coefficient values (S3
Table) obtained using MAST fromMEME-suite[15, 48]. Relative positions of the discovered
binding sites in the 5kb upstream regulatory sequences across the species, organized by phylo-
genetic distance along with the combined significance of motif co-occurrence, were shown as a
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block diagram (Fig 2A). The conservation of motifs was observed high in the region between -1
and -2.5 kb of the SESN3 gene promoter.

DNase I hypersensitive sites (DHSs) are DNase I enzyme sensitive regions of chromatin,
where chromatin has less condensed structure due to chromatin remodeling for facilitating

Fig 1. Identification of potential bindingmotifs by phylogenetic footprinting of 5 kb upstream regulatory regions of SESN3 gene. Twenty
phylogenetically conserved and statistically significant (indicated by e-value) novel motifs with the number of sites contributing to their identification
were shown for SESN3 5kb upstream. These motifs were displayed as sequence LOGOs representing position weight matrices of each possible
letter code occuring at particular position of motif and its height representing the probability of the letter at that position multiplied by the total
information content of the stack in bits.

doi:10.1371/journal.pone.0160228.g001
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transcriptional activation and other downstream events [49]. We used the DHS data available
for human cell lines and mouse liver (14.5 days and 8 weeks), generated from University of
Washington as part of the ENCODE project [50]. Our analysis strongly suggested several pre-
dicted motifs (Fig 2B and 2C) in 5 kb upstream region of the SESN3 genes to be active and
open for transcription factor binding, especially within 1 kb of the gene promoter.

Fig 2. Block diagram showing occurrence of conserved motifs. (A) Location of twenty motifs identified and their distribution in 5 kb upstream
sequences across human-SESN3 & its other primate/rodent orthologous species were shown in the block diagram. The combined best matches of
a sequence to a group of motifs were shown by combined p value. Sequence strand specified as “+” (input sequence was read from left to right)
and “-” (input sequence was read on its complementary strand from right to left) with respect to the occurrence of motifs. Coordinates of each motif
across species is shown as a sequence scale (from left to right, in blue) below the diagram. DNase I hypersensitive region was shown in 5kb
upstream region of SESN3 in (B) human cell lines and (C)mouse liver (8 week adult and 14.5 days embryo) using ENCODE project, represented
by UCSC browser visualization tool. An overlap of DHS signal was found and shown as dark band over respective motifs in block diagram. The two
coordinates on x-axis represents the 5kb upstream regions as base distance (in blue) and genic distance (with respect to gene start site, in red) of
SESN3 gene.

doi:10.1371/journal.pone.0160228.g002
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Prediction and validation of transcriptional regulatory apparatus
targeting discovered motifs of SESN3 upstream region
We downloaded the motif databases viz. JASPAR CORE 2014, TRANSFAC, UniPROBE
mouse and Jolma 2013 (See Materials and Methods) separately and then combined all together
to perform the motif comparison analysis using Tomtom with proper filtering criteria (p-
value� 1e-03 and E-value<10). All possible TFs predicted to bind to the discovered motifs
were catalogued and shown in S4 Table. High confidence set of TFs predicted to regulate the
expression of SESN3 via Tomtom [29] included FOXOs, SMADs, SOXs,HNF4A, and TCFs (see
S4 Table, Fig 3A–3D). We validated binding motifs which corresponded to high confidence
TFs overlapping with DHS signals viz. SOX2 and FOXO3 using ChIP-PCR approach in
HEK293 cells (See Materials and Methods). SOX2 and FOXO3 transcription factors were
found to exhibit significantly enriched binding to the predicted location in the human SESN3
promoter region compared to a negative control GFP (Green Fluorescent Protein) (Fig 3E and
3F). Thus, this validation confirms the active BMos discovered for FOXO3 and SOX2 in the
promoter region of the human SESN3 gene. To further verify the functional relevance of these
TFs in the regulation of the SESN3 gene, we also performed overexpression and knockout of
FOXO3 and SOX2 in human cell lines. We found that overexpression of FOXO3 or SOX2 could
significantly activate the SESN3 gene in human HepG2 hepatoma cells (Fig 3G), but they did
not significantly affect the SESN3 gene expression in human HEK293 cells (embryonic kidney
cell line) (S2 Fig), suggesting that there might be cell-type-specific effects. Nevertheless, knock-
out of either FOXO3 or SOX2 downregulated the SESN3 gene expression (Fig 3H).

Fig 3. Tomtom analysis results for conservedmotifs and experimental validation. (A-D) Transcription factors predicted for 20 consensus
sequences (as query motif) by Tomtom analysis. Selected set of DHS overlapped motif aligning with their TF’s PWM (top) and query motif (bottom)
with binding specificity mentioned by p-values. (E-F) Validation of FOXO3 and SOX2 binding to predicted BMo location in SESN3 upstream region
by ChIP analysis. (G)Overexpression of FOXO3 and SOX2 activated the SESN3 gene expression in human HepG2 hepatoma cells. (H) Knockout
of FOXO3 or SOX2 using CRISPR/Cas9 approach downregulated the SESN3 gene in human HEK293 cells. (* p<0.05).

doi:10.1371/journal.pone.0160228.g003

In Silico Phylogenetic Footprinting Analysis of the SESN3Gene Regulatory Sequences

PLOS ONE | DOI:10.1371/journal.pone.0160228 July 28, 2016 9 / 16



There are different isoforms of SESN3 as shown in Table 1. Therefore, it is possible to have
alternative regulatory elements in the first intron of the gene. In addition to the previous analy-
sis, we also performed insilico phylogenetic foot printing with 3 kb upstream and 2 kb instream
query sequence of the primates and rodents for motif discovery and potential TFs binding to
these new motifs. The new analysis might not produce the same set of motifs similar to the pre-
viously identified consensus sequences because the sequence search spaces are different, how-
ever we believe, motifs which overlap fully or partially with common DHS signals to the
previous analysis, should produce reproducible results. We identified a set of 20 overrepre-
sented consensus motifs (E-value< e-44) among which, motifs overlapping with the DHS sig-
nals (See S3 and S4 Figs), and their corresponding potential binding transcription factors are
documented in S5 Table. We observed that ~64% of the previously detected TFs (whose bind-
ing motifs were supported with DHS) were still detected in the new analysis including SOXs,
FOXOs, SMADs, TCFs, HAP1, LEF1, GATA1, POU3F4, POU5F1, EKLF and TFAP4. Hence,
inclusion of instream region increased the coverage of predicted TFs in our analysis corre-
sponding to the newly identified motifs. Additionally, we examined the length distribution of
TF sites overlapping with the width of discovered motifs. We observed that most TF binding
sites exhibited an overlap between 4–28 bp with the query motifs as shown in S5 Fig, suggesting
that employing a 6–30 bp motif width is an ideal threshold to capture most potential TFs likely
to bind to the upstream regions of SESN3.

Further, in order to prioritize these predicted TFs (S4 Table) and to know potential protein
complexes that might be responsible for regulation, we integrated the currently available
human protein interaction network from the BioGRID[16] to construct a network of physical
associations between TFs predicted to be binding to the SESN3 gene regulatory regions (see
Materials and Methods). This resulted in a network of 67 TFs with 125 associations among
them, with TFs like SMAD3,HDAC2, TCF3, SMAD2, CEBPA, SOX2, SMAD1 and TAL1 exhib-
iting high degree of associations (S6 Fig). Such physically interacting TF-TF network could
provide potential co-complex interactions contributing to the regulation of SESN3 gene. While
it is possible to argue that Tomtom algorithm we applied for motif comparison, might result in
false positives, increasing evidence from large-scale analysis suggests that most of the transcrip-
tion factors with similar binding sequences tend to regulate genes with similar biological func-
tions[27,51]. It indicates that several of the TFs with very similar binding affinities might be
competing to bind to the target sites to result in the final transcriptional outcome. Therefore, in
an attempt to identify a high confidence list of TFs, this network was further filtered to include
only the TFs which were predicted to bind the BMos with a high confidence (p<e-03) from
Tomtom analysis and their corresponding motifs overlapping with DHS signals thereby result-
ing in a subset of TF-TF interactions which are likely to control SESN3 promoter. The resulting
network of 30 nodes with 60 interactions is shown in Fig 4. We found that the hubs of this
TF-TF interaction network included SMAD3, TCF3, SMAD2,HDAC2, SOX2, TAL1 and
TCF12. FOXOs, which have been documented to regulate the SESN3 gene transcription[52]
were also found to interact with SMAD3, suggesting their interplay to combinatorially control
SESN3.

SOX2 contains highly conserved DNA binding domains known as HMG (High-mobility
group) box domains which facilitate the binding with DNA for transcriptional control [53].
Our study predicted its significant binding (p = 1.75e-05, E-value = 0.07) to motif 4. This TF
was found physically interacting with TCF3, POU5F1 (OCT-4), SOX6,HDAC2 and in addition
to that it is also interacting with TCF12, thus indirectly bridging with SMAD3- another major
hub of TF-TF interaction network (Fig 4).

Hepatocytes nuclear factor 4 alpha (HNF4A) belongs to theHNF4 family. It is known to
bind to DNA either as a homodimer or as a heterodimer with other transcription factors such
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as SMAD3 [54], [55]. This protein was predicted to be significantly binding to motif 10
(p = 1.66e-03, E-Value = 6.67) Protein-protein interaction network data suggests its assistive
role in regulating the SESN3 gene along with SMADs.

SMADs are signaling cascade associated proteins that act as transcriptional mediators of
multiple signaling pathways. For instance–they modulate the transcriptional activity of target
genes by transforming growth factor-beta-1[56]. They are reported to bind to CAGA
box [57,58] and in some cases to the reverse palindromic sequence ‘GTCTAGAC’ known as
SBE (Smad Binding Element) [59] in the upstream regions of target genes by co-complexing
with proteins like SP1[60], FOXOs [54,61],HNF4A [55] etc. Motif 4 identified in our analysis
was predicted (p = 9.34e-04, E-value = 3.76) to be bound by SMAD3 further supporting the
binding specificity of this TF to SESN3 regulatory regions. SMAD3 works as a master regulator
consistent with our observation that it forms a hub with most other high confident TFs as is
evident from our interaction network analysis.

Conclusions
This work is among the first efforts to identify transcription factor binding sites in the SESN3
gene promoter using an unbiased computational approach. We found high confidence set of
TFs correspond to these identified novel BMos and obtained hubs of TF-TF interaction net-
work that include SMADs, SOXs and TCFs. FOXOs, which have been documented to regulate
the SESN3 gene transcription[52] were also found to interact with SMAD3, suggesting their
interplay to combinatorially control SESN3. Some of them including FOXO3 and SOX2 have

Fig 4. Interaction network of high confidence transcription factors. Protein interaction network between
TFs constructed for high confident (p� 0.001, E-value < 10) transcription factors using BioGRID database
with TFs belongs to DHS signal overlapped BMo were shown.

doi:10.1371/journal.pone.0160228.g004
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also been experimentally validated for their binding affinity in identified BMos using
ChIP-PCR technique. Our findings can form a roadmap to further our understanding on the
regulation of the SESN3 gene.

Supporting Information
S1 Fig. Sestrin 3 is stress response protein, secreted in most of body fluid and liver secre-
tome as shown by mRNA expression pattern of the gene in reference expression data set i.e.
mRNA expression profile using genecards.org survey of diverse anatomic regions.
(PDF)

S2 Fig. Overexpression of FOXO3 and SOX2 activated the SESN3 gene expression in
HEK293 cells.
(PDF)

S3 Fig. Identification of potential binding motifs by phylogenetic footprinting of 3 kb
upstream and 2 kb instream regulatory regions of SESN3 gene.
(PDF)

S4 Fig. DNase I hypersensitive sites and block diagram showing the occurrence of con-
served motifs in human and mouse. DNase I hypersensitive region was shown in 3 kb
upstream and 2 kb instream sequences of SESN3 in (A) human cell lines and (B) mouse liver (8
week adult and 14.5 days embryo) using ENCODE project, represented by UCSC browser visu-
alization tool. An overlap of DHS signal was found and shown as dark band over respective
motifs in block diagram. The combined best matches of a sequence to a group of motifs were
shown by combined p value. Sequence strand specified as “+” (input sequence was read from
left to right) and “-” (input sequence was read on its complementary strand from right to left)
with respect to the occurrence of motifs. The two coordinates on x-axis represents the 3 kb
upstream and 2 kb instream regions as base distance (in blue) and genic distance (with respect
to gene start site, in red) of SESN3 gene.
(PDF)

S5 Fig. Length distribution of TF sites overlapping with the width of discovered motifs.
(PDF)

S6 Fig. Interaction network of predicted transcription factors. Protein interaction network
between TFs constructed for all possible predicted transcription factors using BioGRID data-
base with TFs belongs to DHS signaled BMo were shown in asterisk “�”.
(PDF)

S1 Table. This table enlists human-SESN3 in orthologous species (primates and rodents)
with its location (coordinates) and % query, target matching.
(XLSX)

S2 Table. Motifs identified in 5kb upstream region of SESN3 in occuring species was
shown. For each motif, significance, location from start (0 in block diagram) and sequence at
location for each species was documented.
(XLSX)

S3 Table. Correlation indices of motifs identified in analysis for 5 kb upstream (20 motifs)
were shown.
(XLSX)
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S4 Table. This table enlists TFs associated to 20 motifs identified in 5kb upstreams region
of SESN3 predicted by Tomtom analysis using Jolma et al, Jaspar & UniPROBE
Mouse_2014 and TRANSFAC databases (Motifs supported by DHS signal were color
coded; green in mouse and yellow in human).
(XLSX)

S5 Table. This table enlists TFs associated to DHS supported motifs identified in 3kb
upstream and 2 kb instreams regulatory region of SESN3 predicted by Tomtom analysis
using Jolma et al, Jaspar & UniPROBE Mouse_2014 and TRANSFAC databases (Motifs
supported by DHS signal were color coded; green in mouse, yellow in human and peach in
both).
(XLSX)
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