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Abstract: The health state of rotating machinery directly affects the overall performance of the
mechanical system. The monitoring of the operation condition is very important to reduce the
downtime and improve the production efficiency. This paper presents a novel rotating machinery
fault diagnosis method based on the improved multiscale amplitude-aware permutation entropy
(IMAAPE) and the multiclass relevance vector machine (mRVM) to provide the necessary information
for maintenance decisions. Once the fault occurs, the vibration amplitude and frequency of rotating
machinery obviously changes and therefore, the vibration signal contains a considerable amount
of fault information. In order to effectively extract the fault features from the vibration signals,
the intrinsic time-scale decomposition (ITD) was used to highlight the fault characteristics of
the vibration signal by extracting the optimum proper rotation (PR) component. Subsequently,
the IMAAPE was utilized to realize the fault feature extraction from the PR component. In the
IMAAPE algorithm, the coarse-graining procedures in the multi-scale analysis were improved and the
stability of fault feature extraction was promoted. The coarse-grained time series of vibration signals
at different time scales were firstly obtained, and the sensitivity of the amplitude-aware permutation
entropy (AAPE) to signal amplitude and frequency was adopted to realize the fault feature extraction
of coarse-grained time series. The multi-classifier based on the mRVM was established by the fault
feature set to identify the fault type and analyze the fault severity of rotating machinery. In order to
demonstrate the effectiveness and feasibility of the proposed method, the experimental datasets of
the rolling bearing and gearbox were used to verify the proposed fault diagnosis method respectively.
The experimental results show that the proposed method can be applied to the fault type identification
and the fault severity analysis of rotating machinery with high accuracy.

Keywords: rotating machinery; fault diagnosis; fault severity; intrinsic time-scale decomposition;
amplitude-aware permutation entropy; multiclass relevance vector machine

1. Introduction

Rotating machinery is one of the most common mechanical equipment, which plays an important
role in industrial applications. It generally operates under tough working environments, which can
eventually result in mechanical breakdown that lead to high maintenance costs, severe financial losses,
and safety concerns [1,2]. As rotating machinery is the most malfunctioning part of a mechanical
system, the fault diagnosis of rotating machinery has been a popular research topic in the industry.
At present, there are many different theoretical methods to solve the fault diagnosis of rotating
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machinery, including a vibration signal analysis, acoustic emission, thermal imaging and multi-sensor
fusion, etc [3]. In the condition monitoring and fault diagnosis technology of rotating machinery,
the fault diagnosis technology based on vibration signals is widely used because of the close correlation
between the vibration signal and mechanical structure [4,5].

The vibration signal is widely used in fault diagnosis of rotating machinery because it is easy to
collect and monitor online. For example, when there is a local fault in the running process of the rolling
bearing, each contact causes an instantaneous shock and stimulates the rolling bearing to conduct
high-frequency free vibration attenuation according to its inherent frequency. The instantaneous impact
caused by the failure has obvious periodicity, the impact frequency depends on the bearing speed,
and the impact amplitude depends on the bearing fault size. Therefore, the impact characteristics
caused by local damage should be extracted by signal analysis technology and then, fault identification
should be conducted by the artificial classifier.

As rotating machinery works in the industrial environment, its vibration signal often contains
the inherent vibration signal of rotating machinery, the fault impact signal and background noise.
The vibration signals collected by the accelerometers have the characteristics of non-linearity,
non-stationarity and impact [6]. Therefore, how to effectively extract fault signal characteristics
from complex vibration signals and accurately identify these fault features are the key problems in
the fault diagnosis of rotating machinery. Pattern recognition is one of the important methods to
realize the vibration signal analysis of rotating machinery. Many scholars have made achievements
in this field. Jiang et al. [7] decomposed the vibration signal by ensemble local characteristic-scale
decomposition (ELCD) and obtained a series of intrinsic scale components (ISCs). The principle ISCs
were selected and the permutation entropy (PE) values of these ISCs were calculated to construct the
feature vector. Finally, the fault type of the rolling bearing is identified by the relevance vector machine
(RVM) constructed by the feature vector set. Li et al. [8] proposed a rolling bearing fault diagnosis
method based on multiscale permutation entropy (MPE) and improved the support vector machine
based on the binary tree (ISVM-BT). Local mean decomposition (LMD) was utilized to decompose the
vibration signal of the rolling bearing into a set of product functions (PFs), and the MPE extracted the
fault features of the rolling bearing from PFs. The ISVM-BT established by a feature set effectively
identified the fault type automatically. Chen et al. [9] presented an integrated fault diagnosis method for
a gearbox using complementary ensemble empirical mode decomposition (CEEMD), sample entropy
(SampEn) and a probabilistic neural network (PNN). CEEMD decomposed the vibration signal of the
gearbox into a set of intrinsic mode functions (IMFs). The fault features were extracted by SampEn
from each IMF. Then, the PNN was used as the classifier to identify the fault type of the gearbox.

Due to the nonlinearity and non-stationarity of the vibration signals of rotating machinery
a time-frequency analysis method is often used to solve the problem of feature extraction of the
vibration signals of rotating machinery. The fast Fourier transform (FFT) is a classical time-frequency
analysis method, but it is only suitable for solving the problem of stationary signal analysis. The wavelet
transform (WT) is also a classical time-frequency analysis method that can preset the time and frequency
window of interest. However, the WT is not an adaptive signal decomposition method, and it requires
the kernel function and its parameters to be set in advance. The wavelet packet transform (WPT)
can select the frequency resolution and the WPT is more flexible than the WT. However, the WPT
is still not an adaptive time-frequency analysis method. The empirical mode decomposition (EMD)
is a self-adaptive time-frequency method that can adaptively decompose the vibration signal into
a set of intrinsic mode functions (IMFs) that contain the amplitude and frequency characteristics.
However, the EMD has the end effect and mode mixing problem in that the stability of the IMFs is
poor, which affects the subsequent feature extraction process. In order to solve the problems existing in
EMD, EEMD and a complete ensemble empirical mode decomposition (CEEMD) are proposed [6].

In recent years, due to the fact that fault information contained in the vibration signals can be
extracted more effectively at different time scales, a large number of scholars have applied a multiscale
entropy (MSE) algorithm and its variants to fault feature extraction of rotating machinery [10,11].
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In addition to the MSE algorithm [12], some scholars proposed many fault feature extraction methods
of the vibration signal based on the multiscale permutation entropy (MPE) [13–15] and multiscale
fuzzy entropy (MFE) [16,17]. However, the commonly used entropy theoretical methods still have
some limitations. The poor stability of the approximate entropy (ApEn) results leads to its excessive
dependence on the length of the time series. The calculation efficiency of the sample entropy (SampEn)
is low, which is not suitable for analyzing long time series. When calculating the PE value of the time
series, the PE algorithm does not consider the average amplitude of the time series. The different
signals with significantly different mean amplitudes may be counted in the same order. Moreover,
if there are elements with the same amplitude in the time series, the results calculated by the PE will be
random. At present, the performance of the fault feature extraction method based on entropy theory
needs to be improved. In order to solve the above problems, the amplitude-aware permutation entropy
(AAPE) was proposed by Azami and Escudero [18] to improve the classical PE. The AAPE is sensitive
to the changes in the amplitude, in addition to the frequency that can highlight the fault information
contained in the vibration signal more effectively than the PE. In the coarse-graining procedures of
the MSE and MPE, the length of the coarse-grained time series decreases with the increase of the
scale factor. Therefore, when the scale factor is large, the entropy value of the coarse-grained time
series is unstable. The literature [19] improved the coarse-graining procedure of MSE by making the
computation stable and reliable in the case of a large time scale through the sliding averaging process,
so as to solve the shortcomings of the traditional MSE.

After the fault features are extracted from the vibration signals of rotating machinery, a high
performance classifier is needed to identify the fault types and fault severity. Many artificial intelligence
techniques have been adopted to realize the fault diagnosis of rotating machinery, such as the
artificial neural network (ANN) [20], support vector machine (SVM) [21], random forest (RF) [22].
The structure of the ANN is usually set by experience and its recognition rate is related to the number
of training samples. Although the SVM can realize classification with high accuracy under the
dichotomist condition of small training samples, the SVM requires multiple dichotomers to realize
multiple classifications and further, the selection of the kernel function directly affects the classification
accuracy. It is difficult for the random forest classifier to obtain the most ideal parameters, and the
selection of parameters has a great impact on the recognition results. The relevance vector machine
(RVM) [7] is more sparse than the SVM, more suitable for online monitoring, and its generalization
ability is better than the SVM. However, like the SVM, the RVM is a binary classifier and cannot
directly implement multiple classifications. The multiclass relevance vector machine (mRVM) [23] is
an extended algorithm that can directly classify the input samples into multiple categories and output
the probabilities belonging to each category. The unique properties of the mRVM are suitable for the
multi-fault identification of rotating machinery fault diagnosis [6,24].

In view of the above problems in fault diagnosis of rotating machinery based on the pattern
recognition method, this paper presents a novel fault diagnosis method based on the improved
multiscale amplitude-aware permutation entropy (IMAAPE) and the mRVM for rotating machinery.
The main contributions of this paper are summarized as follows:

(1) As the AAPE is very sensitive to the amplitude change of the vibration signal, the vibration of
rotating machinery needs to be pre-processed before the feature extraction to minimize the interference
of external noise to the vibration signal. The intrinsic time-scale decomposition (ITD) was used to
decompose the vibration signal of rotating machinery into a group of proper rotation components
stably, among which the optimum PR component can highlight the main time-frequency characteristics
of the vibration signal so as to facilitate the subsequent fault feature extraction.

(2) The performance of the AAPE improved. A fault feature extraction method of rotating machinery
based on the IMAAPE is proposed for the first time. The IMAAPE improves the coarse-graining
procedure in a multiscale analysis and adopts the characteristics of the AAPE sensitive to the amplitude
and frequency changes of the vibration signal. The IMAAPE can calculate the AAPE values in different
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time scales and construct the feature vectors, which can effectively describe the fault features contained
in the vibration signals of rotating machinery.

(3) The mRVM multi-classifier is trained to realize fault identification and fault severity analysis
of rotating machinery. In this paper, two different realization methods of the mRVM and the effect of
parameter selection on the identification accuracy of rotating machinery fault types are discussed by
comparing experiments.

The organization of the rest of this paper is as follows. Section 2 introduces the theoretical basis
of the methodologies adopted in this paper. The proposed fault diagnosis method is described in
Section 3. Section 4 verifies the feasibility and effectiveness of the proposed fault diagnosis method by
rolling bearing experiments and gearbox experiments, respectively. Finally, conclusions are drawn in
Section 5.

2. Methodologies

2.1. Instrinsic Time-Scale Decomposition

The ITD is an algorithm for the efficient and precise time-frequency-energy (TFE) analysis
of signals. The ITD can decompose a complex time series into a series of proper rotation (PR)
components and accurately extract the intrinsic instantaneous amplitude, frequency information and
other morphological characteristics of the complex time series, which is suitable for the analysis of
non-stationary and nonlinear signals [25].

Let Xt be the complex time series to be analyzed and define L as the baseline extraction factor.
L can extract the baseline signal Lt = LXt from Xt, then Xt can be decomposed into:

Xt = LXt + (1−L)Xt = Lt + Ht (1)

where Lt is the baseline signal, and Ht is the PR component.
The main steps of the ITD algorithm are as follows:
Assuming that {τk, k = 1, 2, . . .} represents the local extrema of signal Xt, the default τ0 = 0. Lt and

Ht are defined in the interval [0, τk], and Xt is valid in the interval t ∈ [0, τk+2]. In the successive
extrema interval (τk, τk+1], the extracted baseline signal Lt is expressed as:

LXt = Lt = Lk +

(
Lk+1 − Lk

Xk+1 −Xk

)
(Xt −Xk), t ∈ (τk, τk+1] (2)

in which:

Lk+1 = α

[
Xk +

(
τk+1 − τk

τk+2 − τk

)
(Xk+2 −Xk)

]
+ (1− α)Xk+1 (3)

where α is a linear scaling factor used to adjust the amplitude of the extracted PR component,
α ∈ [0, 1] [25].

According to Equation (2) and Equation (3), the PR component Ht can be expressed as:

HXt ≡ (1−L)Xt = Ht = Xt − Lt (4)

whereH is proper rotation extraction operator.
The baseline signal Lt can be taken as the input signal of the next decomposition and the above

steps can be repeated to obtain a series of PR components. The termination condition of decomposition
is that the baseline signal Lt becomes monotonous or less than a certain preset value.

After the ITD, the time series Xt is decomposed into a series of PR components and a monotone
trend component. The kurtosis value of the signal can effectively describe the pulse characteristic of the
signal. The higher the kurtosis value, the richer the impact features contained in the signal. Therefore,
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the PR component with the maximum kurtosis value is defined as the optimum PR component and its
calculation process is expressed as follows:

Ki =
1
n

n∑
k=1

PR4
ik (5)

Ui =
Ki

m∑
i=1

Ki

(6)

where Ki represents the kurtosis value of the ith PR component and n represents the length of the
time series. Ui is the normalized kurtosis value of the ith PR component and m is the number of PR
components. The optimum proper rotation component selects the PR component corresponding to the
maximum value of Ui.

2.2. Multiscale Entropy

The entropy analysis of the time series from a single scale may lose some important information
of the original signal. The multiscale entropy (MSE) was proposed by Costa M. to represent the
complexity of a signal. The MSE relies on the computation of the sample entropy over a range of scales
to extract the characteristic information of the complex signal in different time scales [26]. The MSE
algorithm is composed of two steps:

(1) The coarse-graining procedure derives a set of time series representing the system dynamics
on different time scales. The coarse-graining procedure for scale i is obtained by averaging the samples
of the time series inside the consecutive but non overlapping windows of length i. For a monovariate
discrete signal of {Xi} = {x1, x2, . . . , xN}, the coarse-grained time series can be computed as:

yτj =
1
τ

jτ∑
i=( j−1)τ+1

xi, 1 ≤ j ≤
N
τ

(7)

where yτj represents the new-time series obtained after the coarse-graining procedure when the scale
factor is τ. The length of the coarse-grained time series {yτ} is N/τ.

(2) Then, the sample entropy of each coarse-grained time series is calculated and n sample
entropy values of different time scales are obtained to describe the signal characteristics of the original
time series.

2.3. Amplitude-Aware Permutation Entropy

Bandt put forward the concept of basic permutation entropy in 2002 [27]. At present, the PE is
widely used in the analysis of complex time series signals to measure the complexity of a nonlinear
and non-stationary signal. The calculation process of the PE is as follows:

Assume the given time series x = {x1, x2, . . . , xN} with length N, and for each time
point t, embed the signal x in a d-dimensional space to obtain the reconstruction vectors
Xd,l

t = {xt, xt+l, . . . , xt+(d−2)l, xt+(d−1)l}, t = 1, 2, . . . , N − (d− 1)l, where d and l denote the embedding

dimension and the time delay, respectively. Each vector Xd,l
t is arranged in an increasing order as

{xt+( j1−1)l, xt+( j2−1)l, . . . , xt+( jd−1−2)l, xt+( jd−1)l}, where j∗ is the index of the element in the reconstruction
vector. Therefore, when the embedding dimension is d, there are d! potential ordinal pattern and the
ith permutation is called as πi. For each πi, p(πi) represents the occurrence probability as follows:

p(πi) =
f (πi)

N − d + 1
(8)
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where f (πi) is the function that counts the number of occurrences of πi. Whenever the inner elements
of Xd,l

t are arranged in order of πi, f (πi) increases by 1. The definition of the PE is as follows:

PE(x, d, l) = −
πi=d!∑
πi=1

p(πi) ln p(πi) (9)

However, there are two main problems in describing the complex time series by the PE. First,
the traditional PE only considers the ordinal structure of a time series, but ignores the amplitude
information of the corresponding elements in the time series. Second, the effect of the elements with
equal amplitude on the PE value in the time series is not clearly explained. In view of these, Azami and
Escudero proposed the amplitude-aware permutation entropy (AAPE) to improve the sensitivity of
the PE to the amplitude and frequency of the time series. The flow chart of the AAPE algorithm is
shown in Figure 1 [18].
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Figure 1. The flow chart of the amplitude-aware permutation entropy (AAPE) algorithm. Figure 1. The flow chart of the amplitude-aware permutation entropy (AAPE) algorithm.



Sensors 2019, 19, 4542 7 of 26

Assuming that the initial value of p(πd,l
i ) is 0, for the time series Xd,l

t , when t gradually increases

from 1 to N − d + 1, p(πd,l
i ) should be updated whenever πd,l

i appears.

p(πd,l
i ) = p(πd,l

i ) +

A
d

d∑
k=1

∣∣∣xt+(k−1)l

∣∣∣+ 1−A
d− 1

d∑
k=2

∣∣∣xt+(k−1)l − xt+(k−2)l

∣∣∣ (10)

where A ∈ [0, 1] is the adjustment coefficient to adjust the weight of the signal amplitude mean and the
deviation between the amplitudes. Therefore, the probability of p(πd,l

i ) appearing in the whole time

series is πd,l
i .

p(πd,l
i )

N−d+1∑
t=1

(
A
d

d∑
k=1

∣∣∣xt+(k−1)l

∣∣∣+ 1−A
d−1

d∑
k=2

∣∣∣xt+(k−1)l − xt+(k−2)l

∣∣∣) (11)

The AAPE calculation of the time series can be expressed as follows:

AAPE(d, l, n) = −
πk=d!∑
πk=1

p(πk) ln p(πk) (12)

2.4. Multiclass Relevance Vector Machine

The traditional RVM is a binary classifier which cannot directly solve the multi-classification
problem. The multiclass relevance vector machine (mRVM) effectively solves the multi-classification
application problem of the traditional RVM. The basic principle of the mRVM is described below.

The input training data sample set is denoted as T = {xi, ti}
N
i=1, where xi ∈ RD is D dimensional

input vector and t ∈ {1, 2, · · · , C} is the corresponding category tag. The kernel function is set as
K ∈ RN×N, the auxiliary variable Y ∈ RC×N is introduced as the target of weight parameter wTK,
and obtain:

ycn|wc, kn ∼ Nycn(wc
Tkn, 1) (13)

The continuous nature of Y allows, not only multiple class discrimination by the multinomial
probit link tn = i if yni > ynj ∀ j , i, but also a probabilistic output for class membership via the
multinomial probit likelihood function,

P(tn = i |w , kn) = εp(u)


∏
j,i

Φ(u + (wi −w j)
Tkn)

 (14)

where ε is the expectation of the standard normal distribution p(u) ∼ N(0, 1) and Φ is the Gaussian
cumulative distribution function.

In order to ensure the sparsity of the mRVM, similar to the RVM, a normal prior distribution with
mean value of 0 and variance of α−1

nc is introduced for weight parameter w. αnc belongs to the prior
parameter matrix A ∈ RN×C and obeys the Gamma distribution of parameters τ, υ. τ, υ(< 10−5) can
guarantee the sparsity of mRVM.

P(w |Y ) ∝ P(Y |w )P(w |A ) ∝
C∏

c=1

N
(
(KKT + Ac)

−1
KyT

c , (KKT + Ac)
)−1

(15)
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The regressors w closed-form posterior can be derived based on Figure 2. In Equation (15), Ac is
a diagonal matrix derived from the c column of A which expresses the scales αic across samples. Then,
through the maximum posterior probability estimation, the equation can be obtained as:

ŵ = argmax
w

P(w |Y , A, K) (16)
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When category i is given, the update method based on weight parameters is as follows:

ŵc = (KKT + Ac)
−1

KyT
c (17)

For a certain category, the posterior expectation of auxiliary variables is:

ỹin = ŵT
i kn − (

∑
j,i

ỹin−ŵi
Tkn) (18)

For ∀c , i,

ỹcn ← ŵT
c kn −

εp(u){Nu(ŵT
c kn − ŵT

i kn, 1)Φn,i,c
u }

εp(u){Φ(u + ŵT
i kn − ŵT

c kn)Φ
n,i,c
u }

(19)

and for the ith class:

ỹin ← ŵT
i kn −

∑
j,i

ỹ jn − ŵT
j kn

 (20)

where the “tilde” symbol above y denotes the expected value and Φ is a normalized cumulative
distribution function, Φn,i,c

u =
∏

j,i,c Φ(u + ŵT
i kn − ŵT

j kn).
The posterior probability distribution of the prior parameters of the weight vector is:

P(A |w ) ∝ P(w |A )P(A|τ , υ) ∝
C∏

c=1

N∏
n=1

G(τ+
1
2

,
w2

nc + 2υ
2

) (21)

Psorakis proposed two training methods of the mRVM in the literature [23] and the difference
between them lies in the different nuclear operation modes at the training stage. The mRVM1 follows the
construction process, starting with an empty sample set, gradually adding samples according to their
contribution to the method, or deleting samples with a low contribution to the method. The mRVM1

has two convergence principles: conv1 and conv2. The mRVM1_conv1 follows the principle described
by [28]. The mRVM1_conv2 adds the limit of the minimum number of iterations to the mRVM1_conv1.
The mRVM2 follows a top-down process, first loading the entire training sample set and then removing
the unnecessary samples during the training process. The mRVM2 has two convergence principles:
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convA and convN. For the mRVM2_convA principle,
∣∣∣log A(k)

− log A(k−1)
∣∣∣ < ς indicates the iterative

convergence. For the mRVM2_convN, the number of iterations is limited to λNtrain.

3. The Proposed Fault Diagnosis Method

The main process of the proposed fault diagnosis method of rotating machinery includes signal
preprocessing, fault feature extraction and fault identification. The principle of the fault diagnosis
method proposed in this paper is introduced below.

3.1. Signal Preprocessing

Due to the fault of rotating machinery, the vibration signal has impact characteristics and the
impact amplitudes are obviously different with different fault severity. In order to reduce the influence
of external interference on the vibration signals and highlight the fault features of the vibration signals,
it is necessary to preprocess the vibration signals before the feature extraction.

Although different from the time-frequency analysis method such as the EMD, EEMD and LMD,
the ITD is used to highlight the major amplitude variations in the vibration signals. The ITD algorithm
is adopted to decompose the vibration signal into a sum of proper rotation components, for which
instantaneous frequency and amplitude, as well as a monotonic trend, are well defined. The ITD
can effectively suppress the mode mixing and end effect. The optimum proper rotation component
is selected for further fault feature extraction because it contains the most obvious fault features.
The calculation process of signal preprocessing based on the ITD can be referred to Section 2.1.

3.2. Feature Extraction

In order to effectively extract fault features of the vibration signals, an improved multi-scale
amplitude-aware permutation entropy (IMAAPE) algorithm is proposed in this paper. This method
improves the coarse-graining procedures in a multi-scale analysis and improves the stability of the
fault feature extraction. In the classical MSE algorithm, when the scale factor τ is high, the number of
elements in the coarse-grained time series decreases, which leads to instability of the entropy measure.
In order to solve the problem of shortening the length of the time series after the MSE coarse-graining
procedure, relevant scholars have improved the coarse-graining procedure [19].

Supposing that the time series to be analyzed is {x1, x2, . . . , xN}, a set of coarse-grained
time series z(τ)i = {y(τ)i,1 , y(τ)i,2 , · · ·} is generated by the improved coarse-graining procedure where

y(τ)i, j =

∑τ−1
f=0 x f+i+τ(i−1)

τ , τ = 1, 2, . . . , n. The improved coarse-graining procedures for scale factor τ = 2
and τ = 3 are shown in Figure 3.

For each scale factor τ and embedded dimension d, the AAPE value of each time series in
z(τ)i

∣∣∣∣(i = 1, 2, · · · , τ) is calculated respectively, and its average value is defined as IMAAPE,

IMAAPE(x, τ, d) =
1
τ

τ∑
i=1

AAPE(z(τ)i ) (22)
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3.3. Fault Identification

The high-performance multi-classifier can realize the fault type identification and further, a fault
severity analysis of rotating machinery. The mRVM is adopted to analyze and identify the fault features
of rotating machinery in this paper. After the feature extraction of the vibration signal samples with
different fault types and fault severity by IMAAPE, a fault feature set is formed to model the mRVM
classifier. The established mRVM classifier can identify the fault type and analyze the fault severity of
rotating machinery by extracting the IMAAPE fault feature from the vibration signals.

3.4. Fault Diagnosis Procedure

The fault diagnosis procedure of rotating machinery proposed in this paper is shown in Figure 4.
The whole procedure of the fault diagnosis method consists of two parts: the training part and testing
part. In the training process, the vibration signals of rotating machinery under different fault states are
collected according to a fixed sampling frequency to form the vibration signal sample set. The ITD is
used to decompose the vibration signal into a set of PR components and the optimum PR component
is selected to highlight the fault characteristics of rotating machinery. Then, the IMAAPE algorithm
proposed in this paper is used to extract the features of the optimum PR component and construct the
feature vector to accurately describe the fault type and fault severity. The fault feature vector set is
constructed by all IMAAPE feature vectors that are extracted from the vibration signals in the vibration
signal sample set. The mRVM multiple classifier is established by the fault feature vector set. In the
testing process, the vibration signals of rotating machinery are collected by vibration accelerometers in
real time. The fault features contained in the vibration signals are effectively extracted by the feature
extraction method based on the IMAAPE proposed in this paper. Finally, the fault type and fault
severity of rotating machinery are estimated by the mRVM classifier.
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4. Experiment and Analysis

In order to verify the feasibility and effectiveness of the fault diagnosis method of rotating
machinery proposed in this paper, the rolling bearing and gearbox are taken as examples to carry
out the experiments and analysis. The rolling bearing experiment adopts the famous public data set
provided by Case Western Reserve University Bearing Data Center [29]. The gearbox experiment
is carried out at the QPZZ-II vibration analysis and fault diagnosis test platform system of rotating
machinery manufactured by Jiangsu Qianpeng Diagnosis Engineering Co., Ltd. (Zhenjiang, China) [30].

4.1. Fault Diagnosis Experiment of Rolling Bearing

4.1.1. Experimental Platform and Data Set

The experimental platform designed by Case Western Reserve University Bearing Data Center
is shown in Figure 5. The vibration data was collected using accelerometers, which were attached
to the housing with magnetic bases. The accelerometers were placed at the 12 o’clock position at
both the drive end and fan end of the motor housing. During some experiments, an accelerometer
was attached to the motor supporting base plate as well. The vibration signals were collected using
a 16 channel DAT recorder. In this paper, normal (Norm), inner race (IR) fault, outer race (OR) fault
and ball elements (BE) fault are used for the experiments. The experimental sample description and
experimental sample distribution under different load conditions of the rolling bearing are shown in
Tables 1 and 2, respectively. The vibration signal waveforms of the rolling bearing in different fault
types with different fault severity at load 0 hp (1 hp = 746 w) are shown in Figure 6. As shown in
Figure 6, the amplitude and frequency of the vibration signals of the rolling bearing under different
fault states and fault severity are different.
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Figure 5. The experimental platform of rolling bearing from Bearing Data Center of Case Western
Reserve University.

Table 1. Experimental sample description of the rolling bearing.

Fault Type Labels Fault Diameter
(mils)

Training Sample
Number

Testing Sample
Number

Normal Norm 0 10 40

Inner race fault
IR07 7 10 40
IR14 14 10 40
IR21 21 10 40

Outer race fault
OR07 7 10 40
OR14 14 10 40
OR21 21 10 40

Ball elements fault
BE07 7 10 40
BE14 14 10 40
BE21 21 10 40

Table 2. Experimental sample distribution under different load conditions of the rolling bearing.

Labels
Fault

Severity
Fault Diameter

(mils)
Load (hp)

0 1 2 3

Norm — 0 X1 X X X
IR07 Minor 7 X X X X
IR14 Medium 14 X X X X
IR21 Serious 21 X X X X
OR07 Minor 7 X X X X
OR14 Medium 14 X X X X
OR21 Serious 21 X X X X
BE07 Minor 7 X X X X
BE14 Medium 14 X X X X
BE21 Serious 21 X X X X

1 “X” represents the experimental sample of rolling bearing under current load.
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4.1.2. Fault Feature Extraction

A vibration signal waveform of the rolling bearing with ball elements fault under the fault
diameter of 7 mils with the load 0 hp is shown in Figure 7. The vibration signal is decomposed by the
ITD and the ITD decomposition results (PR components) are shown in Figure 8. The PR component
with the largest amplitude is the optimum PR component as shown in Figure 8. The optimum PR
component highlights the frequency and amplitude characteristics of the ball elements fault.
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Figure 9 shows the IMAAPE feature vectors for different fault types under the fault diameter of
7 mils with load 0 hp. Figure 10 shows the IMAAPE feature vectors for different fault types under the
fault diameter of 7 mils with the load 0 hp. The IMAAPE can highlight the fault characteristics under
different scale factors. It can be seen that the feature vectors of different fault types with different fault
severity of the rolling bearings have certain differences. It is the difference of the feature vectors in
different fault states that makes it possible to identify the fault types and analyze the fault severity.
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The three dimensions of the IMAAPE feature vectors for different fault types under different fault
diameters with load 0 hp is shown in Figure 11. It can be seen from the Figure 11 that the IMAAPE
fault feature extraction method can make feature vectors extracted under different fault types have
good clustering characteristics under different fault diameter conditions. Figure 12 shows the two
dimensions of the IMAAPE feature vectors for different fault types under different fault diameters
with the load 0 hp. It can be seen from Figure 12 that, although the fault features have different fault
severity, the IMAAPE feature extraction method can also have good separability. The IMAAPE fault
feature extraction method can provide an effective means for the fault severity analysis of the rolling
bearings. The between-class distance and the within-class distance of the different rolling bearing fault
feature extraction methods are shown in Tables 3 and 4, respectively. The ratio of the between-class
distance to the within-class distance is shown in Table 5. To some extent, the between-class distance
and the within-class distance can represent the clustering effect of the feature extraction method.
Compared with other feature extraction methods, the fault features extracted by the IMAAPE can have
a relatively larger between-class distance and a smaller within-class distance. Although the ratio of the
between-class distance to the within-class distance of the IMAAPE is not the best in these methods,
its comprehensive performance is the best. Therefore, the fault features extracted by the IMAAPE have
good clustering characteristics. The time required by the different feature extraction methods is shown



Sensors 2019, 19, 4542 15 of 26

in Table 6. It can be seen from Table 6 that the IMAAPE fault feature extraction algorithm proposed in
this paper has higher computational efficiency.
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Table 3. The between-class distance of different rolling bearing fault feature extraction methods.

Between-Class Distance IMAAPE IMPE RCMPE IMSE IMFE RCMSE

BE-IR 1.373 1.011 1.008 0.933 0.777 0.477
BE-Norm 1.115 1.129 1.159 1.821 5.093 5.693

BE-OR 1.012 0.536 0.534 3.334 2.425 2.293
IR-Norm 1.131 1.111 1.132 1.550 4.982 5.778

IR-OR 1.407 0.808 0.804 3.155 2.320 2.374
Norm-OR 1.385 1.117 1.141 2.554 6.745 7.495

Table 4. The within-class distance of different rolling bearing fault feature extraction methods.

Within-Class Distance IMAAPE IMPE RCMPE IMSE IMFE RCMSE

BE 0.183 0.189 0.306 1.087 0.269 0.252
IR 0.187 0.189 0.213 0.944 0.219 0.156

Norm 0.311 0.356 0.450 1.044 0.561 1.014
OR 0.135 0.176 0.233 0.691 0.280 0.105

Table 5. The ratio of the between-class distance to the within-class distance.

Failure States IMAAPE IMPE RCMPE IMSE IMFE RCMSE

BE 6.375 4.720 2.942 1.867 10.279 11.194
IR 6.971 5.168 4.607 1.991 12.297 18.438

Norm 3.892 3.143 2.542 1.892 9.994 6.235
OR 9.393 4.661 3.546 4.362 13.679 38.610

Table 6. Time required by different feature extraction methods.

Feature Extraction Method IMAAPE IMPE RCMPE IMSE IMFE RCMSE

Time (ms) 0.39 0.57 1.11 0.42 17.30 0.40

4.1.3. Fault Identification

In order to illustrate the fault identification accuracy of the fault diagnosis method based on
the IMAAPE and the mRVM proposed in this paper, the samples under different loads were used
to verify the effectiveness of the proposed method. The selection of the experimental samples is
shown in Tables 1 and 2. The experimental results of fault identification accuracy of the different
classifiers with different loads are as shown in Tables 7–10. The fault feature extraction method based
on the IMAAPE combined with different classifiers has high fault identification accuracy. Moreover,
the experimental results show that the identification accuracy of the mRVM1_conv1 is higher than
other classification methods, and at the same time, this method has reasonable operation efficiency.
Therefore, the mRVM1_conv1 was used as the multiple classifier of the rolling bearing fault diagnosis
method in this paper.

Table 7. Fault identification accuracy of different classifiers with the load 0 hp.

Classifier Type Average Time (ms)
Identification Accuracy (%)

Maximum Minimum Average

mRVM1_conv1 0.3287 100 99.25 99.925
mRVM1_conv2 0.3298 100 97.00 99.842
mRVM2_convA 0.4465 99.75 97.50 99.05
mRVM2_convN 9.1430 100 96.75 98.89

OAO-SVM 0.0054 89.00 89.75 89.25
OVA-SVM 0.0241 89.50 89.75 89.53

Random Forest 3.0870 89.25 88.75 88.78
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Table 8. Fault identification accuracy of different classifiers with the load 1 hp.

Classifier Type Average Time (ms)
Identification Accuracy (%)

Maximum Minimum Average

mRVM1_conv1 0.2801 100 100 100
mRVM1_conv2 0.3174 100 100 100
mRVM2_convA 0.3584 100 98.99 98.73
mRVM2_convN 10.3659 100 98.74 98.52

OAO-SVM 0.0039 95.00 88.94 92.76
OVA-SVM 0.0241 95.98 93.72 95.18

Random Forest 2.9706 99.00 97.75 98.42

Table 9. Fault identification accuracy of different classifiers with the load 2 hp.

Classifier Type Average Time (ms)
Identification Accuracy (%)

Maximum Minimum Average

mRVM1_conv1 0.3107 100 100 100
mRVM1_conv2 0.2809 100 100 100
mRVM2_convA 0.3584 100 100 100
mRVM2_convN 11.4355 100 100 100

OAO-SVM 0.0039 98.75 87.25 93.00
OVA-SVM 0.0241 99.25 83.25 91.54

Random Forest 2.9706 99.50 99.25 99.40

Table 10. The fault identification accuracy of different classifiers with the load 3 hp.

Classifier Type Average Time (ms)
Identification Accuracy (%)

Maximum Minimum Average

mRVM1_conv1 0.2855 100 100 100
mRVM1_conv2 0.2662 100 100 100
mRVM2_convA 0.3584 99.50 98.50 99.30
mRVM2_convN 11.4355 100 98.75 99.62

OAO-SVM 0.0052 89.72 84.46 86.81
OVA-SVM 0.0222 99.25 83.25 91.54

Random Forest 2.8600 99.75 98.99 99.30

The fault identification accuracy of mRVM1_conv1 under different fault severity with the load
0 hp is shown in Table 11. It can be seen that the fault diagnosis method proposed in this paper
can effectively identify the different fault severity of the rolling bearing. Further, the identification
accuracy reaches 99.25%. As the selection of nuclear parameters has a great impact on the identification
accuracy of the mRVM, this paper compares the selection of nuclear parameters of the mRVM and
the experimental results are shown in Table 12. It can be seen that when the nuclear parameter is 8.5,
the mRVM multi-classifier has the highest fault identification accuracy for the rolling bearing faults
with different fault severity.
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Table 11. Fault identification accuracy of the mRVM1_conv1 under different fault severity with the load 0 hp (%).

Testing Fault Severity
Testing Results

BE07 BE14 BE21 IR07 IR14 IR21 Norm OR07 OR14 OR21

BE07 100
BE14 100
BE21 100
IR07 99.25 0.75
IR14 100
IR21 100

Norm 100
OR07 100
OR14 100
OR21 100

Table 12. The influence of nuclear parameter selection of the mRVM on fault identification accuracy of the rolling bearing (%).

Testing Fault
Severity

Nuclear Parameter Value

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

BE07 76.25 84.25 91.0 92.25 90.5 93.25 95.5 98.75 100 99.25 93.0 100 100 96.75 100 100 99.50 100
BE14 75.25 87.5 100 98.3 100 93.75 97.0 96.25 100 100 100 99.75 100 100 100 100 99.75 96.50
BE21 59.0 84.5 86.25 92.75 98.75 96.5 99.5 100 99.75 100 99.75 100 100 100 100 100 100 100
OR07 77.0 84.5 88.75 91.75 92.75 98.25 100 99.5 100 100 99.75 100 100 100 100 100 100 100
OR14 75.25 76.0 86.75 100 100 94.0 95.5 97.75 100 100 100 100 100 100 100 95.25 100 100
OR21 76.50 82.0 86.25 84.75 100 97.0 100 100 100 100 100 99.75 99.75 100 100 100 100 97.0
IR07 75.25 84.25 87.0 91.5 92.25 100 94.25 98.25 100 100 100 100 100 100 99.25 95.25 100 100
IR14 76.50 82.75 90.0 89.25 88.5 93.75 96.75 99.75 99.25 100 100 100 100 100 100 100 100 100
IR21 59.0 84.5 86.25 92.75 98.0 96.0 99.25 97.75 98.75 99.0 97.5 100 100 100 100 100 100 97.0

Norm 75.0 84.75 93.25 100 94.25 100 90.75 97.0 100 99.0 100 100 100 100 100 100 100 100
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In this paper, the effectiveness of the different fault extraction methods combined with the mRVM
classifier for the rolling bearing were compared. The experimental results are shown in Table 13.
The fault diagnosis method proposed in this paper has the highest fault identification accuracy up to
99.925%.

Table 13. Rolling bearing fault identification accuracy of different fault extraction methods combined
with the mRVM.

Feature Extraction Method Fault Identification Accuracy (%)

IMAAPE 99.925
IMFE 96.25
IMPE 96.0

RCMSE 92.25
IMSE 84.25

RCMPE 97.5

4.2. Fault Diagnosis Experiment of Gearbox

4.2.1. Experimental Platform and Data

The experimental platform QPZZ-II was manufactured by Jiangsu Qingpeng Diagnosis
Engineering Co., Ltd. A picture of QPZZ-II is shown in Figure 13. The vibration signals were
collected by accelerometers. In the experiments, five working states were considered including the
normal condition, gear pitting fault (pitting), gear tooth breaking (tooth breaking), pinion wear fault
(wearing) and gear pitting fault coupling with pinion wear fault (pitting and wearing). The experimental
sample description of the gearbox is shown in Table 14. The acquisition equipment is QPZZ-II produced
by the Jiangsu Qianpeng Diagnosis Engineering Co. Ltd. and the sampling frequency is 5.12 kHz.
There are 53,248 data points for each health condition. The collected data was divided into several
non-overlapping samples. Each sample contained 1024 points.
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Table 14. Experimental sample description of the gearbox.

Fault Type Labels Training Sample Number Testing Sample Number

Normal 1 10 40
Wearing 2 10 40

Tooth breaking 3 10 40
Pitting 4 10 40

Pitting & wearing 5 10 40
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The vibration signal waveforms of the gearbox in different fault conditions are shown in Figure 14.
As can be seen from the figure, the vibration signals of the gearbox under different fault states
have differences in amplitude and frequency. This can provide more effective help for the pattern
recognition method.
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4.2.2. Fault Feature Extraction

The vibration signal is decomposed by the ITD and the ITD decomposition results (PR components)
are shown in Figure 15. The optimum PR component highlights the frequency and amplitude
characteristics of the gear pitting fault.
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Figure 15. The ITD decomposition results of the vibration signal with the gear pitting fault.

Figure 16 shows the IMAAPE feature vectors for different fault types of the gearbox. The IMAAPE
can highlight the fault characteristics of the gearbox under different scale factors. The three dimensions
of the IMAAPE feature vectors for different fault types of the gearbox are shown in Figure 17. It can be
seen from the figure that the IMAAPE fault feature extraction algorithm can effectively describe the
fault features and the feature vectors have good clustering characteristics.
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4.2.3. Fault Identification

As shown in Tables 15–18, the selection of nuclear parameters of different mRVM implementations
can make the fault identification accuracy of the gearbox up to 100%. In order to evaluate the
effectiveness of the gearbox fault diagnosis method proposed in this paper, fault diagnosis accuracy
comparison experiments were carried out. The experimental results show that the fault identification
accuracy of the IMAAPE and the mRVM based fault diagnosis methods reach 100% in Table 19.
Compared with other fault feature extraction methods, the IMAAPE has obvious advantages in fault
identification accuracy. Therefore, the proposed fault diagnosis method proposed in this is suitable for
gearbox fault diagnosis and has high identification accuracy.
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Table 15. The influence of nuclear parameter selection of the mRVM1_conv1 on fault identification accuracy of the rolling bearing (%).

Testing Fault Severity
Nuclear Parameter Value

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

BE07 92.0 100 98.5 100 99.5 100 100 100 100 100 100 100 100 100 100 100 100 100
BE14 77.5 92.0 99.0 97.0 100 100 100 100 100 100 100 100 100 100 100 100 100 100
BE21 91.0 97.0 99.5 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
OR07 96.5 99.0 100 98.5 99.0 100 100 100 100 100 100 100 100 100 100 100 100 100
OR14 93.0 97.5 99.0 100 99.0 100 100 100 100 100 100 100 100 100 100 100 100 100
OR21 63.0 94.0 99.0 100 99.0 100 100 100 100 100 100 100 100 100 100 100 100 100
IR07 90.0 100 100 99.5 99.0 100 100 100 100 100 100 100 100 100 100 100 100 100
IR14 63.0 97.5 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
IR21 95.0 99.0 98.5 99.0 100 100 100 99.5 100 100 100 100 100 100 100 100 100 100

Norm 98.5 98.5 91.0 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Table 16. The influence of nuclear parameter selection of the mRVM1_conv2 on fault identification accuracy of the rolling bearing (%).

Testing Fault Severity
Nuclear Parameter Value

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

BE07 78.5 93.0 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
BE14 96.5 100 100 100 98.5 100 100 100 100 100 100 100 100 100 100 100 100 100
BE21 92.0 100 91.0 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
OR07 99.0 100 99.0 100 100 100 100 99.5 100 100 100 100 100 100 100 100 100 100
OR14 96.5 91.0 99.5 100 100 99.0 100 100 100 100 100 100 100 100 100 100 100 100
OR21 95.0 78.0 100 99.0 100 100 100 100 100 100 100 100 100 100 100 100 100 100
IR07 70.0 100 99.0 95.0 98.5 100 100 100 100 100 100 100 100 100 100 100 100 100
IR14 80.0 100 94.0 98.5 100 100 100 100 100 100 100 100 100 100 100 100 100 100
IR21 99.0 96.0 99.5 100 100 100 100 99.5 100 100 100 100 100 100 100 100 100 100

Norm 85.0 97.0 99.5 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
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Table 17. The influence of nuclear parameter selection of the mRVM2_convA on fault identification accuracy of the rolling bearing (%).

Testing Fault Severity
Nuclear Parameter Value

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

BE07 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
BE14 98.0 100 99.5 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
BE21 94.0 100 100 100 99.5 100 100 100 100 100 100 100 100 100 100 100 100 100
OR07 100 100 100 100 100 100 100 99.5 100 100 100 100 100 100 100 100 100 100
OR14 100 97.5 100 100 100 99.0 100 100 100 100 100 100 100 100 100 100 100 100
OR21 99.5 100 96.5 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
IR07 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
IR14 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
IR21 97.5 96.0 99.5 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Norm 87.0 99.5 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Table 18. The influence of nuclear parameter selection of the mRVM2_convN on fault identification accuracy of the rolling bearing (%).

Testing Fault Severity
Nuclear Parameter Value

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

BE07 70.5 81.5 85.5 88.5 96.5 97.5 98.5 100 99.0 99.5 99.5 99.5 99.5 100 100 100 100 100
BE14 84.5 82.0 82.5 89.0 91.5 97.5 98.0 100 100 99.5 99.5 99.5 100 100 100 100 100 100
BE21 79.0 81.5 85.5 90.5 94.0 96.0 97.5 99.0 99.5 99.5 100 100 100 100 100 100 100 100
OR07 78.0 83.5 87.0 91.0 95.0 97.5 98.5 99.0 99.0 100 99.5 99.5 99.5 100 100 100 100 100
OR14 79.5 79.0 86.5 86.0 92.5 97.0 97.5 100 99.5 100 100 100 100 100 100 100 100 100
OR21 78.0 84.0 81.0 91.5 97.0 99.0 96.5 99.5 99.5 99.5 100 99.5 100 100 100 100 100 100
IR07 77.0 80.5 86.0 91.5 94.0 96.5 97.5 98.5 100 100 99.5 99.5 100 100 100 100 100 100
IR14 73.5 79.0 85.5 88.5 94.5 97.5 100 99.5 100 100 99.5 99.5 100 100 100 100 100 100
IR21 81.0 77.5 85.0 87.5 96.0 97.0 98.5 100 99.5 100 100 100 100 100 100 100 100 100

Norm 67.0 78.5 86.5 90.0 95.5 98.0 96.5 99.5 100 99.5 100 100 100 100 100 100 100 100
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Table 19. Gearbox fault identification accuracy of different fault extraction methods combined with
the mRVM.

Feature Extraction Method Fault Identification Accuracy (%)

IMAAPE 100
IMFE 99.0
IMPE 98.0

RCMSE 99.5
IMSE 96.5

RCMPE 97.5

5. Conclusions

This paper presents a novel diagnosis method for rotating machinery, which can further analyze the
fault severity of rotating machinery on the basis of accurately identify the fault types. The experiments
were conducted to illustrate the validity and feasibility of the fault diagnosis method for rotating
machinery. This paper can summarize the following conclusions:

(1) The improved multiscale amplitude-aware permutation entropy (IMAAPE) proposed in this
paper improves the coarse-graining process of the MSE and the problems existing in the PE, and can
effectively extract the fault information contained in the vibration signals. Moreover, compared with
other fault feature extraction methods, the IMAAPE has higher execution efficiency.

(2) The multiclass relevance vector machine (mRVM) is suitable for the multi-classification
of rotating machinery and has high identification accuracy on the basis of reasonable selection of
nuclear parameters.

(3) The rolling bearing experiments and gearbox experiments show the effectiveness of the
proposed method. The experimental results on the rolling bearing and gear box show that the proposed
fault diagnosis method for rotating machinery has a high fault identification accuracy of over 99%.
In particular, the rolling bearing experiments show the potential application of the proposed method
in fault severity analysis.
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Abbreviations

AAPE Amplitude-aware permutation entropy
ApEn Approximate entropy
ANN Artificial neural network
BE Ball elements
CEEMD Complementary ensemble empirical mode decomposition
EMD Empirical mode decomposition
ELCD Ensemble local characteristic-scale decomposition
FFT Fast Fourier transform
IMAAPE Improved multiscale amplitude-aware permutation entropy
ISVM-BT Improved support vector machine based on binary tree
IR Inner race
IMF Intrinsic mode function
IMFE Improved multiscale fuzzy entropy
IMSE Improved multiscale entropy
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ISC Intrinsic scale component
ITD Intrinsic time-scale decomposition
LMD Local mean decomposition
mRVM Multiclass relevance vector machine
MSE Multiscale entropy
MFE Multiscale fuzzy entropy
MPE Multiscale permutation entropy
Norm Normal
OVA-SVM One-against-All SVM
OAO-SVM One-against-One SVM
OR Outer race
PE Permutation entropy
PNN Probabilistic neural network
PF Product function
PR Proper rotation
RF Random forest
RCMPE Refined composite multiscale permutation entropy
RCMSE Refined composite multiscale entropy
RVM Relevance vector machine
SampEn Sample entropy
SVM Support vector machine
TFE Time-frequency-energy
WPT Wavelet packet transform
WT Wavelet transform
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