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Bacterial microcompartments (BMCs) are protein-based organelles that expand the
metabolic potential of many bacteria by sequestering segments of enzymatic pathways
in a selectively permeable protein shell. Sixty-eight different types/subtypes of BMCs
have been bioinformatically identified based on the encapsulated enzymes and shell
proteins encoded in genomic loci. BMCs are found across bacterial phyla. The
organisms that contain them, rather than strictly correlating with specific lineages, tend
to reflect the metabolic landscape of the environmental niches they occupy. From our
recent comprehensive bioinformatic survey of BMCs found in genome sequence data,
we find many in members of the human microbiome. Here we survey the distribution
of BMCs in the different biotopes of the human body. Given their amenability to be
horizontally transferred and bioengineered they hold promise as metabolic modules that
could be used to probiotically alter microbiomes or treat dysbiosis.
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INTRODUCTION

Bacterial Microcompartments (BMCs) are organelles that are functionally similar to those
of eukaryotes; they establish and contain a microenvironment that is distinct from the
rest of the cell (Kerfeld et al., 2018; Kirst and Kerfeld, 2019). BMCs are bounded by a
selectively permeable membrane, however, in contrast to their eukaryotic counterparts, this
membrane, —the shell— is composed of proteins. All BMC shells are assembled from
homologous building blocks, enabling their bioinformatic identification in genomic sequence
data (Axen et al., 2014; Bobik et al., 2015; Zarzycki et al., 2017; Sutter et al., 2021). BMCs
are either anabolic, such as the extensively studied carboxysome (Kerfeld and Melnicki,
2016) or catabolic; these are collectively known as metabolosomes (Figure 1A). An aldehyde
intermediate is common to the encapsulated chemistry of many metabolosomes and the
enzyme generating the aldehyde is referred to as the signature enzyme (Axen et al., 2014;
Kerfeld and Erbilgin, 2015). The purpose of the BMC shell in these metabolosomes is to
enhance catalysis and sequester toxic aldehyde intermediates (Figure 1B) (Kerfeld et al., 2018).
Gut bacteria often have the potential to form ethanolamine utilization (EUT) BMCs because
ethanolamine is abundant in the intestine as a breakdown product of phosphatidylethanolamine
(Larson et al., 1983). Indeed, the EUT operon is part of the core E. coli genome (Dadswell
et al., 2019), allowing the organism to use ethanolamine as a source of both carbon and
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nitrogen (Kaval and Garsin, 2018). Because it is an environment
with a large spectrum of available substrates known to be
catabolized within BMCs, they are frequently found in gut
microbes (Ravcheev et al., 2019).

Encompassing the gut and beyond, the human microbiome
has been defined as an essential organ of the human body given
the tremendous effects it has on overall health (Shreiner et al.,
2015; Kashyap et al., 2017; Manor et al., 2020; Fan and Pedersen,
2021). Dysbiosis, or disruption of a healthy microbiome, has
been implicated in obesity, hypertension, cardiovascular disease,
diabetes, cancer and even depression (Ding et al., 2019). Although
little is known about the exact mechanism with which the
microbiome exerts its influence, it seems plausible that the
BMCs could potentially play a role in these outcomes by
enabling the dominance of specific taxa. Although yet to be
experimentally verified, BMC expression likely exerts some
influence on the community composition by conferring the
ability to catabolize niche-specific metabolites. Here we survey
the available census of human microbiome organisms to identify
their BMCs. Our compilation provides the first insights into
the prevalence of specific types BMCs in particular niches,
and suggests associations with BMC-based metabolism and the
nutritional landscape of the sampling site in health and disease.

METHODS

Tables matching up bacterial strains with body locations were
downloaded from the Pathosystems Resource Integration Center
(PATRIC)1, the Human Oral Microbiome Database (HOMD)2,
and the NIH Human Microbiome Project3. Strain names were the
matched with the assigned loci described in (Sutter et al., 2021)
and correlated with body sites found in the respective databases
(Supplementary Table 1). Duplicates with identical NCBI taxid
and body site were removed.

RESULTS

EUT BMCs Are Commonly Found to Be
Associated With the Gut and Oral
Environments
The EUT BMCs allow organisms to utilize ethanolamine as a
carbon and nitrogen source by metabolizing it into acetaldehyde
and ammonia using the encapsulated ethanolamine ammonia
lyase (Tsoy et al., 2009). There are three major types of
EUT BMCs, namely EUT1, EUT2, and EUT3. Loci of these
three types all encode the signature enzyme ethanolamine
ammonia lyase but differ in the genes encoding ancillary
proteins, regulatory proteins as well as the type and presence
of core metabolosome elements (Sutter et al., 2021). In
humans, ethanolamine is obtained through the diet as the
product of the breakdown of the common lipid component of

1www.patricbrc.org
2www.homd.org
3www.hmpdacc.org

plant and animal cell membranes, phosphatidylethanolamine or
from the breakdown of phospholipids in normal turnover of
epithelial cells. Accordingly, organisms containing EUT BMCs
are enriched in the gastrointestinal tract (Figure 2), or other
sites with epithelial turnover. Ethanolamine is abundant in the
inflamed gut and the presence of tetrathionate as the electron
acceptor allows for intestinal pathogens such as Salmonella
enterica, Enterococcus faecalis, enterohaemorrhagic Escherichia
coli (EHEC), Clostridium difficile to flourish by utilizing EUT
BMCs (Bertin et al., 2011; Srikumar and Fuchs, 2011; Thiennimitr
et al., 2011; Anderson et al., 2018; Ormsby et al., 2019).
Likewise, the ability to derive carbon, nitrogen and energy from
ethanolamine is a hallmark of urinary tract infections, in which
E. coli inhabit successively the perineum, the urethra and the
bladder. The EUT BMC is directly involved in this progression
(Sintsova et al., 2018; Dadswell et al., 2019).

BMCs are also found in organisms in cancer-associated
gut dysbiosis. Fusobacterium hwasooki and F. nucleatum
(Supplementary Table 1) species contain a EUT2 BMC, and
F. nucleatum specifically is suggested to play a role in the
progression of colorectal cancer (CRC) as well as oral squamous
cell carcinoma (Zhou et al., 2018; Zhang et al., 2019). The
microbial community in the oral microenvironment and its
imbalance has likewise been implicated in diseases such as
periodontitis and in dental caries (Lamont et al., 2018).
There are studies showing direct correlation between EUT and
periodontitis progression (Kaval and Garsin, 2018). All three
major EUT BMC types are found in organisms populating the
oral microbiome, underscoring the importance of ethanolamine
degradation in this environment (Figure 2). The EUT2 BMC
type was the most commonly found EUT subtype present
in the genera Leptotrichia, Streptococcus and Fusobacterium
(Supplementary Table 1) which are all members of the oral
microbiome (Deo and Deshmukh, 2019). Furthermore, it has
been shown that in the presence of ethanolamine, there was an
increase in the respiratory activity of several of the pathogenic
organisms in the oral microbiome (Hernandez-Sanabria et al.,
2017) indicating that this is an important metabolite, and the
ability to form a EUT BMC would provide a competitive
advantage.

The Distribution of the PDU1 BMC
Ranges From the Respiratory System to
the Gut
PDU (1,2-propanediol utilization) BMCs have a wide distribution
comparable to EUT BMCs and they commonly co-occur in many
different organisms (Sutter et al., 2021; Figure 2). In some species,
such as strains of Streptococcus and Listeria monocytogenes,
the two loci are fused (PDU_EUT, Supplementary Table 1).
In other organisms, like F. nucleatum, the EUT and PDU
BMCs are likely differentially regulated by the locus-encoded
regulator, depending on availability of substrates. Via the diet,
plant sugars rhamnose and fucose are catabolized by organisms
in anaerobic conditions to produce 1,2-propanediol (1,2-PD),
which can be utilized by PDU BMCs as a source of carbon
and energy (Figure 1B). Lactobacillus panis and Velionella
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FIGURE 1 | General BMC reaction overview and detailed reaction pathways for different BMC types found in microbiome samples. (A) General encapsulated
pathway scheme of metabolosomes. (B) Substrates, intermediates and products of the EUT, PDU, GRM, and PVM/PVM-like BMCs. Solid arrows indicate
BMC-associated reactions. TMA: trimethylamine; TMAO: trimethylamine-N-oxide; TCA cycle, tricarboxylic acid cycle; DHAP, dihydroxyacetone phosphate.

FIGURE 2 | Species containing BMC functional types found in human microbiome sampling sites. BMC types found in sequenced genomes of 625 species in the
human body plotted against the site or source from which they were isolated. Acronyms for the BMC functional types (Axen et al., 2014; Sutter et al., 2021): PDU,
propane diol utilization; GRM, glycyl radical enzyme containing microcompartment; GRMguf, GRM with unknown function glycyl radical enzyme; EUT, ethanolamine
utilization microcompartment; BUF, bacterial microcompartment of unknown function; RMM, Rhodococcus and Mycobacterium microcompartment; PVM/PVM-like,
Planctomycete and Verrucomicrobia microcompartment; SPU, sugar phosphate utilizing microcompartment; PDU_EUT, genetic fusion of the PDU/EUT loci; MIC,
microcompartments with an incomplete core. BMC types co-occurring in the same species, observed in at least in three species, are shown on the right.

denticariosi, which can form PDU BMCs, were identified
in the oral microbiome (Supplementary Table 1) and both
are associated with human dental caries (Byun et al., 2004,
2007). Within the gut, Shigella flexneri, Citrobacter sp., and
Lactobacillus brevis (Supplementary Table 1) all encode PDU1

BMCs in their genomes. Both Citrobacter and Lactobacillus
species are implicated in human gut dysbiosis in patients
suffering from irritable bowel syndrome (Ganji et al., 2016).
Organisms containing PDU BMCs are also found in the blood
and vagina (Figure 2). The presence of 1,2-propanediol in the
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vagina could be an indicator of a healthy microbiome; a study in
2013 showed that women with bacterial vaginosis had a reduction
in the presence of 1,2-propanediol which is formed by the
hydrogenation of lactic acid (Yeoman et al., 2013). Lactobacillus,
which is a hallmark organism of a healthy vaginal microbiome,
was not identified in this survey. F. nucleatum, identified in the
vagina harboring the EUT1 and PDU1 BMCs (Supplementary
Table 1) has been associated with bacterial vaginosis. This
organism has also been implicated in causing preterm birth as
well as intrauterine infections (Agarwal et al., 2020).

GRM Microcompartments Are
Widespread in the Human Microbiome
GRM1 (glycyl radical enzyme containing microcompartment)
and GRM2 BMCs produce TMA as a side product of
choline metabolism (Figure 1B). TMA can be absorbed
and oxidized to trimethylamine-N-oxide (TMAO) by flavin-
containing monooxygenases (Fennema et al., 2016). TMAO is
known to contribute to cardiovascular disease (Wang et al., 2011;
Schiattarella et al., 2017). TMAO is also generated by the gut
microbiome after consumption of foods rich in L-carnitine and
phosphatidylcholine, such as fish, eggs and red meat (Zeisel
et al., 1983; Wang et al., 2011). The abundance of GRM1
and GRM2 BMCs in the gut organisms (Figure 2) reflects
that the gastrointestinal tract is rich in choline. Some of the
organisms in the gut that contain the GRM2 BMCs include the
known pathogen Providencia alcalifaciens, the causative agent
of foodborne illnesses (Shah et al., 2019) and Klebsiella sp.
which is an opportunistic pathogen (Supplementary Table 1).
Additionally, GRM2 was identified in various strains of E. coli
(Supplementary Table 1). The presence of the GRM BMCs in
the blood and urine could be accounted for by sepsis along with
another cardiovascular related health conditions that result in the
formation of TMAO. Indeed, GRM1 and GRM2 can be found
in the majority of bacterial species associated with urinary tract
infections. Recently, a GRM2 BMC, encoded in a pathogenicity
island, has been shown to be involved in choline utilization in
E. coli UPEC 536 (Herring et al., 2018).

GRM3, GRM4 and GRM6 BMCs are functionally analogous
to PDU BMCs (Levin and Balskus, 2018; Ferlez et al., 2019) and
consistently show a similar microbiome distribution as species
containing PDU BMCs (Figure 2). The GRM5 BMCs have
additional enzymes that enable it to process fuculose/rhamnulose
phosphate which are typical degradation products of complex
polysaccharides. This is consistent with the occurrence of many
GRM5-containing species in the gastrointestinal microbiome
(Figure 2). One of the GRM5 containing organisms in
gut is the anaerobe Ruminococcus gnavus (Supplementary
Table 1) that is known to be associated with Crohn’s disease
(Henke et al., 2019).

Recently Discovered, Less
Characterized BMCs Are Found in
Members of the Human Microbiome
Several newly discovered or less familiar microcompartments
such as RMM and the PVM-like have been identified in our

human microbiome survey (Figure 2). The RMM organelles
are named for representatives found in Rhodococcus and
Mycobacterium species (Axen et al., 2014). This BMC has
been proposed to metabolize aminoacetone to propionyl-
CoA (Mallette and Kimber, 2018). Organisms containing
RMM1 were identified in the skin microbiome (Rhodococcus
erythropolis SK121) and the gut (various strains of Mycobacteria)
(Supplementary Table 1). There have been studies showing the
presence of Mycobacterium species with cutaneous infections and
conditions such as cold abscess (Franco-Paredes et al., 2018; Bains
et al., 2019). It is likely that the ability to utilize aminoacetone
could provide a competitive advantage in the disease state.
Interestingly, none of the common pathogenic mycobacterial
strains such as M. tuberculosis and M. leprae contain the RMM1
BMC. There is a single occurrence of RMM2 in Paracoccus yeei
TT13 that was found in a skin sample (Supplementary Table 1)
and shown to grow on 1,2-PD as sole carbon and energy source
(Lim et al., 2018).

PVM microcompartments encapsulate a class-II aldolase as
their signature enzyme with the substrates rhamnose and fucose
(Erbilgin et al., 2014; Figure 1B). They are primarily found in
environmental samples where they are thought to metabolize
algal cell wall degradation products (Sichert et al., 2020; Sizikov
et al., 2020). The PVM-like BMC locus contains a claas-II
aldolase homolog aldolase and an aldehyde dehydrogenase that
is expected to process 1,2-PD (Sutter et al., 2021), so a similar
substrate as PVM is likely. Species containing the PVM-like
microcompartments can be identified in gastrointestinal tract
where they likely also play a role in the breakdown of complex
carbohydrates (Figure 2); these organisms include Hungatella
hathewayi, Clostridium bolteae, and Clostridium sp. AF18-27
(Supplementary Table 1). One of the PVM-like BMC containing
organisms is Faecalibacterium prausnitzii, which has been shown
to be beneficial for gut health in a mouse model system (Munukka
et al., 2017).

The sugar phosphate utilizing microcompartments (SPU)
are emerging as one of the most widespread types of BMCs;
they are predicted to be involved in DNA catabolism via the
deoxyribose/deoxyribulose 5-phosphate degradation pathway
(Axen et al., 2014; Sutter et al., 2021). The degradation of
exogenous DNA, a common component of detritus, is a source
of carbon and energy (Finkel and Kolter, 2001). Organisms
containing SPU4 BMCs such as Anaerotruncus colihominis,
Clostridium sp. AF15-17LB and Dorea sp. D27 have been found
in the gastrointestinal tract samples (Supplementary Table 1),
consistent with availability of nucleic acid from the turnover of
resident microorganisms.

Microcompartments of Unknown
Functions Are Found in the Gut and Oral
Microbiome Organisms
BUF microcompartments or Bacterial Microcompartments of
Unknown Function loci encode the structural proteins to form
the metabolosome shell but not an aldehyde dehydrogenase
(Axen et al., 2014). A BUF1 has recently been characterized
as a compartment for the potential degradation of xanthine
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(encapsulating Xanthine dehydrogenase) (Ravcheev et al.,
2019). Elevated levels of metabolites including xanthine,
hypoxanthine, inosine have been detected in the metabolome
of periodontitis and gingivitis associated oral samples
(Duran-Pinedo and Frias-Lopez, 2015) and a single BUF1
BMC containing organism (Bacillus sp. 2_A_57_CT2,
Supplementary Table 1) has been found in the oral
microbiome (Figure 2).

Not much is known about the Microcompartments with
Incomplete Core (MIC), except that they contain an aldehyde
dehydrogenase (Sutter et al., 2021) and a class II aldolase that may
imply a similar function as the PVM BMCs. A single organism
(Lachnospiraceae bacterium KGMB03038) containing the MIC4
BMC has been identified in the stool sample of a healthy person
(Supplementary Table 1).

DISCUSSION

With the increasing availability of bacterial genome sequences,
including those from culture independent genomic methods
and microbiomes, the number and diversity of known BMCs
is rapidly increasing (Sutter et al., 2021). In many ecosystems
the BMCs employed by community members reflect important
characteristics of the nutritional landscape of the environmental
niche, such as the importance of the PVM BMC (Planctomycete
and Verrucomicrobia microcompartment) for the degradation
of complex polysaccharides originating from algae (Erbilgin
et al., 2014; Sichert et al., 2020; Sizikov et al., 2020). In the
human microbiome, pathogenic bacteria are able to gain a
fitness advantage by catabolizing organic compounds that are
metabolically unavailable to the native microflora (Passalacqua
et al., 2016). For example, numerous studies show the role
of the PDU BMC in the proliferation and persistence of
pathogens. This compound is naturally present in the gut as a
by-product of microbial fermentation of the sugars rhamnose
and fucose (Badia et al., 1985; Schardt et al., 2017). During
colonization, effector molecules cause inflammation of the
intestine subsequently forming tetrathionate (Chowdhury et al.,
2014). Tetrathionate is utilized as the electron acceptor by
EUT-containing organisms, conferring a distinct competitive
advantage, in conjunction with 1,2-propanediol, also found in
the gut (Thiennimitr et al., 2011). This allows opportunistic
gut pathogens such as Salmonella to survive in anaerobic
conditions by not only using tetrathionate as the terminal
electron acceptor but also by cobalamin synthesis, which
requires anaerobiosis, the expression of which is co-regulated
with genes from the PDU locus (Jakobson and Tullman-
Ercek, 2016). The PDU gene cluster has been implicated in
providing L. monocytogenes with a significant fitness advantage
in the gastrointestinal tract as evidenced by faster clearing
of infection in murine models infected with pdu deletion
mutants (Schardt et al., 2017; Zeng et al., 2019). It is
becoming increasingly apparent that many organisms have the
potential to form more than one functional type of BMC
(Figure 2) (Sutter et al., 2021); such as Salmonella enterica
which contains both PDU and EUT BMCs (Stojiljkovic et al.,

1995), and organisms associated with urinary tract infections
(Sutter et al., 2021).

The types of BMCs in organisms of the human
microbiome sampling sites reflect the local nutritional
landscape; for example, the EUT, PDU, and GRM BMCs
are gut associated. Similarly, the oral microbiome has
a predominance of the GRM and EUT BMC types.
The GRMs constitute three functionally distinct types
based on the substrate of the GRE (Zarzycki et al.,
2015; Figure 1B). GRM1 and GRM2 are associated
with anaerobic breakdown of choline to trimethylamine
(TMA) and acetaldehyde intermediates (Figure 1B).
Interestingly, the conversion of choline to TMA is only
possible through microbial activity (Craciun and Balskus,
2012; Craciun et al., 2014). The GRM3/4/6 organelles
use the GRE 1,2-PD dehydratase to convert 1,2-PD into
propanol and propionate (Zarzycki et al., 2017; Schindel
et al., 2019) and GRM5 is involved in the anaerobic
degradation of rhamnose/fuculose (Petit et al., 2013;
Zarzycki et al., 2015). Collectively, we find these BMCs are
the most prevalent in available sequence data from human
microbiome samples.

In addition, several newly discovered BMCs such as
RMM, PVM and PVM-like have been discovered to be
associated with human microbiome albeit some of them
from undefined sites of the human body. Uncharacterized
BMCs such as BUF and MIC were identified in the gut
and stool samples. The experimental characterization of
these metabolic modules is complementary to metabolomics
studies of these microenvironments because the function
of the BMCs reflects the metabolic profile of the
microenvironments.

The metabolic profile of sampling sites is regulated by
several factors; diet, the propensity for host cell breakdown
(epithelial layers) and the composition of the microbiome
are primary determinants (Valdes et al., 2018; Leeming
et al., 2019; Visconti et al., 2019; De Angelis et al.,
2020). One study finds increased expression of the EUT
genes in Listeria monocytogenes, anaerobically and in the
presence of vitamin B12 (Zeng et al., 2020). While this
does not provide a direct correlation between change of
diet in humans and its effect on BMC gene expression,
it does demonstrate that these genes are induced by
available substrates.

The catabolic activity of BMCs within the human microbiome
likely impacts the metabolic profile of a particular site. Given
that the future of personalized medicine likely includes routine
site-specific sampling of a patient’s microbiome throughout
life, monitoring organism composition, and its metabolic
potential may emerge as a means to manage homeostasis
and health. Likewise, BMC-based manipulation of the
microbiome could offer an approach to treating dysbiosis.
A pathogen can colonize a given environment if it has the
ability to use a limiting or specific nutrient (Freter et al.,
1983). BMCs endow organisms the ability to catabolize
substrates metabolically unavailable to commensals for a
competitive advantage. In a microbiome-based approach,
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endowing a probiotic organism with a BMCs used by a pathogen
may provide a way to outcompete it.

According to the World Health Organization, as of
2019 communicable diseases such as lower respiratory
and diarrheal are among the top 10 causes of death
globally. Bacteria responsible for causing lower respiratory
illnesses include members of the Streptococcus genera,
E. coli, Klebsiella pneumoniae, Mycoplasma pneumoniae,
and Mycobacterium tuberculosis (Dasaraju and Liu, 1996).
Similarly, urinary tract infections are the primary source for
outpatient infections in the United States and are caused
by organisms including uropathogenic E. coli (UPEC),
K. pneumoniae, and Pseudomonas aeruginosa, Group B
Strep (Medina and Castillo-Pino, 2019). Many of the
organisms implicated in causing these diseases encode BMCs
in their genomes.

The microbiome can be thought of as a pliable ecosystem
that can be altered to have immense overall impacts on
human health. Altering the microbiome using an individual-
based approach to account for the variation may aid in
resolving complex issues such as obesity and inflammatory
bowel disease (Wang et al., 2020). This can further be
improvised by the addition of engineered probiotic strains.
BMCs, as metabolic modules encoded by genetic modules,
provide a way to introduce by “plug and play” expanded
metabolic potential into probiotic organisms. Engineering
BMCs for use in microbiome-based therapies can be thought
of as an additional approach in the field of precision
medicine. BMCs encapsulate necessary enzymes for substrate
utilization and can be engineered to include enzymes that
will breakdown a disease-causing substrate or even potentially
enclosing a toxic intermediate. Indeed, developing engineered
BMCs that have a high bacterial host range and are easy to

modulate (Kirst and Kerfeld, 2019) may be achievable in the
foreseeable future.
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