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Abstract 

Background: Total-RNA sequencing (total-RNA-seq) allows the simultaneous study of 
both the coding and the non-coding transcriptome. Yet, computational pipelines have 
traditionally focused on particular biotypes, making assumptions that are not full-
filled by total-RNA-seq datasets. Transcripts from distinct RNA biotypes vary in length, 
biogenesis, and function, can overlap in a genomic region, and may be present in the 
genome with a high copy number. Consequently, reads from total-RNA-seq libraries 
may cause ambiguous genomic alignments, demanding for flexible quantification 
approaches.

Results: Here we present Multi-Graph count (MGcount), a total-RNA-seq quantifica-
tion tool combining two strategies for handling ambiguous alignments. First, MGcount 
assigns reads hierarchically to small-RNA and long-RNA features to account for length 
disparity when transcripts overlap in the same genomic position. Next, MGcount 
aggregates RNA products with similar sequences where reads systematically multi-
map using a graph-based approach. MGcount outputs a transcriptomic count matrix 
compatible with RNA-sequencing downstream analysis pipelines, with both bulk and 
single-cell resolution, and the graphs that model repeated transcript structures for 
different biotypes. The software can be used as a python module or as a single-file 
executable program.

Conclusions: MGcount is a flexible total-RNA-seq quantification tool that successfully 
integrates reads that align to multiple genomic locations or that overlap with multiple 
gene features. Its approach is suitable for the simultaneous estimation of protein-cod-
ing, long non-coding and small non-coding transcript concentration, in both precursor 
and processed forms. Both source code and compiled software are available at https:// 
github. com/ hitaa ndrea/ MGcou nt.
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Background
Next Generation Sequencing (NGS) experiments have become the gold standard for 
many applications within the transcriptomics field, including gene expression profiling, 
novel transcript discovery and allele diversity detection [1, 2]. Advanced library prepa-
ration methods enable researchers to sequence and analyze RNA from individual cells 
[3–5] and to infer cell differentiation trajectories, recognize rare cell populations and 
identify transcription regulatory mechanisms [6].

While early NGS experiments focused on the detection of polyadenylated RNA (i.e., 
messenger RNA [mRNA] and polyadenylated long non-coding RNA [lncRNA]), later 
RNA library preparation methods made it possible to target small regulatory RNAs 
(small RNAs) [7–9] and also full transcriptomes (hereafter referred to as total-RNA-
seq). Total-RNA-seq simultaneously captures polyadenylated RNA and non-polyade-
nylated RNA, which together include all types of mRNA, lncRNA, and small RNA, both 
as precursors and in processed forms. With total-RNA-seq library preparation methods 
recently having reached single-cell resolution [10–14], it has become possible to investi-
gate transcriptional regulation through non-coding RNA with unprecedented detail.

Challenges in total‑RNA quantification

Figure  1 introduces the four main challenges in quantifying the output of total-RNA-
seq experiments. First, different databases annotate transcribed genomic regions under 
different structures. For example, Ensembl, Gencode and Refseq [15–17] store format-
ted annotations under protein-coding structure (gene, transcript, exon), while biotype 
specialized databases as miRbase [18] annotates precursor and mature forms of micro-
RNAs. Furthermore, less extensively studied RNAs such as piRNAs are annotated in 
specialized databases only. As a consequence, total-RNA-seq analysis needs to integrate 
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Fig. 1 Main challenges in total-RNA-seq quantification. a Integration of databases from multiple sources 
(indicated in orange, green and cyan) can lead to redundant annotations of the same feature with different 
names, formats or slightly different coordinates. b Example of a multi-mapping read (black line) that aligns 
equally well to more than 1 position (yellow lines) and cannot be assigned to a genomic origin unequivocally. 
c Example of a multi-overlapping read that maps to a genomic position where two annotated features 
coexist (a mRNA exon and a snoRNA) and cannot be assigned to a feature unequivocally. d Examples of 
the heterogeneous relations between genomic loci and transcribed molecules integrated in total-RNA-seq: 
a cluster of small-RNA loci (e.g. pi6, from the piRNA biotype) can actively transcribe the same product 
simultaneously; microRNA transcripts result in two distinct transcripts (e.g. unprocessed mi8 is post-clipped 
to 3p/5p mature forms); long molecules comprising exons and introns undergo splicing, resulting in reads 
from precursor and mature transcripts
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multiple databases, to homogenize formats and to deal with redundant annotations with 
possibly miss-matching coordinates (Fig. 1a).

Second, reads frequently align to more than one annotated feature (ambiguous align-
ments). These reads comprise multi-mappers, which align to multiple genomic locations 
(Fig. 1b), and multi-overlappers, which align to a genomic location with multiple anno-
tated features (Fig. 1c). When quantifying protein-coding feature expression, a frequent 
approach is to discard multi-mapping and multi-overlapping reads, since they usually 
occur at low proportion. A downside of this approach is that transcripts that overlap 
in the same genomic region, or that as a result of gene recombination, transposition 
or duplication events have a high copy number, will be underrepresented in the final 
counts. This fact becomes particularly relevant when simultaneously quantifying tran-
scripts from different non-coding RNA classes.

Different strategies have been proposed to quantify multi-mappers and multi-overlap-
pers, reviewed in [19]. Raw counting tools such as featureCounts can count all align-
ments, fractionally count all alignments or randomly select one alignment [20, 21]. 
Rescue methods such as CoCo prioritize features with more uniquely-mapping align-
ments, assuming that these agglomerate in active loci and that multi-mappers result 
from partial sequence overlap with inactive loci [22, 23]. Probabilistic approaches such 
as RSEM, Kallisto and Salmon statistically weight transcript or isoform candidates, and 
are more suitable for quantifying well-characterized transcriptomes [24–26]. In small-
RNA quantification, algorithms consider neighboring patterns around each multi-map-
ping alignment [27, 28]. Mmquant reports multi-mappers as merged gene counts [29], 
and GeneQC employs Machine Learning to provide the user with uncertainty estimates 
for ambiguous alignments [30].

Finally, biotype-specific pipelines quantify expression levels by taking into account the 
genomic structure of the biotype in question. This raises a conceptual question: what is 
the feature output level at which transcript abundance estimation is most meaningful 
for total-RNA-seq? (Fig.  1d). While protein-coding feature abundance is usually sum-
marized at isoform or gene level, small-RNA tools quantify at transcript level [31–35] 
and, in some cases, they can collapse expression from transcripts arising from multiple 
genomic regions into one . In this regard, total-RNA-seq analysis demands for a flexible 
approach that adaptively defines feature quantification output levels suiting all RNA bio-
types, independently of the available annotations.

Taken together, simultaneous quantification of small RNA, lncRNA and mRNA 
requires new strategies that simultaneously account for the diverse nature of each tran-
script, without relying on assumptions that could lead to biotype-dependent quantifica-
tion biases.

MGcount

Motivated by the above, we developed a novel RNA-seq quantification approach named 
MGcount (Multi-Graph count). MGcount handles multi-overlapping reads that arise 
from small RNAs originating from within long-RNA exons or introns, takes into account 
both polyadenylated and non-polyadenylated reads from long RNA, assigns multi-map-
ping reads with heterogeneous profiles, and defines output expression levels in an adap-
tive data-driven manner. MGcount is:
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• Generalizable to the simultaneous quantification of multiple RNA biotypes
• Compatible with any genome and annotations set
• Compatible with single-cell data
• Available as a single command-line program

We generated and analysed RNA-seq libraries from 4 well-studied species, namely, A. 
thaliana, H. sapiens, M. musculus and C. elegans to characterize the behaviour of multi-
mapping and multi-overlapping reads and the effect of MGcount and other quantifica-
tion tools (CoCo, RSEM, featureCounts and mmquant) over distinct classes of RNA. We 
further evaluated MGcount’s performance in two different human RNA templates (K562 
cell line and human brain) and validated the accuracy of the estimated counts for a set of 
20 small-RNA markers with RT-qPCR. Finally, we tested MGcount on a publicly avail-
able total-RNA-seq dataset with single-cell resolution. [14].

Implementation
Algorithm

MGcount starts with a set of genomic alignments of RNA-seq reads (one BAM file per 
sample/cell) and a set of RNA feature annotations stored in a single gene transfer for-
mat (GTF) file. To quantify RNA features abundance, MGcount employs two strategies, 
summarized in Fig. 2. First, a hierarchy based on transcript body length is used to solve 
multi-overlapping ambiguities across RNA biotypes during alignment-to-feature assign-
ment. Second, communities of sequence-related RNA features are detected, and defined 
as new aggregated features. MGcount is built on top of featureCounts [21], a computa-
tionally efficient counting software.

Hierarchical assignation

MGcount hierarchically assigns reads to annotated genomic features in three pre-
defined sequential rounds, named “small”, “long_exon” and “long_intron”. First, in the 
“small” round, alignments are assigned to small-RNA biotypes (such as microRNA, 
piRNA, snRNA, snoRNA, tRNA, YRNA and vaultRNA) and thereby prioritized in situ-
ations where an alignment overlaps with a small-RNA embedded within a long-RNA 
(mRNA or lncRNA) feature (Fig. 2b). As we show in Additional file 1, a–d, these consti-
tute the majority of overlapping cases. This is justified by the length disparity between 
small and long RNAs. A read overlapping both a small-RNA and a long-RNA feature will 
have more likely been generated from a small RNA than a much longer long-RNA tran-
script when reads cluster on the small RNA. In cases where reads are present through-
out the long-RNA locus and when most or all reads might have come from the long 
RNA, assigning overlapping reads to the small RNA will impact the expression quanti-
fication of the long RNA only marginally. The second and third rounds in the hierarchy 
assign alignments to long-RNA exons and long-RNA introns, respectively. These hierar-
chies are justified since unspliced transcripts (with introns) are short-lived compared to 
mature transcripts (without introns). Hence, it is more likely that a mature transcript is 
detected in situations where an exon of a long RNA overlaps with an intron of another 
long RNA.
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The list of biotypes included in each round can be customly expanded or modified by 
the user. In addition, each round can be configured through five arguments (Table 1), 
which facilitates simultaneously dealing with small-RNA and long-RNA features 
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Fig. 2 MGcount strategy. a MGcount takes a set of genomic alignments (BAM files) and a GTF RNA feature 
annotations file as inputs. The algorithm assigns reads hierarchically and then models multi-mapping 
assignments in a graph using the Rosvall’s map equation [36, 37]. As output, MGcount provides an 
RNA expression count matrix (where feature communities are collapsed as new defined features), a 
feature metadata table and the graphs. b Illustration of how the hierarchical assignation can resolve 
multi-overlappers: reads that map to small-RNA and long-RNA features are assigned to small-RNA in the 
first round; reads that map to long-RNA introns and long-RNA exons are assigned to long-RNA exons in the 
second round; remaining reads are assigned in the last round. c Illustration of multi-mapping small-RNA 
and long-RNA exon graphs generation by MGcount. Reads ri (i = 1, 10) have been hierarchically assigned 
to S1, S2, S3, S4, S5 (small-RNA biotypes, yellow), and G1,G2 (long-RNA biotypes, blue). Each vertex in the 
directional multi-mapping graphs (right) corresponds to a feature and has a size proportional to the 
logarithm of the number of alignments. Edges connect vertices with common multi-mapping reads, 
with weights proportional to the number of common multi-mappers normalized by the total number of 
alignments of the source vertex. Hence, the weight of the edge connecting S1 with S2 becomes 3/4 (reads 
mapping both S1 and S2 divided by reads aligned to S1). (CB: Cell Barcode, UMI: Unique Molecular Identifier)

Table 1 Configurable parameters and default values for each read-to-feature assignation round

Note that long‑RNA introns are by default defined by the full gene body coordinates

Round Feature Feature_output Feature_biotype Min_overlap ml_flag

Small Transcript Transcript_name Transcript_biotype 1 True

Long_exon Exon Gene_name Gene_biotype 1 True

Long_intron Gene Gene_name Gene_biotype 1 True
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annotated with different formats and under different columns in the GTF annotation 
file. The five arguments are (1) “feature”, the annotation type considered for alignment-
to-feature assignation; (2) “feature_output”, the annotations attribute for which feature 
abundance will be reported; (3) “feature_biotype”, the annotations attribute defining the 
biotype assigned in the corresponding round; (4) “min_overlap”, the minimum overlap-
ping fraction of the read required to assign an alignment to an annotation; and (5)“ml_
flag”, to activate or disable communities detection and feature aggregation for each 
round (see next section).

Multi‑mapper communities detection

MGcount exploits graph structures to model resemblances between annotated features, 
in its potential to produce the same transcript, from real evidence coming from RNA-seq 
data. MGcount builds a directed weighted graph G = (V, E) where each vertex from the 
set of vertices V is a feature (as defined by the feature_output parameter), with a weight 
equal to the log-transformed number of assigned alignments (Fig. 2c). Directional edges 
(E) connect features that share multi-mapping reads, with a weight proportional to the 
ratio of multi-mapping reads between the two connected vertices, normalized by the 
total number of reads assigned to the source vertex. Graphs are generated independently 
for small and long RNA, using the full pool of alignments from all input samples.

Next, highly related features, where reads systematically multi-map, are grouped 
together in communities by minimizing an objective function known as the map equa-
tion [36, 37]. The map equation formulates the theoretical limit to compress the descrip-
tion of an infinite random walk trajectory along the graph, tagging vertices to describe 
within-community movement and tagging communities to describe inter-community 
movement with codes of bits. The goal is to minimize the description length (total num-
ber of bits) as a function of the communities. This occurs when grouping densely con-
nected vertices in communities where the random walk stays the maximum within and 
moves the minimum between. Resultant communities, hereafter referred to as MG com-
munities, represent groups of features with the potential to produce identical or nearly 
identical RNA transcripts. Each MG community is given an identifier that is subse-
quently used to aggregate the corresponding alignments.

In the small-RNA graph, although MGcount creates one graph for the total set of fea-
tures, MG communities are independently detected per biotype. For long RNA, the top 
represented biotype is assigned to an MG community when this contains features from 
different biotypes. However, when a community contains both pseudogene and non-
pseudogene features, a preference is made for the latter, in order to prioritize for the 
active biotypes.

Count matrix building

MGcount generates one expression matrix for each hierarchical assignation round and 
concatenates them in a single output matrix. For each read, each alignment first gets a 
“fractionated count” of 1/N, where N is the number of multi-mappers or multi-overlap-
pers that survived the hierarchical assignment because they aligned to two features from 
biotypes in the same round. Next, counts for annotations that have been aggregated 
together in a community by the map equation are summed up (communities become 
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newly defined features). In this way, the systematic ambiguity in multi-mapping reads 
collapses into a single MG community while the remaining signal is reported as fraction-
ated counts.

Software execution

Inputs and outputs

MGcount requires three inputs: a TXT file listing the paths to the BAM input files, a 
GTF file, and the output directory path. Additional optional arguments specify whether 
the data is from single or paired sequencing, whether the library preparation has been 
done in stranded or unstranded manner and assignation rounds configuration (Table 1). 
Further configuration arguments and usage description is provided in the software user-
guide available in the MGcount Github repository (https:// github. com/ hitaa ndrea/ 
MGcou nt).

At the end of its execution, MGcount provides the following outputs:

• A count matrix where each row corresponds to a feature as defined by feature_out-
put (either single features or MG communities aggregating several features) and each 
column corresponds to one input BAM file

• A feature metadata table reporting: feature names matching row names in the count 
matrix, the counting round of hierarchical assignation, and its configuration parame-
ters, a flag designing whether a feature belongs to an MG community, and the feature 
biotype

• A sparse adjacency matrix for each multi-mapping graph generated (small RNA and/
or long RNA), stored as a symmetric, integer, squared matrix. Each matrix element 
stores the number of alignments that multi-map to a pair of features (defined by row 
and column), and the diagonal contains the total number of alignments per feature.

• A table of MG communities linking each original feature in the GTF file with the 
resultant count matrix and metadata feature identifiers. It includes both unique fea-
tures (which remain unmodified) and aggregated features (which are collapsed fol-
lowing MG communities). Also, the table stores the total number of alignments per 
feature.

Accessibility

The source code is available in the MGcount Github repository (https:// github. com/ 
hitaa ndrea/ MGcou nt). MGcount is fully written in Python3. The software can be 
installed using the “pip” command and run as a python3 module. Alternatively, the 
MGcount software can be downloaded as a single, binary, compiled file and executed 
independently of Python. This binary has been compiled to run in the Ubuntu operating 
systems. To run MGcount, featureCounts [21] is required.

Integrated annotations

The scope of the MGcount quantification is bounded by the features annotated in the 
reference GTF file. To maximize the scope of the analysis, we combined annotations 
from DASHR, RNAcentral, miRbase and Ensembl [15, 18, 38, 39] in a single GTF file. 

https://github.com/hitaandrea/MGcount
https://github.com/hitaandrea/MGcount
https://github.com/hitaandrea/MGcount
https://github.com/hitaandrea/MGcount
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The MGcount repository provides integrated GTF annotations for human, arabidopsis, 
mouse and nematode, and the corresponding R scripts used for their generation. These 
can be used as a template to integrate annotations from other species.

Results
Hierarchical assignation resolves small‑RNA long‑RNA multi‑overlappers

In order to assess the potential impact of overlapping features from different biotypes 
on RNA-seq analysis, we explored their overlap frequencies. For this task, we used as a 
reference the customized GTF file that integrate several databases (see previous section) 
for the following species: H. sapiens, M. musculus, C. elegans and A. thaliana (Additional 
file 1, a-d). We observed in all organisms that most overlaps take place between long-
RNA and small-RNA transcripts, which significantly differ in transcript body length. 
These results support the rationale for the two-step hierarchical function in MGcount.

Next, we evaluated the effect of the hierarchical assignation of reads on resolving 
small-RNA long-RNA multi-overlapping ambiguities. For this, we hypothesized that the 
level of expression of a given transcript is not influenced by the fact that other tran-
scripts can originate from the same locus. For example, mRNAs can be expected to 
have a similar count distribution, whether they overlap with a small RNA or not. We 
compared the count distributions from the two pooled human brain libraries, for long-
RNA and small-RNA features, and in presence or absence of small-RNA long-RNA 
overlaps (Fig.  3a). Assuming the expression of a transcript is independent of its over-
lapping condition with other features, the two distributions of counts should be simi-
lar. We tested for the equivalence of the distributions using the Two-One-Sided t-Tests 
(TOST), on different algorithms in gene-level mode, for the top 3000 expressed genes: 
featureCounts with only inclusion of unique-alignments and with fractionated count of 
ambiguous alignments, RSEM, CoCo, and MGcount (communities mode disabled) with 
the Ensembl GTF. Additionally we tested MGcount with the customly integrated GTF.

For long RNA, significantly similar distributions were obtained when hierarchically 
assigning reads with MGcount and considering only uniquely-mapping reads with fea-
tureCounts. This suggests that multi-overlapping alignments are mainly associated with 
small-RNA reads and that these two strategies are both adequate to quantify long-RNA 
biotypes. Fractionated count of multi-overlappers with featureCounts led to an inflated 
estimation of transcript abundance, due to the incorrect fractionated assignment of 
reads that originated from small-RNA transcripts to their embedding long RNA. Results 
from CoCo and RSEM show a slight increase of counts for the overlapping transcripts 
which again can be explained by the miss-assignment of a few small RNAs.

For the quantification of small RNA, considering only reads aligned to a unique anno-
tation resulted in discarding small-RNA transcripts embedded within (i.e., fully overlap-
ping with) a long RNA. MGcount and CoCo produced significantly similar distributions. 
Remarkably, the use of MGcount with a custom GTF integrating annotations from other 
sources than Ensembl showed that missing annotations can have a strong impact in 
transcript quantification due to miss-assignment of multi-overlappers originated from 
unannotated small RNAs.

In summary, the hierarchical assignment strategy from MGcount was the one pro-
ducing the most equivalent count distributions with and without overlapping events for 
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both long-RNA and small-RNA features. This supports the rationale that reads that fully 
map to a small RNA that overlaps a long RNA most likely belong to the small RNA, and 
demonstrates that MGcount’s hierarchical assignation approach can successfully resolve 
long-RNA small-RNA overlapping ambiguities.

MGcount reduces multi‑mapping and multi‑overlapping ambiguity

To investigate the scope of ambiguous alignments by biotype, we computed the frac-
tion of multi-mappers and multi-overlappers for each biotype in total-RNA-seq librar-
ies from human brain (Fig.  3b, c left), mouse liver, arabidopsis roots and nematodes 
(Additional file  1, e–f ), using featureCounts. The majority of multi-overlapping reads 
resulted from small-RNA loci embedded within larger long-RNA loci, as observed in 
Additional file 1 a-d. Alignments exhibiting triple overlaps resulted mostly from reads 
mapping to regions where a short small RNA arises from a middle-sized small RNA 
simultaneously embedded within a long RNA. This agrees with the biogenesis path-
ways of snoRNA-derived microRNAs and piRNAs [40–43]. Multi-mapping reads origi-
nated mostly from small RNA loci, with high numbers of genomic positions. This can 
be explained by the small RNAs’ high copy numbers in the genome, which are largely 

Fig. 3 Hierarchical assignation evaluation and multi-mapping and multi-overlapping patterns quantification. 
a Distributions of counts per feature obtained with different quantification strategies in presence and 
absence of small RNA-long RNA overlaps for long RNA and small RNA features (FC: featureCounts). The 3000 
features with highest counts are included in the distributions (including small and long RNA), and their 
amount is indicated above each distribution. Red stars correspond to the p value of a TOST test (0–0.001: 
***, 0.001–0.01: **, 0.01–0.05: *) with equivalence margins at 0.35 log10-normalized counts per million 
(CPM). b Proportion of reads from a human total-RNA-seq library overlapping to 1, 2 or more annotations 
according to fractionated alignments assignation (left) and after MGcount assignation by hierarchical rounds 
(right). c Proportion of reads multi-mapping to a given number of genomic locations (up to 50), according 
to fractionated alignments assignation (left) and after MG community aggregation by MGcount (right). d 
Comparison of counts when only uniquely-mapping reads are counted; all alignments are counted, all 
alignments are fractionally counted as 1 divided by the number of multi-assigments or quantified with 
MGcount (HBR: Human Brain, sNC: small non-coding; lNC: long non-coding))
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due to retrotransposition events [44]. We observed a particularly prominent effect in 
mid-sized small RNAs such as tRNA and snRNA, which links to its nature and sequence 
repetition [45, 46]. The same holds for a small subset of snoRNA where we observed 
a portion of reads mapping to 10–15 genomic regions while most snoRNA reads map 
uniquely. This owes to snoRNA diversity: while some snoRNAs are produced from a 
unique locus, others have been found to be encoded in tandem copies [47, 48]. With 
consistency between species (Additional file 1, e–f ), the observed patterns highlight the 
magnitude of the biological signal encoded in reads mapping to more than one RNA 
feature. Figure 3b, c (right) show how multi-feature alignment ambiguity fractions are 
reduced with MGcount: due to the hierarchical assignment strategy, multi-overlappers 
occur less frequently, and the multi-graph strategy collapses features where reads sys-
tematically multi-map, converting them into single features. Additionally, by integrat-
ing annotations into communities, more single-annotated features are detected since 
the multi-mapping signal is collapsed as opposed to rescuing methods (CoCo) or prob-
abilistic methods (RSEM) (Additional file 1, k). Communities also facilitate back-trace 
of multi-mapping reads in case of interest. Our results show that a direct relationship 
exists between multi-mapping or multi-overlapping patterns and the biological nature of 
different transcripts, demonstrating the need for an adaptive strategy that treats multi-
mapping as an aggregated signal rather than as an ambiguity or an artifact.

Figure 3d and Additional file 1, g show the impact of different raw counting rules (dis-
card ambiguous alignments, count all ambiguous alignments, fractionally count ambig-
uous alignments, or MGcount) in the total counts per biotype. The quantification of 
protein-coding genes is little impacted by the counting method given lower multi-map-
ping situations. However, for non-coding features while discarding multi-mappers and 
multi-overlappers results in a loss of information, including them all inflates substan-
tially their expression values. Fractionated counting and MGcount force that the total 
contribution of a read is 1. However, MGcount reduces ambiguity compared to raw frac-
tionated counting (Fig. 3c, d) through the hierarchical assignation and the aggregation 
of MG communities. The reduction of pseudogene counts is explained because several 
pseudogenes are assigned to other biotypes while aggregating MG communities within 
the MGcount algorithm. Besides, larger counts are obtained for small-RNA biotypes as 
a consequence of the hierarchical assignation step (Fig.  2b). Altogether highlights the 
sensitivity of RNA expression quantification to the ambiguous alignments handling 
approaches when dealing with non-coding data.

Multi‑mapping graphs capture RNA locus structure and identify feature communities 

coding for sequence‑similar transcripts

Figure 4 explores the sub-graphs generated by MGcount for the most abundant small-
RNA biotypes obtained from the pool of human libraries (K562 cell line and human 
brain). In general, our results show very different sub-graph topologies for different 
biotypes. In most of the cases, we detected that features grouped together in each MG 
community have similar annotations as given by the Hugo Gene Nomenclature Com-
mittee (HGNC), which establishes a standard nomenclature framework for RNA classes 
within major small-RNA biotypes in human [49, 50]. For example, the snRNA graph has 
a few large MG communities that correspond to the different spliceosome components, 
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present in multiple copies [51]. This is also the case for miscRNAs, which comprise 
various RNA biotypes such as 7SKRNA or YRNA sub-units. MGcount automatically 
detected MG communities for 7SKRNAs and YRNAs and their respective retrotrans-
position-derived pseudogenes spread over the entirety of the genome [52]. Most micro-
RNA annotations did not form MG communites, with the exception of a few loci that 

Fig. 4 Graphs of small-non coding main biotypes in human libraries. Each vertex is an annotated features 
with size proportional to its number of aligned reads and color representing its gene symbol in relation to 
the Hugo Gene Nomenclature Committee (HGNC) (annotations not following HGNC are colored in gray and 
often correspond to computationally predicted annotations). Each edge connects two features with shared 
multi-mappers with thickness proportional to the fraction of shared multi-mappers over the total alignments. 
Shared grey areas delineate MG communities. a snRNA graph. Vertices are colored by first number after 
“RNU” pattern in transcript symbol. b snoRNA graph. Vertices are colored by first number after “SNORNA” 
pattern in transcript symbol. c microRNA graph. Vertices are colored by “3p” (orange) and “5p” (blue) patterns 
in transcript symbol. d piRNA graph. Vertices are colored by first number after “PIRNA” pattern. e miscRNA 
graph. Vertices are colored separately by YNY1, YNY3, YNY4, RN7SK, RN7SL, VT patterns in transcript symbol. f 
tRNA graph. Vertices are colored by amino-acid 3-letters reference pattern in transcript symbol. g–h Matrices 
comparing the similarity between MG communities obtained from different input data or algorithm runs 
using the the Normalized Mutual Information (NMI) index. Last column in each panel shows comparison with 
a random permutation of the cluster labels. i Linear regression fit (black dashed line) and its 95% confidence 
level interval (gray area) modelling the relationship between RT-qPCR and NGS fold change estimation of 
Human Brain and K562 expression for 20 small-RNA markers of different biotypes. Linear regression fit (black 
dashed line) and its 95% confidence level interval (gray area) modelling the relationship between RT-qPCR 
and NGS fold change estimation of human brain and K562 expression for 20 small-RNA markers of different 
biotypes. (HBR: Human Brain)
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code for the same microRNA. These consistently aggregated by corresponding mature 
forms (3p or 5p). We observed more heterogeneous profiles with snoRNAs, for which 
large and small communities were detected. The family of piRNAs exhibited compact 
communities in relation with genomic regions where piRNA sequences reside [53]. For 
tRNA-derived fragments, communities mainly followed amino acid type and fragment 
position within the tRNA precursor.

These results demonstrate that MGcount can successfully detect small-RNA com-
munities in a biotype-specific manner and suggests that it will be useful in species with 
poor annotations. Furthermore, some MG communities integrated features that did not 
follow the HGNC annotations system and which were associated with computationally 
predicted annotations (grey nodes in Fig. 4) with other well- characterized small RNAs. 
For example, SNORD46 (Chr1:44,776,492-44,776,589) was clustered together with 
AC009365.1 (Chr7:132,753,023-132,753,126), a repeated locus diverging in only 15 out 
of 104 nucleotides. This suggests a potential application of MGcount in assigning com-
putational predictions to their corresponding RNA families during quantification.

Additional file 1, h–i displays three subgraphs from the long-RNA graph extracted by 
randomly sub-sampling 500 MGcount features out of those newly defined by MGcount. 
These were either features that had remained single, or newly aggregated features as 
communities of multiple, originally annotated features. MGcount defined 2951 long-
RNA MG communities in our libraries, while 26,060 features remained single. Large 
communities detected by MGcount often aggregated pseudogenes with protein-cod-
ing features, showing that MGcount successfully avoids attributing read counts to 
pseudogene inactive loci copies by aggregating pseudogenes with the active gene in a 
community.

MG community detection is robust at both intra‑ and inter‑sample levels

To evaluate the robustness of the MG community detection, we compared the commu-
nities detected with different seeds (for random-number generators) on the same and 
on different total-RNA-seq input datasets. We separately processed each replicate of 
human brain and K562 libraries twice and computed the Normalized Mutual Informa-
tion (NMI) between partitions of commonly clustered features (Fig. 4g–h). Each solution 
was also compared to randomized MG communities obtained by permuting the group-
ing labels of all vertices in the graphs. Long-RNA and small-RNA partitions were nearly 
identical for the two different runs within the same input dataset (NMI = 1), demon-
strating stable convergence and minimal variability due to the algorithm’s stochastic 
component. Communities across biological replicates showed high similarity in both 
human brain and K562 libraries, and a comparison between the two templates exhibited 
only a small reduction of the similarity of solutions. In summary, our analysis showed 
high reproducibility between MG communities obtained from RNA-seq libraries pre-
pared under similar technical conditions, independent of the RNA origin, and demon-
strates the robustness of MGcount’s community detection.

Validation of expression quantification via RT‑qPCR

To independently check the accuracy of the quantification between small RNAs of dif-
ferent biotypes, we compared the total-RNA-seq MGcount expression levels of human 
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brain and K562 libraries with estimates of expression levels from RT-qPCR for 20 small-
RNA markers with different multi-loci profiles. All transcript abundances were normal-
ized by SNORD49A, which was highly expressed in both samples. The linear regression 
showed good adjustment in modelling the fold-change concentration relationship 
between human brain and K562 libraries, independently measured with total-RNA-seq 
libraries and with RT-qPCR (Fig. 4i).

MGcount detects expression of cell‑specific non‑coding RNA communities

In order to evaluate its performance at single-cell resolution, we ran MGcount on a pub-
lic single-cell total-RNA-seq dataset [14] consisting of 637 cells from three human cell-
lines (dermal fibroblasts, HEK293T cells and MCF-7 cells). We performed differential 
expression analysis on small-RNA features between the three cell populations (Wilcoxon 
Rank Sum test, adjusted p value below 0.05) using count tables in which features were 
aggregated into MG communities by MGcount and count tables obtained with the ref-
erence pipeline described in [14]. In both cases, we used the GTF file that integrates 
several databases. The average log2 fold-change of differentially expressed small-RNA 
features detected by MGcount was larger than that of the reference pipeline, indicating 
that the aggregation of the multi-mapping signal helps detecting stronger effects. With 
the reference pipeline, we detected 397 statistically significant small-RNA-annotated 
features at an average log2 fold-change above 0.5, whereas with MGcount, we detected 
179 features (out of which 94 were communities of multiple, originally annotated fea-
tures, and 85 were individual features) (Fig. 5a). These correspond to 1167 of the origi-
nally annotated features. Remarkably, by setting the log2 fold-change threshold at 2.5, 
MGcount detects 28 significant features (including 10 MG communities). These equals 
to 132 features while with the reference pipeline only 63 are detected. Some MG com-
munities were predictive markers of specific cell types, e.g., the SNORD114 loci tandem 
cluster located within the human 14q32 locus for dermal fibroblasts (log2 fold-change: 
4.52) and the piR-36011 cluster for HEK293T cells (log2 fold-change: 2.33) (Fig. 5b–d). 
These results demonstrate that MGcount recovers biologically meaningful information 
from multi-assigned reads at single-cell resolution.

Fig. 5 MGcount quantification outputs in a single-cell case example dataset. a Number of statistically 
significant features (p value below 0.05) detected by log2 fold-change average. b MGcount sub-graph for 
snoRNAs and piRNAs where SNORD114 and piR-36011 communities are highlighted. c Expression level of 
SNORD114 community by cell represented in the PC1-PC2 space. d Expression level of piR-36011 community 
by cell represented in the PC1-PC2 space. (PC: Principal Component)
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Discussion
RNA-seq reads frequently align to multiple places in the genome or to genomic 
regions that encode more than one transcript. Traditional RNA-seq pipelines com-
monly discard such reads, which does generally not pose a problem in the quantifi-
cation of protein-coding transcripts. However, the amount of biological information 
encoded in ambiguous alignments in datasets with non-coding RNA can be consid-
erable (Fig.  3b–d). While a number of solutions for the assignation of ambiguously 
mapping reads to the expression of corresponding RNA features have been proposed, 
these solutions focus on particular biotypes or model species; premises are not fully 
met by all total-RNA-seq datasets, which demand flexible approaches to the simulta-
neous quantification of any transcript.

Here, we propose a flexible quantification framework to interrogate heterogeneous 
RNA-seq datasets comprising different non-coding RNA biotypes. First, a hierarchi-
cal assignation workflow resolves overlaps of small RNAs embedded in long-RNA loci 
and allows to distinctly quantify spliced and unspliced features of long RNA. Then, to 
quantify reads that map to multiple locations in the genome (“multi-mappers”), fami-
lies of features with almost identical sequences are automatically detected and aggre-
gated in MG communities. With this approach, we gain confidence that the given read 
originated from a community of annotations rather than a single genomic locus. This 
approach defines a meaningful output level for the quantification of different biotypes 
in a data-driven manner and collapses repeated loci that are associated with the same 
RNA product. This solution may also be used to quantify poorly annotated transcripts 
as a community (e.g., RNY1 in Fig. 4e) instead of diluting them as several “unknown 
features”, each of which at a low level of expression. We believe MGcount preserves 
the multi-mapping information for downstream analyses, improving the quantifica-
tion of small-RNA biotypes and long RNAs with duplicated sequences, and reducing 
assignation errors and biases associated with multi-alignment handling premises that 
do not suit all biotypes. The concept of gene merging has previously been suggested 
for the study of mRNA [29]. However, these approaches result in the same gene being 
included in different merged-gene groups, as we observed for mmquant (Additional 
file 1, k). Here, we propose a graph-based approach that allows to distinguish system-
atic multi-mappers (used to define communities of aggregated features) from residual 
multi-mappers (ignored in feature aggregation and quantified in a weighted manner) 
prior to aggregation. We believe that the graph provides an integrative representa-
tion of transcripts with multi-locus profiles and that it enhances interpretability of 
results. In our results, we found the sub-graphs for each small-RNA biotype had dif-
ferent topologies, linked to its biogenesis and nature. Repeated-loci structure of some 
well-know transcripts is already incorporated in the gene symbol (e.g. MIR9-1, MIR9-
2, MIR9-3 annotations for Human MIR9). However, this is not available for all anno-
tations. Already in the 4 model-organisms analysed, we identified similarity patterns 
in computationally predicted annotations and dissimilarity patterns between differ-
ent small RNA pseudocopies. Given computationally predicted annotations without 
detailed information abound in non-model organisms, we believe their RNA-seq 
based analysis can largely benefit from the MGcount automatic framework. This will 
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improve quantification and will provide an exploratory tool to identify repeated pat-
terns’ structure in annotations through the multi-mapping graph analysis.

MGcount has two main limitations. First, since MGcount defines communities in a 
data-driven manner, different datasets with different expression patterns will identify a 
distinct set of communities. Thus, to compare community-level quantification across 
samples, all the samples need to be quantified in the same run. Secondly, MGcount 
depends on a GTF and does not perform de-novo annotation. Consequently, it can only 
quantify what it is annotated. Part of the non-coding transcriptome is still undiscov-
ered and unannotated, even in well-studied species [54]. Yet, in the small-RNA research 
field, algorithms have been developed to predict and annotate transcript loci based on 
RNA conservation [55–58]. With the means to computationally annotate regulatory 
small RNA, MGcount fills a gap by revealing the structure of predicted annotations 
from experimental evidence coming from RNA-seq data. We envision MGcount’s appli-
cability not only in expression quantification but also in the uncovering of small-RNA 
genomic structure profiles.

Conclusion
MGcount is a novel RNA-seq quantification tool that combines two strategies to quan-
tify ambiguous alignments in an adaptive, data-driven manner. Its framework allows 
a wider and more inclusive interrogation of total-RNA-seq data, incorporating the 
simultaneous quantification of coding and non-coding transcripts. MGcount models 
alignment ambiguities with biotype-specific graphs that are used for the detection of 
communities of sequence-similar transcripts. Besides the quantification of transcript 
expression, such graphs constitute a powerful computational tool for the inspection of 
the structure of multi-loci copies from sequencing data, enhancing the interpretability 
of results. Given its capacity to simultaneously quantify all biotypes and to handle multi-
mappers and multi-overlappers, we believe MGcount will contribute to improving the 
study of protein-coding and regulatory RNAs interplay by means of total-RNA-seq, even 
in less characterized species, at both bulk and single-cell resolution.

Appendix
Methods

Samples origin

Human brain total-RNA was commercially acquired (Ambion, AM7962). K562 cells 
(clone CCL-243) were cultured with IMDM (ATCC - 30-2005 and 10% FBS, Hyclone 
- SH30071.03HI) and total-RNA was extracted and purified with the Qiagen miRNeasy 
Mini kit (cat no. 217004) according to the user manual. Arabidopsis thaliana hydroponic 
plants were grown and harvested after 10 weeks and total-RNA was extracted and puri-
fied according to protocol [59] in the botanical lab at the University of Liége. Total-RNA 
from snap frozen mouse liver tissue (P62 overexpressing mice grown and euthanized 
after 5 weeks) and from Nematode (3000 C. elegans N2 wildtype worms per sample) 
was isolated by immediate lysis in TriReagent (Sigma-Aldrich, Seelze, Germany), puri-
fied with acid phenol and additionally digested with DNAseI (Invitrogen, Karlsruhe, 
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Germany) by Martin Simon and his team at the Molekulare Zellbiologie und Mikrobiol-
ogie der Bergischen Universität Wuppertal.

Libraries preparation and sequencing

Libraries for arabidposis roots, mouse liver, nematode, human brain and K562 human 
cells were prepared in duplicates with the D-Plex Small RNA-seq Kit for Illumina 
(Diagenode Cat#C05030001) which employs polyA tailing and template-switching. Fur-
ther, two additional libraries for each human template (human brain and K562 cells) were 
prepared after enriching for small-RNA content with MiRNeasy tissue/cells advanced 
kit (Qiagen Cat#217684) for the quantification validation experiment. Sequencing was 
performed with Illumina technology under the following parameters: SE75 for human 
brain, SE50 for K562 cells samples and SE100 for the rest of samples (nematode, arabi-
dopsis and mouse). All the libraries were prepared and sequenced in duplicates.

NGS pre‑processing

Unique molecular identifiers (UMI) of length 12 were extracted from each read with 
fumi_tools v.0.18.1. Reads were trimmed for Illumnina adapters and polyA tails using 
cutadapt v3.0 with arguments “–trim-n –match-read-wildcards -u 16 -n 4 -a AGA TCG 
GAA GAG CAC ACG TCTG -a AAA AAA AA -a GAA CTC CAG TCA C -e 0.2 –nextseq-
trim 20 -m 15” and subsequently aligned to the reference genomes using STAR v2.7.0d 
with arguments—outFilterMultimapScoreRange 0 –outFilterMultimapNmax 50 –out-
FilterMismatchNoverLmax 0.05 –outFilterMatchNmin 15 –outFilterScoreMinOverL-
read 0 –outFilterMatchNminOverLread 0 –alignIntronMax 1 –readFilesCommand zcat 
–outSAMtype BAM SortedByCoordinate –outSAMunmapped Within”. Finally, PCR 
clones were removed by UMI-based deduplication using fumi_tools.

qPCR experiment

A subsequence from 20 different small-RNA targets was selected to design a miRCURY 
LNA custom PCR plate of 96 wells (Cat #339330) so that each plate contained 4 wells 
measuring the same target. Two plates were employed to quantify targets expression in 
quadruplicates for human brain and K562 samples. Relative abundance of each target 
was estimated by normalizing Cq values obtained with RT-qPCR for each target with 
respect to SNORD49A.

Database integration

To generate the GTF files integrating annotations from multiple databases Ensembl was 
considered the primary annotations source. Next, annotations from different databases 
were appended after curation and reformatting to an Ensembl-like structure. piRNA and 
siRNA were reformated as three GTF rows encoding to an Ensembl-like single gene-
transcript-exon structure. miRNA precursor and tRNA features were reformatted to 
Ensembl-like gene entries while the miRNA mature features and tRNA fragments [tRF] 
were integrated as transcript and exon features with gene_id and gene_name given by 
its precursor. Since RNACentral aggregates multiple annotation sources, annotations 
from this database (piRNA in mouse and siRNA in arabidopsis) were semi-automatically 
curated with a custom script detecting groups of annotations overlapping by more than 
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half of the annotation body (considered redundant) and selecting the annotation with 
median coordinates within the overlapping set for integration. The full script to generate 
the 4 GTF files is available in the MGcount Github repository. According to the spe-
cie, annotations include: A. thaliana: Ensembl, miRBase (microRNA) and RNACentral 
(siRNA); H. Sapiens  Ensembl, DASHR (piRNA and tRF) and miRBase (microRNA); M. 
musculus: Ensembl, miRBase (microRNA) and RNAcentral (piRNA); C. elegans: Ensembl 
and miRBase (microRNA).

Single cell total‑RNA‑seq data analysis

Single-cell dataset count tables were pre-processed with the Seurat package [60]. Cells 
with more than 2000000 counts or less than 2000 features in the reference pipeline 
[14] were filtered out from both reference table and MGcount table. Counts were log-
normalized with a scale factor of 1000000; centered and scaled by the vector of variable 
features detected with the variance stability transformation method with default param-
eters. Principal Component Analysis was performed on the subset of small-RNA and 
long-RNA exonic counts. First and second Principal Components were employed for 
visualization (Fig. 5a). Deferentially expressed small-RNA features were detected with a 
Wilcoxon Rank Sum test (adjusted p-value below 0.05) between cell populations.

Availability and requirements
Project name: MGcount
Project home page: https:// github. com/ hitaa ndrea/ MGcou nt
Operating system(s): GNU/Linux
Other requirements: featureCounts
Programming language: Python3
License: GNU GPL
Any restrictions to use by non-academics: None

Abbreviations
BAM: Binary sequence alignment/map (SAM) format; GTF: Gene transfer format; lncRNA: Long non-coding RNA; mRNA: 
Messenger RNA; tRF: tRNA fragment; HGNC: Human Gene Nomenclature Committee.
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The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s12859- 021- 04544-3.

Additional file

Additional file 1. Supplementary figures. a–d Frequency of annotated transcriptomic features overlapping in 
genomic origin by biotype and organism for Human (a), Arabidopsis (b), Mouse (c) and Nematode (d). Dotplot 
presents combinations of two (blue) or three (purple) overlapping features of different biotypes whose occurrence 
exceeds the 5% of the total number of features from the less abundant biotype in the combination. The top barplot 
shows the log10 of the total number of cases per combination. The right barplot shows the relative proportion of 
features overlapping with any other feature by biotype. e Proportion of reads from a human total-RNA-seq library 
overlapping to 1, 2 or more annotations according to raw alignments assignation (left) and after MGcount assigna-
tion by hierarchical rounds (right). f Proportion of reads multi-mapping to a given number of genomic locations (up 
to 50), according to raw alignments assignation (left) and after MG community aggregation by MGcount (right).(HBR: 
Human Brain, sNC: small non-coding; lNC: long non-coding)). g Comparison of counts when only uniquely-mapping 
reads are counted; all alignments are counted, all alignments are fractionally counted as 1 divided by the number 
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of multi-assigments or quantified with MGcount. h–j Three random sub-graphs of 500 features after aggregation 
extracted from the long-RNA graph. Each vertex is an annotated feature. Its size is proportional to its number of 
aligned reads. Vertices are colored in blue for protein-coding, yellow for pseudogenes and pink for other lncRNA 
transcripts. Each edge connects two features with shared multi-mappers with thickness proportional to the fraction 
of shared multi-mappers over the total alignments. Shared grey areas delineate MG communities. k Comparison of 
the number of features detected by biotype with a mean count of 5 over human brain replicates. Intronic counts 
for MGcount are not considered. In addition to ambiguous alignment quantification approaches, softwares differ in 
assignation criteria: RSEM uses a probabilistic criteria; featureCounts and MGcount were configured with the same 
criteria defined as a full-overlap between all the nucleotides of a read and the annotation; Coco and mmquant  
equire a minimum number of nucleotides for assignation, which were set according to default parameters (10nt 
for Coco and 1nt for mmquant). The comparison is made at community-level, where mmquant merged genes are 
annotated here as mmquant communities; and at gene-level, where for communities algorithms a gene is detected 
if it belongs to a detected community. MGcount results in a lower number of features since each community is 
quantified as a single feature. In addition, the communities approach allows a more inclusive quantification of the 
individual features collapsed in communities and facilitates multi-mapping reads back-trace in case of interest, as 
compared to other methods. Incorporating annotations from multiple sources in the custom GTF allows to detect 
more transcripts and biotypes. Mmquant quantification leads to a very large number of communities since the same 
gene can be part of multiple merged genes, which can difficult differential feature expression analysis, as opposed 
to MGcount.
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