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Abstract: The renin angiotensin aldosterone system has a localized key regulatory action, especially in
liver and body circulation. Furthermore, it accomplishes a significant role in the downregulation of the
PI3K/AKT/mTOR signaling pathway that is involved in type II diabetes mellitus pathogenesis. The
current study aimed to evaluate the effect of a synthetic pioglitazone analogue (benzenesulfonamide
derivative) compared to the standard pioglitazone hypoglycemic drug on enhancing liver insulin
sensitivity via ACE 2/Ang (1–7)/PI3K/AKT/mTOR in experimental STZ-induced diabetes. After
the model was established, rats were distributed into the normal control group, diabetic group,
pioglitazone group (20 mg/kg), and a benzenesulfonamide derivative group (20 mg/kg), with the
last 2 groups receiving oral treatment for 14 consecutive days. Our results suggested enhancing
liver insulin sensitivity against the ACE2/Ang (1–7)/PI3K/AKT/mTOR pathway. Moreover, the
synthetic compound produced a reduction in blood glucose levels, restored hyperinsulinemia back
to normal, and enhanced liver glycogen deposition. In addition, it up regulated the ACE2/Ang (1–
7)/PI3K/AKT/mTOR signaling pathway via increasing insulin receptor substrate 1 and 2 sensitivity
to insulin, while it increased glucose transporter 2 expression in the rat pancreas. The study findings
imply that the hypoglycemic effect of the benzenesulfonamide derivative is due to enhancing liver
sensitivity to regulate blood glucose level via the ACE2/Ang (1–7)/PI3K/AKT/mTOR pathway.

Keywords: angiotensin-converting enzyme 2 (ACE 2); angiotensin 1–7; liver; insulin sensitivity; type
2 diabetes mellitus; phosphoinositide 3-kinases (PI3k); serein/threonine kinase (AKT)

1. Introduction

Hyperglycemia is a term used to describe a spectrum of metabolic disorders char-
acterized by elevated blood glucose levels caused by abnormalities in insulin secretion,
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insulin sensitivity, or both [1]. Type 1 diabetes mellitus, in which the pancreas beta cells
fail to produce insulin, referred to as “insulin-dependent diabetes mellitus”, and type 2
diabetes mellitus, in which the insulin receptor sites do not respond to insulin, referred to as
“non-insulin-dependent diabetes mellitus”, are the two most common diseases that cause
hyperglycemia [2]. Diabetes is expected to become an epidemic as the global population
grows from 150 million to 300 million by 2025, especially type 2, which is closely linked
to obesity and a sedentary lifestyle and will account for the great majority of cases [3].
Additionally, insulin resistance is a diagnostic sign for obesity-related diabetes mellitus,
and it is regarded as the main risk factor for physiological phenomena in which organs
such as the liver, skeletal muscle, and adipose tissue are less receptive to insulin [4,5].

In the same context, insulin resistance is assumed to be induced primarily by irregular
hepatic insulin action, in which higher insulin levels are required to control blood glucose
levels [6]. Additionally, liver and white adipose tissues are the most abundant source of
angiotensinogen and leptin in which both are insulin-sensitive regulators [7,8]. The role
of the localized renin-angiotensin system (RAS) in the evolution of many pathological
disorders has been hypothesized based on accumulating evidence [9]. The oligopeptide
hormone angiotensin II, one of the main regulatory RAS components, was implicated in
the etiology of diabetes and its co-morbidities [10]. When angiotensin-converting enzyme
(ACE) is replaced with (ACE 2), a main product for angiotensin (1–7) instead of Ang II,
a biological antagonist to the conventional RAS exists [11]. In contrast to the traditional
RAS system, stimulation of the Ang II-Ang (1–7) axis has been shown to have powerful
antioxidant and anti-inflammatory effects [12]. On the other hand, the RAS and leptin
signaling pathway has been investigated to have linked cross talk through regulating
glucose metabolism [13].

Furthermore, both IRS 1 and IRS 2 are widely expressed in hepatocytes; IRS 1 may be
more responsible for glucose management, while IRS 2 may govern lipid handling [14]. In
the presence of insulin, the downstream phosphoinositide 3-kinase (PI3K) signaling cascade
is activated, leading to the activation of Akt and other downstream transmitters, such as
IB kinase, ERK, JNK, PiK3, and mTOR, which negatively phosphorylate IRS proteins on
their specific sites and inhibit their activity [8–15]. The activation of the PI3K/AKT/mTOR
intracellular signaling pathway resulted in the translocation of insulin-regulated glucose
transporter-4 (GLUT 4) into the plasma protein, facilitating glucose absorption through
insulin response sites. Glycogen synthase kinase 3 is inhibited by IRS activation, which
promotes glycogen production in both the liver and adipose tissue [16]. In quintessence,
chronically high insulin levels in the blood cause inhibition of insulin signaling in IR-
expressing tissues, resulting in insulin resistance in the insulin-sensitive tissues, such as the
pancreas, liver, muscle, and fat, as well as in insulin-insensitive tissues, such as the brain,
macrophages, and vascular endothelial cells [17,18].

Current type 2 DM treatment protocols are based on a non-pharmacological portion
through balanced diet and weight management as well pharmacological treatment by
increasing insulin sensitivity on its target site using metformin, glitazones, sulfonylurea,
α-glucosidase inhibitors, and dipeptidyl peptidase-4 inhibitors [19,20]. Consequently, novel
therapeutic treatments for type 2 diabetes are urgently needed.

We hypothesized that the new synthetic oral hypoglycemic would increase liver in-
sulin sensitivity due to the activation of the ACE 2/Ang (1–7)/PI3K/AKT/mTOR axis
on experimentally high-fat diet-induced diabetes in albino Wistar rats. To achieve this
goal, serum ELISA insulin levels were measured as well as ACE 2, Ang (1–7), IRS-1, IRS-2,
leptin, GLP-1, IL-1β, and glycogen using ELISA liver tissue homogenate. Furthermore,
Western blot analysis was used to estimate the p-PI3k/p-AKT/p-mTOR signaling path-
way. In order to confirm our theory, a histological H&E examination of the liver and an
immunohistochemistry investigation of pancreas tissue GLUT 2 were performed.
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2. Results
2.1. Biochemical Estimation Regarding ELISA
2.1.1. Plasma Fasting Insulin Levels concerning Type 2 Diabetes Mellitus Induction

The serum fasted insulin results for the normal control rats was 2.22 ± 0.11 ng/mL.
Rats subjected to HFD and STZ administration, single dose of 45 mg/kg (positive control
group), showed a significant increase in insulin levels to 5.83 ± 0.31 ng/mL. compared to
the normal control group. The treatment of diabetic rats with the standard pioglitazone
hypoglycemic drug significantly decreased insulin levels, as they were 1.75 ± 0.11 ng/mL
compared to the positive control group. Additionally, the treatment of diabetic rats with the
benzenesulfonamide derivative (new synthetic compound) showed a significant decrease
in serum fasted insulin levels to 2.59 ± 0.17 ng/mL compared to the positive control group.
Moreover, it restored insulin levels to normal when compared to the control rats and the
standard treatment group (Figure 1).
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Figure 1. Bar chart presentation of fasting serum insulin concerning the effect of 14 days of oral
administration of the synthetic compound against the reference anti-hyperglycemic pioglitazone
on STZ-induced type 2 DM. DM: diabetes mellitus. Each bar represents the mean of 6–8 values ±
the standard error of the mean (S.E.M). a: Significantly different from the normal control group, b:
Significantly different from the positive control group, c: Significantly different from the pioglitazone
group at p < 0.05.

2.1.2. Activation of ACE 2 and Ang (1–7) Results in Increased Glycogen Synthesis in
Hepatocyte Tissues

Both ACE 2 and Ang (1–7) are expressed in the hepatocyte tissues of normal rats
as 41.17 ± 2.26 Pg/g and 68.33 ± 2.59 Pg/g, respectively. While rats subjected to HFD
and STZ administration, single dose of 45 mg/kg (positive control group), showed a
significant decrease in ACE 2 and Ang (1–7) to 13.10 ± 0.72 Pg/g and 26.36 ± 1.22 Pg/g,
respectively, when compared to the normal control rats, treatment of diabetic rats with
standard pioglitazone hypoglycemic drug significantly increased ACE 2 and Ang (1–7)
activities to 32.10 ± 1.74 Pg/g and 51.60 ± 2.04 Pg/g, respectively, in comparison to the
positive control group. Besides, the treatment of diabetic rats with the benzenesulfonamide
derivative showed a significant increase in ACE 2 and Ang (1–7) levels, which reached
39.66 ± 1.54 Pg/g and 59.52 ± 2.57 Pg/g, respectively, compared to the positive control
group and restored ACE 2 back to normal when compared to the normal control group.
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Moreover, it significantly increased ACE 2 and Ang (1–7) activity compared to the standard
group (Figure 2).

On the other hand, the glycogen content in liver tissue was affected by ACE 2 and
Ang (1–7) activities changes, as in normal rats was 3.48 ± 0.22 µg/g. The positive control
group rats showed a significant decrease in glycogen content to 1.27 ± 0.17 µg/g compared
to the normal control rats. The treatment of diabetic rats with the standard pioglitazone
hypoglycemic drug significantly increased the glycogen content to 2.70 ± 0.10 µg/g com-
pared to the positive control group. Additionally, the treatment of diabetic rats with the
benzenesulfonamide derivative showed a significantly restored glycogen content back to
a normal value of 3.37 ± 0.19 µg/g compared to the positive control group. Moreover, it
significantly increased the glycogen content compared to the standard group (Figure 2).
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Figure 2. Bar chart presentation of liver tissue ACE 2, Ang (1–7), and glycogen concerning the effect
of 14 days of oral administration of the synthetic compound against the reference anti-hyperglycemic
pioglitazone on STZ-induced type 2 DM. DM: diabetes mellitus. Each bar represents the mean of 6–8
values ± the standard error of the mean (S.E.M). a: Significantly different from the normal control
group, b: Significantly different from the positive control group, c: Significantly different from the
pioglitazone group at p < 0.05.

2.1.3. Activation of the ACE 2/Ang (1–7) Alters the Glucose Metabolism of IRS 1/IRS 2
in Hepatocyte Tissues

To further explore the role of ACE 2/Ang (1–7) to increase liver insulin sensitivity and
glucose uptake, we investigated the liver tissue levels of IRS 1 protein which are responsible
for glucose metabolism, and we found that in normal rats the IRS-1 and IRS 2 activities were
4.20 ± 0.19 ng/g and 5.72 ± 0.15 ng/g, respectively. Diabetic rats showed a significant de-
crease in IRS-1 and IRS-2 activities, which reached 0.96 ± 0.06 ng/g and 1.24 ± 0.07 ng/g,
respectively, when compared to the normal control rats. The treatment of diabetic rats
with the standard pioglitazone hypoglycemic drug significantly increased IRS-1 and IRS-2
activities to 3.00 ± 0.08 ng/g and 4.58 ± 0.12 ng/g, respectively, in comparison to the posi-
tive control group. The treatment of diabetic rats with the benzenesulfonamide derivative
showed a significant increase in IRS 1 and IRS 2 levels, which reached 3.65 ± 0.09 ng/mL
and 5.44 ± 0.19 ng/g, respectively, compared to the positive control group (Figure 3).
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2.1.4. Effect of ACE 2/Ang (1–7) on Leukocyte Endogenous Mediator IL-1β
in Hepatocyte Tissues

The inhibition of ACE 2/Ang (1–7) by STZ was confirmed in Figure 1 to signif-
icantly stimulate the increase of IL-1β, as the normal control rat levels of IL-1β were
44.06 ± 3.58 Pg/g. The positive control rats showed a significant increase in IL-1β levels,
which reached 263.94 ± 14.61 Pg/g, compared to the normal control rats. The treatment of
diabetic rats with the standard pioglitazone hypoglycemic drug significantly decreased
IL-1β to 68.80 ± 5.46 Pg/g in comparison to the positive control group. The treatment of
diabetic rats with the benzenesulfonamide derivative showed significantly decreased IL-1β
levels to 56.12 ± 4.03 Pg/g compared to positive control group (Figure 4).
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2.1.5. Hepatocyte Response to GLP-1 and Leptin

The incretin hormone glucagon-like peptide 1 (GLP1) potentiates insulin release, sup-
presses glucagon secretion, and enhances glycogen synthesis and deposition in the liver.
Thus, normal control rat levels of GLP-1 and leptin were 267.56 ± 6.25 Pg/g and 168.63
± 4.11 Pg/g, respectively. The positive control rats showed significantly decreased GLP-1
and leptin levels, which reached 51.51 ± 5.51 Pg/g and 54.97 ± 2.85 Pg/g, respectively,
compared to the normal control rats. The treatment of diabetic rats with the standard
pioglitazone hypoglycemic drug significantly increased GLP-1 and leptin levels to 162.75
± 10.89 Pg/g and 125.80 ± 2.45 Pg/g, respectively, in comparison to the positive control
group. The treatment of diabetic rats with the benzenesulfonamide derivative showed sig-
nificantly increased GLP-1 and leptin levels of 242.30 ± 14.77 Pg/g and 144.72 ± 3.31 Pg/g,
respectively, in comparison to the positive control group (Figure 5).
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2.1.6. ACE 2/Ang (1–7) Regulate the Expression of the PI3K/AKT/mTOR Signaling
Pathway in the Liver

The downregulation of ACE 2/Ang (1–7) with STZ induction shown in Figure 1 has
a directly proportional effect on the liver PI3K/AKT/mTOR signaling pathway. First,
STZ induction significantly decreased p-PI3k relative protein expression by 50% when
compared to the normal control group, and pioglitazone treatment upregulated relative
protein expression by 152.76% compared to the STZ group, while the synthetic compound
significantly up regulated p-PI3K relative protein expression by 187.5% compared to the
STZ group (Figure 6a).
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Figure 6. Bar chart presentation of the liver protein relative expression of p-PI3K/p-AKT/p-mTOR,
figure subdivided into (a) represents p-PI3K, (b) represents p-AKT and (c) represents p-mTOR liver
protein relative expression concerning the effect of 14 days of oral administration of the syn-thetic
compound against the reference anti-hyperglycemic pioglitazone on STZ-induced type 2 DM. DM:
diabetes mellitus. Each bar represents the mean of 6–8 values ± the standard error of the mean
(S.E.M). a: Significantly different from the normal control group, b: Significantly different from the
positive control group, c: Significantly different from the pioglitazone group at p < 0.05.

Additionally, the STZ group significantly downregulated p-AKT relative protein
expression by 56.36% when compared to the normal group, and treatment with pioglitazone
and the new synthetic compound both significantly upregulated p-AKT relative protein
expression by 124.58% and 170.03%, respectively (Figure 6b).

In turn, p-mTOR relative protein expression was significantly downregulated through
STZ induction by 51.46%, and treatment with pioglitazone and the new synthetic compound
both significantly upregulated p-mTOR relative protein expression by 134.83% and 154.31%,
respectively (Figure 6c).

2.1.7. Histopathology
Photomicrographs of Rat Liver Sections Stained with H&E Showing the Effect of 14 Days
of Oral Administration of Pioglitazone and the Synthetic Compound against STZ-Induced
Type 2 DM

A microscopic examination of liver tissue showed a normal histology. The hepatocytes
were arranged in parallel cords radiating from the central vein toward the portal area
that contained branches of the portal vein, hepatic artery, and bile duct (Figure 7a). On
the contrary, in the positive control group, liver tissue exhibited some histopathological
alterations; the portal areas were mildly expanded by mild fibroplasia and mononuclear



Pharmaceuticals 2022, 15, 341 10 of 20

inflammatory cell infiltration. The bile ducts within the portal areas were hyperplastic, and
the portal blood vessels were severely congested. Focal areas of parenchymal loss were
observed with hemorrhages and marked sinusoidal dilatation. Moreover, some hepatocytes
suffered sporadic cell necrosis (Figure 7b). Regarding the treatment with pioglitazone,
the hepatic parenchyma was normal, without any detectable histopathological alterations
(Figure 7c). The livers of the benzenesulfonamide-derivative-treated synthetic group
showed apparently normal hepatic parenchyma in almost all examined sections. Few
sections showed mild hyperplasia in the Kupffer cells, with mononuclear inflammatory
cells infiltration at the portal area. (Figure 7d).
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Figure 7. Photomicrographs of rat liver sections stained with H&E showing the effect of 14 days of
oral administration of pioglitazone and the synthetic compound against STZ-induced type 2 DM. (a)
Normal control section (25 µm). It appears normal histologically. The hepatocytes were arranged
in parallel cords radiating from the central vein toward the portal area that contained branches of
the portal vein, hepatic artery, and bile duct. On the contrary, (b) the positive control group section
(25 µm) shows mononuclear inflammatory cell infiltration at the portal area with a hemorrhage (black
arrow), a hyperplastic bile duct, sinusoidal dilatation, and a few necrotic hepatocytes (red arrow). (c)
The pioglitazone-treated section (25 µm) shows the hepatic parenchyma was normal, without any
detectable histopathological alterations. (d) The synthetic compound section (25 µm) shows a normal
hepatic parenchyma with mild hyperplasia in the Kupffer cells, with mononuclear inflammatory cells
infiltration at the portal area (black arrows).

Photomicrographs of Rat Pancreatic Sections Stained with H&E Showing the Effect of 14
Days of Oral Administration of Pioglitazone and the Synthetic Compound against
STZ-Induced Type 2 DM

A microscopic examination of the pancreas from the normal control group and syn-
thetic compound treatment group revealed a normal structure of both exocrine units and
endocrine components of the pancreas. Additionally, the islets of Langerhans appeared to
be of normal size and contained β-cells (Figure 8a,d). The positive control group showed
atrophied ill-distinct islets of Langerhans that contained few vacuolated and necrotic β-cells.
Some of the examined sections exhibited inflammatory reactions in the peri-pancreatic
tissue (Figure 8b). The pancreas after standard pioglitazone hypoglycemic drug showed
variable sized islets that showed few vacuolated cells. Some sections exhibited apparently
normal endocrine components (Figure 8c).
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Figure 8. Photomicrographs of rat pancreatic sections stained with H&E showing the effect of 14
days of oral administration of pioglitazone and the synthetic compound against STZ-induced type
2 DM. (a) Normal control section (25 µm) showing the normal structures of both exocrine units
and endocrine components of the pancreas. The islets of Langerhans appeared to be of normal
size and contained β-cells; (b) positive control group section (25 µm) showing atrophied ill-distinct
islets of Langerhans that contained few vacuolated and necrotic β-cells. Some of the examined
sections exhibited inflammatory reactions in the peri-pancreatic tissue (black arrows); (c) pioglitazone
treatment section (25 µm) showing variable sized islets that showed few vacuolated cells. Some
sections exhibited apparently normal endocrine components; (d) synthetic compound section (25 µm)
revealed normal structures of both the exocrine units and endocrine components of the pancreas.
The islets of Langerhans appeared to be of normal size and contained β-cells (black arrow). The
Langerhans islets area was decreased significantly in control positive group when compared to
the other groups. Both pioglitazone and benzosulfonamide derivative groups showed significant
increase in the islets in comparison with positive control group. Data were presented as mean ±SE.
a: Significantly different from the normal control group, b: Significantly different from the positive
control group at p < 0.05.

The expression of GLUT 2 was detected in the islets of Langerhans of different groups.
Both the normal and synthetic compound treatment groups showed a strong positive
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staining in the examined islets (Figure 9a,d). Meanwhile, weak expression was noticed in
the positive control group (Figure 9b). A higher expression was noticed in the standard
pioglitazone-treated group among the different examined sections (Figure 9c).
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Figure 9. Photomicrographs of rat pancreatic immunostained section for glucose transporter 2 (GLUT
2) showing the effect of 14 days of oral administration of pioglitazone and the synthetic compound
against STZ-induced type 2 DM. (a) Normal control section (25 µm) showing a high expression of
GLUT-2 in pancreatic islets of Langerhans; (b) positive control group section (25 µm) showing limited
expression of GLUT-2 in the islets of Langerhans; (c) pioglitazone treatment section (25 µm) showing
increased expression of GLUT-2 in the islets of Langerhans; (d) synthetic compound section (25 µm)
showing positive expression of GLUT-2 in the islets of Langerhans. The statistical analysis showed
a significant increase in the normal, pioglitazone, and benzosulfonamide derivative in comparison
with the positive control group. On the contrary, GLUT 2 % statistical analysis showed a significant
increase in normal control group, pioglitazone standard group and benzosulfonamide derivative in
comparison to positive control group. While, benzosulfonamide derivative groups showed significant
increase in GLUT 2% in compared to positive control and pioglitazone groups (Figure 9). Immune
expression of GLUT 2 as area %. Data are presented as means ± SE. Significant difference was
considered at p > 0.05. a: Significantly different from the normal control group, b: Significantly
different from the positive control group, c: Significantly different from the pioglitazone group at
p < 0.05.
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3. Discussion

Our work revealed the effect of the thiazolidinedione’s pioglitazone and benzosulfon-
amide derivative that were investigated against STZ- and HFD-induced type 2 diabetes
mellitus in rats.

The primary cause of type 2 diabetes is thought to be hepatic insulin resistance [21].
The renin–angiotensin system (RAS) is a master regulatory element for many vital body
processes. Besides, its local effect has been described in several body tissues that can
affect cellular activity, tissue injury, and sometimes regeneration [22–24]. Additionally, the
RAS system has been implicated in many different chronic diseases due to physiological
alterations that may impact angiotensin peptides, including Ang II, Ang III, Ang IV, Ang
2–10, and Ang (1–7) [25–27], and metabolic shifts, whereas inhibiting angiotensin recep-
tors has been proven to enhance glycemic management and lower hepatic triglyceride
levels [24–28].

Lantheir et al. [29], demonstrated that selective ablation of Kupffer cells significantly
increases high-fat diet-induced hepatic insulin resistance. This confirms its important
pathological role in the initiation of insulin resistance. Besides, the inflammatory changes
occurring in the adipose tissue, which is responsible for the release of prostaglandin E2
that is involved in the modulation of hepatic glucose output, regulation of cytokine pro-
duction, and induction of insulin resistance in hepatocytes in collaboration of IL-6, induced
a significant increase in Kupffer cells and the pro-inflammatory activation of Kupffer
cells [30]. Moreover, an ischemia/reperfusion exposed liver model showed apparent broad
hemorrhagic necrosis, extensive areas of portal inflammation, and a moderate increase in in-
flammatory cell infiltration, and this histological damage was ameliorated by losartan [31].
In addition, a diabetic rat model treated with losartan showed a decrease in the number of
inflammatory cells at the liver tissue [32]. These data couple with our histopathological
liver data that are shown in Figure 7.

Many studies have shown that ACE 2 plays an important role in insulin resistance [33],
and that Ang (1–7) responds to ACE 2 signaling via the MAS receptor [34], with FVB/N
Mas-deficient mice exhibiting insulin resistance and glucose intolerance [35], implying that
Ang (1–7) signaling is involved in the development of type 2 diabetes and metabolic syn-
drome [36,37]. In agreement with our present study results, we show a significant decrease
in ACE 2/Ang (1–7) in the positive control group (Figure 2), resulting in a hyperinsulinemia
as shown in (Figure 1). On the other hand, treated rats exposed to the benzosulfonamide
derivative and the pioglitazone reference standard increased ACE 2/Ang (1–7) in hepa-
tocytes cells (Figure 2) that directly proportionally affect insulin secretion, as shown in
Figure 1, and glycogen deposition (Figure 2). This coupled with mononuclear inflammatory
cell infiltration at the portal area, with hemorrhage in liver section (Figure 7), and significant
ill-distinct islets containing vacuolated and necrotic cells (Figure 8) and limited expression
of GLUT 2 in the islets of Langerhans (Figure 9). Chai et al. [38] reported that angiotensin
receptor 4 (AT4) may modulate glucose uptake by modulating the trafficking of GLUT4.
This agree with our findings, as ACE 2/Ang (1–7) levels were corrected through treatment
with the synthetic compound modulating pancreatic GLUT 2 expression. Furthermore,
Yuan et al. [39] highlight the important significance of Ang (1–7) treatment in improving
the pancreatic microcirculation and islet micro-vessel density via endothelial vasodilation.

It has been well established that the insulin receptor activates phosphatidyl 3-kinase
and AKT via adaptor proteins, such as insulin receptor substrate 1 (IRS-1) or insulin
receptor substrate 2 (IRS-2) [40]. In agreement, Ang (1–7) has been shown to produce
similar effects in an insulin resistance rat model subjected to a high fructose concentration
in the diet, which significantly induced insulin signaling pathway impairment. In this
paradigm, the continuous Ang (1–7) administration improves insulin-stimulated tyrosine
phosphorylation of the insulin receptor and IRS-1 as well as Akt Ser473 phosphoryla-
tion in skeletal muscles [41,42]. Giani et al. [43] confirmed the significant involvement of
Ang (1–7) in stimulating the phosphorylation of JAK 2, IRS 1, and Akt in the rat heart.
The AKT pathway is vital in PI3K signal transduction, which is required for insulin
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transduction and metabolism [40,44]. These findings are in agreement with our study
(Figures 2, 3 and 6) which were further supported by the liver and pancreas histopatholog-
ical study (Figures 7–9).

Previous studies inveterate insulin as the primary ligand for the PI3K/AKT pathway,
which regulates lipid and glucose metabolism in different essential body organs, such as the
brain, liver, muscle, adipose, and pancreas [45]. In the current study data, the PI3K/AKT
signaling pathway is upregulated via treatment (Figure 6), increases glucose utilization and
decreases gluconeogenesis in the liver tissues (Figure 2), increases body lipid deposition,
and, thus, reduces FFA circulation in adipose tissue by regulating leptin and GLP-1, which
regulates the balance of lipid and glucose metabolism (Figure 5). Zander et al. [46] state the
importance of GLP-1 in enhancing pioglitazone activity, stimulating insulin sensitivity and
proinsulin synthesis, and inhibiting glucagon secretion. Furthermore, in an animal model,
treatment with GLP-1 ameliorated weight reduction via appetite and glycemic control [47].
In addition, standard pioglitazone is a potent anti-inflammatory, reducing proinflammatory
cytokines affecting tumor necrosis factor alpha and pro-coagulant factors [48]. Thus,
the thiazolideine pioglitazone group provides cardiovascular protection by reducing tri-
glycerides, cholesterol, and raised HDL, resulting in metabolic syndrome control and
improved patient blood glucose levels [49]. These previous data support our finding
for pioglitazone and the benzosulfonamide pioglitazone derivative in controlling plasma
insulin levels (Figure 1), stimulating insulin receptor sensitivity (Figure 3), and reducing
inflammatory mediators via upregulation anti-inflammatory ACE 2/Ang (1–7) (Figure 2)
as well as reducing IL-1β (Figure 4). On the other hand, controlling appetite via controlling
leptin, GLP-1, and glycogen levels (Figures 2 and 5) all coupled with a histopathological
confirmation (Figures 7–9).

Nov et al. [50] revealed the role of IL-1β in regulating lipid storage capacity in the adi-
pose tissue and liver-mediated autocrine/paracrine action promoting local inflammation
and generating fatty liver, which contributes to stenosis and liver insulin resistance. Other
findings included a chronic low-grade inflammation in diabetes patients with decreased
glucose tolerance, which was caused in part by IL-1β generated by glucose and further
hindered insulin secretion [51]. Interestingly, a study found that individuals with impaired
fasting glucose levels had a greater between-group rise in Ang (1–7) compared to those
with normal glucose levels, while IL-1β increase may reduce Ang (1–7) in the same way
that glucose causes impaired insulin secretion [52]. Furthermore, antagonism of the con-
ventional ACE 2/Ang II/AT-1 axis has been observed to shift towards the promotion of the
antioxidant and anti-inflammatory pathway ACE2/Ang (1–7)/Mas axis [53]. Side by side,
it was reported in an Alzheimer disease rat model that the potential therapeutic strategy
of diminazene ameliorates induced hippocampal ACE2/MasR activation with PI3K/Akt
transduction endorsed many neuroprotective, anti-apoptotic, and anti-inflammatory ef-
fects [54]. Additionally, it was revealed that inducing insulin resistance with STZ and HFD
dramatically reduced AMPK levels in HepG2 cells [55]. All these previous studies agreed
with our findings that subjecting rats to HFD and STZ injections resulted in hyperinsu-
linemia (Figure 1), as well as downregulation of the p-PI3K/p-AKT/p-mTOR signaling
pathway in the liver (Figure 6), which in turn decreased the sensitivity of IRS-1/IRS-2
(Figure 3), while treatment with pioglitazone and the benzosulfonamide derivative re-
sulted in increasing insulin receptor sensitivity of IRS-1/IRS-2, resulting in an upregulated
p-PI3K/p-AKT/p-mTOR signaling pathway, in agreement with the histological results
(Figures 7–9).

4. Materials and Methods
4.1. Test Agents, Chemicals, Reagent Kits, and Antibodies

The experiments were conducted using the following materials: streptozotocin (cat-
alog number MFCD00006607), enzyme-linked immunosorbent assay (ELISA) kits for rat
angiotensin-converting enzyme II (ACE 2) (catalog number MBS705139), angiotensin (1–7)
(catalog number LS-F32295), glucagon-like peptide 1 (GLP-1) (catalog number E-EL-R0059),
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glycogen (catalog number MBS731185), leptin (catalog number LS-F318), insulin (catalog
number MBS 724709), insulin receptor substrate 1 (IRS 1) (catalog number LS-F11840),
insulin receptor substrate 2 (IRS 2) (catalog number MBS720661), interleukin 1 beta (catalog
number SEA563Ra), the primary antibodies for Western blot assay against t-pi3k (catalog
number sc-1637), P-pi3k (catalog number sc-293115), t-AKT (catalog number #3062), P-AKT
(catalog number Ser241), t-m-TOR (catalog number #2972), and P-m-TOR (catalog number
Ser2448). The above materials were obtained from Santa Cruz Biotechnology (Dallas, TX,
USA), All other chemicals, solvents, buffers, and reagents were obtained from authorized
sources and were all of analytical grades.

4.2. Animals

Adult female albino rats ranging from 200–220 g were kept for adaptation to a 12/12 h
cycle before starting the experimental design. Furthermore, after adaptation, the rats were
randomized into different groups according to their weight. Then, three groups were fed
a high-fat diet. On the other hand, the fourth group were kept as a normal control group
that was fed a normal chow composition as described in the experimental design. Animal
handling and care were conducted in accordance with the guidelines designated by the
references of the National Institutes of Health (NIH) Guide for Care and Use of Laboratory
Animals (Publication No. 85-23, revised 1985).

4.3. High-Fat Diet (HFD)

Ahmed et al. (2019) [5] have outlined how to make the HFD. In a nutshell, a 1:3 ratio
of raw sheep fat lard to feed was used. Wheat flour (7%), glucose (10%), salt combination
(6%), bran (4%), vitamin mixture (5000 IU/g, D3: 100 IU/g, B1: 1 mg/g, B2: 1.25 mg/g,
B6: 0.5 mg/g, B12: 5 mg/g, C: 15 mg/g, E: 4 mg/g, and K3: 0.75 mg/g) and amino acids
(methionine: 25 mg/g and lysine) were used to create a consistent edible paste by adding
enough water.

4.4. Experimental Design

Rats were distributed randomly into four groups, each with 10 rats. The first group
was the normal control group that received vehicles, the second group was the type 2
diabetic control group that received only STZ after the rats were fed a HFD for three
weeks, the third group was the reference hypoglycemic group that received pioglitazone
(20 mg/kg/day) [56], and the last group was the tested synthetic compound group that
received (20 mg/kg/day), a dose similar to the pioglitazone reference hypoglycemic
treatment drug. All drugs and vehicles were applied orally for fourteen consecutive days,
starting from day twenty-four after the rats were fed a HFD and STZ induction. The
animals fasted overnight, and blood and tissue samples were collected in the last day of
the experimental design.

4.5. General Procedure for the Synthesis of the Benzenesulfonamide Derivative

This is fully described in the Supplement Data (S1).

4.6. Method for Type II Diabetes Mellitus Induction

Rats were subjected for metabolic syndrome for three consecutive weeks with a high-
fat diet before streptozotocin induction in order to induce insulin resistance. After three
weeks, the rats subjected to a single intra-peritoneal injection of 45 mg/kg of freshly
prepared streptozotocin dissolved in 0.1 M citrate buffer. Besides, to avoid animal death,
20 percent glucose was added to the drinking water for 48 h after induction with the
intra-peritoneal streptozotocin injection [57,58]. At 72 h after streptozotocin induction,
diabetic rats were defined as those with blood glucose levels greater than 300 mg/dL as
determined by a blood sample from the rat’s tail using an (ACCU-CHEK®, Roche, Hague
Road, Indianapolis, IN, USA) instrument [59]. The test agent was administrated starting at
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24 h after diabetes induction and for 15 consecutive days after metabolic syndrome and
STZ-induced T2DM.

4.7. Sampling
4.7.1. Blood Sampling

Rats fasted for 8 h overnight before blood samples were obtained through the retro-
orbital plexus utilizing heparinized tubes under low-dose anesthesia. The blood was
allowed to clot on broken ice for 10 min before centrifugation at 1000× g using a cooling
centrifuge for 20 min (Sigma 3–30 k, An der Unteren Söse, Osterode am Harz, Germany).
The clear serum supernatant layer was wisely withdrawn and stored in a deep freezer at
−80 ◦C (Als Angelantoni Life Science, Località Cimacolle, Massa Martana, Italy) until the
time of assay.

4.7.2. Tissue Sampling

Animal were dislocated at the cervical spine, and the liver tissue and pancreas were ex-
posed cautiously and dissected gently free of neighboring tissue. The liver was distributed
into two portions and both were well-preserved in freezing media at (−80 ◦C) until the
time of assay for ACE 2, Ang (1–7), IRS 1, IRS 2, Il-1β, leptin, GLP-1, glycogen, p-PI3K,
p-AKT, and p-mTOR. The pancreas was fixed in a 10%formalin solution for two days, then
the tissue was washed with saline and merged in 10% ethanol until the time of the GLUT 2
immunohistochemical assay and histopathological liver examination.

4.8. Assessment of Biomarkers
4.8.1. ELISA of Serum and Tissue Biomarkers

Fasting insulin levels were estimated in the serum, while liver tissue levels of ACE2,
Ang (1–7), IRS 1, IRS 2, Il-1β, leptin, GLP-1, and glycogen were measured using ELISA test
reagent kits and an ELISA processing system (Model Spectra Max Plus-384 Absorbance
Microplate Reader, Philadelphia, Bridgeport, CT, USA) according to the sandwich technique
described previously [60,61].

4.8.2. Western Blot Analysis of the PI3k/AKT/mTOR Signaling Pathway

Tissue levels of p-PI3K, p-AKT, and p-mTOR were determined using the Western blot
technique described previously [62] using assessments by the BioRad micro protein elec-
trophoresis separation unit (Model 1658004, Sinorica International Patent and Trademark,
Germantown, MD, USA). The complete methodology for the assessment was described in
the Supplement Data (S2).

4.8.3. Histopathological Study

The preparation of liver tissue slides for staining with standard Hematoxylin and
Eosin (H&E) staining for the histopathological research was carried out according to the
method published by Banchroft and Steven [63].

Immunohistochemical Assay

The pancreas tissue GLUT 2 assay was performed using the immunohistochemistry
technique described earlier [64] by incubating primary antibodies against GLUT 2, followed
by secondary antibodies, and finally diaminobenzidine/H2O2 as a chromogen. Hema-
toxylin counterstaining was used, and the slides were inspected under a light microscope
with the assistance of a pathologist.

4.9. Statistical Analysis

Means and standard errors of means were used to represent the results (S.E.M). The
statistical package for social sciences (SPSS; version 19.0) computer software (SPSS Inc.,
Chicago, IL, USA) was used to perform one-way analysis of variance (ANOVA) tests
followed by Tukey–Kramer tests on biochemical measurements, with a p value of 0.05
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considered statistically significant. The Western blot bands were quantified using the
Image J computer software (National Institutes of Health (NIH) Rockville Pike, Bethesda,
MD, USA).

5. Conclusions

In conclusion, the present study demonstrates the hypoglycemic activity of a new
synthetic compound benzenesulfonamide derivative that can protect against HFD and STZ-
induced type 2 diabetes mellitus in experimental rats, probably via addressing metabolic
syndrome, glycogen depositions, insulin sensitivity, and the blood glucose level abnor-
malities caused by immunological and metabolic assaults. These effects are mediated by
upregulation of ACE 2/Ang (1–7)/PI3K/AKT/mTOR, glycogen, IRS 1, IRS 2, and GLUT
2, coupled with significantly improved serum insulin levels and the suppression of IL-1β.
All of these findings indicate that benzenesulfonamide derivatives have a hypoglycemic
modifying effect, which bodes well for future clinical trials.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ph15030341/s1, S1: General procedure for the synthesis of benzene
sulfonamide derivative; S2: Western blot analysis technique of PI3k/AKT/mTOR signaling pathway.
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Abbreviations

Abbreviation Meaning
ACE Angiotensin-Converting Enzyme
ACE 2 Angiotensin-Converting Enzyme 2
Akt Serine/Threonine Kinase
Ang (1–7) Angiotensin (1–7)
Ang II Angiotensin 2
ANOVA Analysis Of Variance
AT 1 Angiotensin II Receptor Type 1
DM Diabetes Mellitus
ELISA Enzyme-Linked Immunoassay
FFA Free Fatty Acid
GLP-1 Glucagon-Like Peptide 1
GLUT 4 Insulin-Regulated Glucose Transporter-4
H&E Hematoxylin And Eosin
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HDL High-Density Lipoprotein
HFD High-Fat Diet
IL 6 Interleukin 6
IL-1β Interleukin 1 Beta
IL-1β Interleukin 1 Beta
IRS 1 Insulin Receptor Substrate 1
IRS 2 Insulin Receptor Substrate 2
JAK 2 Janus Kinase 2
mTOR Mammalian Target of Rapamycin
NAFLD Non-Alcoholic Fatty Liver Disease
PI3K Phosphoinositide 3-Kinases
RAS Renin-Angiotensin System
SPSS Statistical Analysis Software
STZ Streptozotocin
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