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Floquet edge states in germanene 
nanoribbons
M. Tahir, Q. Y. Zhang & U. Schwingenschlögl

We theoretically demonstrate versatile electronic properties of germanene monolayers under circularly, 
linearly, and elliptically polarized light. We show for the high frequency regime that the edge states can 
be controlled by tuning the amplitude of the light and by applying a static electric field. For circularly 
polarized light the band gap in one valley is reduced and in the other enhanced, enabling single valley 
edge states. For linearly polarized light spin-split states are found for both valleys, being connected 
by time reversal symmetry. The effects of elliptically polarized light are similar to those of circularly 
polarized light. The transport properties of zigzag nanoribbons in the presence of disorder confirm a 
nontrivial nature of the edge states under circularly and elliptically polarized light.

External time-periodic perturbation by light is of great interest for studying quantum phase transitions1,2. Floquet 
bands were first observed in photonic crystals3 and have been verified experimentally for the surfaces of topo-
logical insulators4–6. For graphene the chiralities for different frequencies have been given in ref. 7 and a trivial 
band gap has been reported under high frequency linearly polarized light8. Light induced effects in silicene are 
limited to single Dirac cone states9. In contrast to graphene, silicene and germanene are subject to strong spin 
orbit coupling (SOC) and structural buckling10. In addition, the band gap can be tuned by an electric field along 
the buckling direction11,12. Silicene would be an excellent material for electronic applications due to its compati-
bility with the existing Si-based technology. Indeed, both silicene and germanene have been grown on gold and 
silver surfaces at room temperature13–15, and silicene field effect transistors have been demonstrated16. Theoretical 
studies have also predicted the stability of silicene on non-metallic substrates such as graphene17, boron nitride, 
and silicon carbide18.

Effects of circularly polarized light on silicene have been studied in ref. 9. In the present work, we address the 
Floquet edge states induced by circularly, linearly, and elliptically polarized light in germanene nanoribbons and 
the corresponding transport properties. We demonstrate that, by breaking the time reversal symmetry, it is possi-
ble to achieve full valley polarization because of an unbalanced number of counter-propagating chiral edge chan-
nels associated with the two valleys in the high frequency regime. Nontrivial edge states lead to a quantized Hall 
effect. The band structure can be tuned by means of the competition between the light and a uniform external  
electric field applied along the buckling direction. Analysis of the transport properties confirms a nontrivial 
nature of the edge states under circularly and elliptically polarized light.

Results
We consider Dirac particles in a buckled honeycomb lattice, coupled to an in-plane time-dependent and spatially 
homogeneous vector potential A(τ) of period T =​ 2π/Ω, Ω being the frequency of the polarized light, and use the 
Floquet formalism. In general, the hopping parameters to the j nearest neighbors in the presence of polarized light 
read τ = τ⋅t t e( )j j

iR A ( )j , where tj is the hopping parameter without light. The vector potential has the form 
τ τ τ φ= ± Ω Ω +A A A( ) ( sin( ), sin( ), 0)x y , with the phase difference φ taking into account the in-plane rotation 

of the light, which is zero for linear, π/4 for elliptical, and π/2 for circular polarization. The +​/−​ sign refers to 
right/left circular polarization and Rj is the lattice vector to neighbor j. Due to the time and spatial periodicity, the 
system is described by Floquet-Bloch states, which fulfill the Floquet eigenvalue problem. To study the band 
structure, we adopt a two band tight binding model. Including only nearest neighbor hopping is sufficient to 
capture the band edge properties of both valleys. Extending the Hamiltonian of refs 9 and 11 by including polar-
ized light, without considering the spin degree of freedom, the tight binding Hamiltonian can be written as a 2 ×​ 2 
matrix in momentum space
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nearest neighbor distance a. The Fourier transformed time-dependent hopping term reads

∑= ⋅ ψ⋅ ⋅h t J A e ek( ) ( ) ,
(2)j

q j
iq i Rkj j

where A1 =​ aAx, φ= + A A A A A3 2 3 cosa
x y x y2,3 2
2 2 , ψ1 =​ 0, ψ =

φ

φ





arc tan
A

A A2,3
3 sin

3 cos
y

x y
 and Jq is the 

qth Bessel function of the first kind. In the following we adopt Ax =​ Ay =​ A.
The SOC is stronger in silicene and germanene than in graphene because Si and Ge atoms are heavier than C 

atoms. Considering only the on-site contribution of the SOC, the full tight binding Hamiltonian reads

= + +ηH H H Hk k( ) ( ) , (3)s
eff

V, SOC

with HSOC =​ λsησz (λ characterizes the strength of the SOC) and HV =​ λVσz (λV =​ 2lEz is the staggered sublattice 
potential generated by the electric field Ez along the buckling direction when the two sublattices are separated by 
a distance of 2l). For germanene we have l =​ 0.3 Å11. The real spin of the Dirac fermions is denoted by s =​ ±​1 and 
the valleys are represented by η =​ ±​1.

Circularly polarized light in the high frequency regime usually yields a Haldane gap by time reversal symme-
try breaking19, encoded as mass term of opposite sign for the two Dirac cones. This is consistent with previous 
studies working within the single Dirac cone approximation and restricted to a weak driving field2,9. It follows 
from this mechanism that a change in the chirality of the field changes the sign of the mass term. We study the 
band structures of germanene nanoribbons in an static electric field, without and with circularly polarized light. 
Without light, see Fig. 1(a,e), a band gap is opened by the electric field, which breaks the inversion symmetry. For 
zigzag nanoribbons we obtain a large spin splitting at ≠ πky a3

, especially at the two K valleys, while for armchair 
nanoribbons both K points are projected to kx =​ 0. The spin up and down bands are degenerate due to the addi-
tional mirror symmetry. When the circularly polarized light is turned on, see Fig. 1(b–d,f–h), the band gap 
decreases at one valley and increases at the other, reflecting opposite signs of the effective mass term. Switching 
the chirality of the light from right to left-handed changes the sign of the mass term, which is demonstrated in 
Fig. 1(c,d). When the amplitude of the light grows from Aa =​ 0.2 in Fig. 1(b,f) to Aa =​ 0.5 in Fig. 1(c,g) the band 
gap closes with nontrivial edge states, which indicates a topological phase transition. The yellow shaded area is the 
energy range that is covered only by nontrivial edge states.

For linearly polarized light we have ψ1,2,3 =​ 0, which means that the renormalized hopping integrals are real 
numbers. The time reversal symmetry is reserved, as indicated by the bands of the germanene nanoribbons in 
Fig. 2(a,b,e,f). The linearly polarized light only induces small anisotropic hopping components, which makes 
the bands similar to those without light, see Fig. 1(a,e). No edge states are found inside the band gap, which 
means that the system is a trivial insulator. The difference to circularly polarized light is that for the armchair 

Figure 1.  Band structures of germanene zigzag (a–d) and armchair (e–h) nanoribbons in an electric field given 
by λV =​ 0.1 eV, with and without circularly polarized light.
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nanoribbons, see Fig. 2(b), the spin up and down bands are split in momentum, as the anisotropic hopping 
breaks the inversion symmetry. For elliptically polarized light (φ =​ π/4) the time reversal symmetry is broken, 
see Fig. 2(c,d,g,h), and valley polarization appears, similar to the circularly polarized light. Indeed, when moving 
the phase of the light from circular to elliptical, the valley polarization is suppressed but the edge states survive. 
Armchair nanoribbons show the interesting feature that the band minima and maxima are slightly displaced from 
kx =​ 0.

We next study the effect of circularly polarized light in the high frequency regime within the k · p model. We 
describe germanene by an Hamiltonian in the xy-plane,

τ ησ τ σ τ λ σ λ ησ= Π + Π + +ηH v s( ) ( ( ) ( )) , (4)s x x y y V z z,

where (σx, σy, σz) is the vector of Pauli matrices and v denotes the Fermi velocity of the Dirac fermions. In our 
notation the spin quantization axis is chosen along the z-direction. We use the gauge in the two-dimensional 
canonical momentum Π(τ) =​ P −​ eA(τ) with the vector potential A(τ) =​ (±​A sin Ωτ, A cos Ωτ), where A =​ E/Ω 
with E being the amplitude of the electric field E(τ) =​ ∂​A(τ)/∂​τ. The gauge potential satisfies time periodicity 
A(τ +​ T) =​ A(τ) with T =​ 2π/Ω. As long as the photon energy is much larger than the kinetic energy of the elec-
trons, Hη,s(τ) can be reduced to an effective static (time-independent) Hamiltonian ηH s

eff
,  using Floquet theory2, 

which gives results in excellent agreement with experiments4. ηH s
eff
,  is defined through the time evolution over one 

period,  ∫ τ τ= − = −η ηU T i H d iH T( ) exp[ ( ) ] exp[ ]T
s s

eff
0 , , , where   is the time ordering operator. Using pertur-

bation theory and expanding U(T) in the limit of large Ω, we obtain
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where ∫ τ τ=η
τ
η

− ΩH T e H d(1/ ) ( )s
n T in

s, 0 ,  is the nth Fourier harmonic of the time-periodic Hamiltonian. Notice 
that Eq. (5) is only valid for Ω  t  with =t v a/ 3  and a =​ 2.348 Å9. Indeed, for Ω ~ t  multiple photon 
absorption/emission processes must be accounted for, which implies that higher orders in the expansion of U(T) 
should be retained. On the other hand, the condition Ω  t (t is proportional to the bandwidth) can be achieved 
experimentally4,20. We focus on the impact of high frequency light on the low energy bands and assume that any 
direct optical process involving high energy bands only weakly affects the low energy band structure. Still, due to 
the presence of these high energy processes, the effective power of the incident light is reduced.

Applying Eq. (5), Eq. (4) yields

ησ σ λ σ λ ησ ησ= + + + ± ∆η ΩH v p p s( ) , (6)s
eff

x x y y V z z z,

where ∆ = ΩΩ e v A /2 2 2 2 3 3   is the effective energy term describing the effects of the circularly polarized light, 
which essentially renormalizes the mass of the Dirac fermions. For right circular polarization the band gap is 
increased in the K valley and reduced in the K′​ valley, whereas for left circular polarization the effect is reversed. 
After diagonalization we obtain the eigenvalues

Figure 2.  Band structures of germanene zigzag (a–d) and armchair (e–h) nanoribbons in an electric field given 
by λV =​ 0.1 eV, with linearly and elliptically polarized light.



www.nature.com/scientificreports/

4Scientific Reports | 6:31821 | DOI: 10.1038/srep31821

ζ λ λ η η= + + ± ∆η
ζ

ΩE v k s( ) ( ) , (7)s V,
2 2

where ζ =​ ±​1 represents the conduction and valence bands, respectively. The impact of high frequency light on 
the band structure is illustrated in Fig. 1 for λV =​ 0.1 eV and λ =​ 0.043 eV9. We set ħΩ =​ 5 eV, which corresponds 
to a band gap variation of Δ​Ω =​ 0.05 eV for evA =​ 0.5 eV. Such a large value of ħΩ ensures that the low energy 
bands are only affected by virtual emission/absorption processes, while higher energy processes only affect the 
effective power of the incident light, see also refs 2,7,9,20 and 21. The energy correction Δ​Ω can be tuned by var-
ying the amplitude of the light or electric field.

We turn to the properties of the different edge states appearing in our system. In the high frequency regime 
the Floquet sidebands are well separated from each other. Thus, all topological properties can be studied within a 
two-band approximation and the zero energy modes behave equivalently to those of static systems. This demon-
strates how it is possible to manipulate the two valleys by just tuning the chirality and frequency of the light. Edge 
states in only one valley confirm the valley imbalance in the high frequency regime, see Fig. 1(c,d). Two aspects 
are worth noticing: First, since right-handed circular polarization enhances the band gap for the K valley and 
reduces it for the K′​ valley (left-handed circular polarization has the opposite effect), only one valley (here η =​ −​1) 
is relevant for the low-energy electronic properties. Second, we obtain spin and valley polarized edge states in one 
of the two valleys, while in the absence of high frequency light the edge states persist in both valleys, as shown in 
Fig. 1(a). Nevertheless, due to the fact that there is an imbalance of the two valleys (by the combination of light 
and an external perpendicular electric field) it is possible to obtain fully spin-polarized transport by tuning the 
Fermi level. Since the system is fully valley-polarized, only one of the two valleys contributes to the transport.

To investigate the effect of polarized light on the transport properties, we further study the conductance of 
zigzag nanoribbons of 135 Å width, focusing on the high frequency regime. A central scattering region of 244 Å 
length (60 unit cells) is considered. The transmission coefficient is calculated using the generalized Fisher-Lee 
relation2,22

= Γ Γ†T E G E E G E E( ) Tr( ( ) ( ) ( ) ( )), (8)LR LR L LR R

where Γ​L(R)(E) represents the coupling between the scattering region and the left(right) reservoir. Moreover, 
GLR(E) is the Floquet Green’s function2,23,24, which is calculated by a recursive algorithm. To obtain the quantized 
conductance in the nontrivial band gap, we sum over all sidebands. This means all virtual absorption and emis-
sion processes in both reservoirs and the scattering region are taken into consideration.

Without light, see Fig. 3(a), the band gap opening due to the static electric field leads to zero conductance 
around the Fermi level. For circular polarized light of small amplitude, see Fig. 3(b), only one of the two valleys 
contributes to the transport, as the time reversal symmetry is broken. When the amplitude is sufficient to close 
the band gap and reopen a nontrivial band gap, see Fig. 3(c,d), the spin polarized edge states cause a quantized 
conductance in the band gap. Disorder is simulated by an additional random on-site energy, which is evenly dis-
tributed between −W/2 and W/2, with W being the disorder strength. According to Fig. 3(a,b), disorder strongly 
suppresses the conductance around the Fermi level, since the edge states contributing to the transport are trivial. 

Figure 3.  Conductance of germanene zigzag nanoribbons. The parameters in (a–d) are the same as in 
Fig. 1(a–d) and those in (e–h) are the same as in Fig. 2(a–d). The black, red, and green lines represent results for 
the clean system and for systems with disorder strengths of W =​ 0.13 and 0.39 eV, respectively.
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On the other hand, in the case of nontrivial edge states, see Fig. 3(c,d), the quantized conductance around the 
Fermi level is almost not affected by the disorder. It is also found that right and left-handed light leads to the same 
transport properties. For linear polarized light, see Fig. 3(e,f), the results are similar to case without light, since 
the hopping is anisotropic. For elliptically polarized light of small amplitude, see Fig. 3(g), the conductance is 
suppressed by disorder. A growing amplitude, see Fig. 3(h), results in a small nontrivial band gap so that the edge 
states are again immune to disorder, which is reflected by a quantized conductance in the band gap.

In general, it is interesting how an electronic system in thermal equilibrium with Floquet states can be 
achieved with a topological band structure. We explicitly demonstrate that for high frequency light, where the 
electrons cannot directly absorb photons, the transport properties of the nonequilibrium system are well approxi-
mated by the static effective Hamiltonian that incorporates the virtual photon absorption processes. In particular, 
the occupations of the states are close to the filling of the photon-dressed bands. Without high frequency light the 
system is in a low temperature ground state with a chemical potential, where all the electrons are essentially in 
energy eigenstates. According to the adiabatic theorem for periodically driven systems2, energy eigenstates can be 
modified into Floquet states by adiabatic application of the driving light. We note that the time scale required to 
be approximately adiabatic is surprisingly short but was fulfilled in recent experiments4–6. Due to the topological 
nature, the described effects should generally be stable against sample imperfections.

Discussion
We propose to use a static electric field together with circularly, linearly, or elliptically polarized light for tuning 
the band structure of germanene and enabling valley-polarized nanoelectronics. All our findings for germanene 
also apply to silicene. We have demonstrated that under circularly polarized light the band gaps of the K and K′​ 
valleys are modified in opposite ways, leading to full valley polarization. This phenomenon leads to remarkable 
effects, such as the emergence of Hall plateaus, accompanied by an increase in the spin polarization of the flowing 
electrons. It is possible to control the charge transport in opposite valleys by changing the polarity of the light. 
Our predictions can be realized experimentally by the setup used in refs 4–6 for topological insulators. The effects 
found for elliptically polarized light are similar. For linearly polarized light the spin-split edge states are paired due 
to the presence of time reversal symmetry. The calculated transport properties show that the conductance con-
tribution of trivial edge states is strongly suppressed by disorder, in contrast to nontrivial edge states, reflecting 
their topological nature. The discussed results open promising opportunities for the design of tunable spintronic 
and valleytronic devices.
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