Table S1. Key findings related to LBW from select epidemiological studies of maternal Cd burden

Location	Sample Type	Key Findings	Source
Durham County, North Carolina, USA	Maternal blood	Birth:Reduced infant weight	(Vidal et al., 2015)
Hubei Province, China	Cord blood	Birth: Reduced infant length Reduced infant weight 	(Tian et al., 2009)
	Material blood	Reduced infant length	
Hubei Province, China	Cord blood	Birth: • Reduced infant length	(Zhang et al., 2004)
Coastal South Africa	Maternal blood	Birth: Reduced infant weight	(Röllin et al., 2015)
Wuhan, China	Maternal urine	Birth: Reduced weight of female infants	(Cheng et al., 2017)
Guangdong Province, China	Maternal urine	 Birth: Reduced weight of female infants Reduced length of female infants 	(Zhang et al., 2018a)
Bristol, England	Maternal blood	Birth: Reduced weight of female infants Reduced length of female infants 	(Taylor et al., 2016)
Rochester, New York, USA	Maternal urine, placenta	Birth:No difference in birth weight or length	(Barrett et al., 2023)

Table S2. Key findings related to fetal growth restriction and low birth weight from experimental animal models of early life Cd exposure

Model	Exposure Methods	Key Findings	Source
Wistar rats	10 ppm Cd from cadmium chloride (CdCl ₂) in maternal drinking water from weaning to mating, 50 ppm Cd during gestation	Postnatal day (PND) 0: • Reduced pup weight	(Castillo et al., 2012)
Wistar rats	3, 15, 30 or 50 ppm Cd from CdCl ₂ through drinking water during gestation	 PND0, 50 ppm: Reduced pup weight PND0; 3, 15, and 30 ppm Cd: No difference in pup weight 	(Ronco et al., 2009)
Wistar rats	70 mg/L CdCl ₂ with or without 70 mg/L of CuSO ₄ in maternal drinking water during gestation	 PND0, Cd alone: Reduced pup weight PND0, Cd with Cu: No difference in pup weight 	(Enli et al., 2010)
Wistar rats	30 ppm Cd from CdCl ₂ in maternal drinking water during gestation	 PND0: No difference in pup weight No difference in pup length 	(Ronco et al., 2011)
Wistar rats	Maternal subcutaneous (SQ) injection of 0.3 or 0.6 mg/kg Cd from CdCl ₂ from gestational day (GD) 7-15	 PND1, 4, 7, 14, and 21; 0.3 or 0.6 mg/kg: No difference in pup weight 	(Minetti and Reale, 2006)
Sprague- Dawley rats	Maternal intraperitoneal (IP) injection of 0.25 or 0.5 mg/kg Cd from CdCl ₂ from GD4-19	 GD20, 0.5 mg/kg: Reduced fetal weight GD20, 0.25 mg/kg No difference in fetal weight 	(Zhang et al., 2016b)
C57BL/6 mice	Maternal IP injection of 4 mg/kg CdCl ₂ on GD8, with or without zinc chloride (ZnCl ₂)	 GD9 and GD11, Cd alone: Reduced fetal length GD9 and GD11, Cd with Zn: Fetal length returned to normal 	(Fernandez et al., 2003)
C57BL/6 mice	10 mg/L CdCl ₂ in maternal drinking water during gestation	PND0:No change in pup weight or length	(Zhao et al., 2018)
C57BL/6J and CAST/EiJ hybrid mice	1 or 50 ppm CdCl ₂ in maternal drinking water for 5 weeks prior and during gestation	 PND0, 1 ppm: Reduced pup weight in males with CAST/EiJ mothers PND0, 50 ppm: Reduced pup weight in all groups 6 months old, 50 ppm: Reduced pup weight in females with C57BL/6J mothers 	(Hudson et al., 2021)
CD-1 mice	Daily maternal IP injection of 0.5 mg/kg CdCl ₂ from GD13-17	PND0:Reduced pup weightReduced pup length	(Ji et al., 2011)
CD-1 mice	Maternal inhalation of 100 or 230 µg cadmium oxide (CdO) from 4.5- 16.5 DPC	 PND0, 100 μg: No change to pup weight or length e14.5 and 17.5, 230 μg: Reduced embryo length No difference in embryo weight PND0-PND21, 230 μg: Reduced growth rate of neonates 	(Blum et al., 2012)
Zebrafish	Aqueous exposure of embryos to 1-200 nM cadmium-telluride (CdTe) quantum dots	 120 hours post-fertilization (hpf), 25-200 nM: Dose-responsive reduction in body length 	(Zhang et al., 2012)
Zebrafish	Aqueous exposure of embryos to 0.8-104.1	96 hpf, 17.8 μM:Reduced body size	(Zhang et al., 2015)

	µM Cd as CdCl₂ from 0- 96 hpf		
Cobb chickens	Shell-less culture with 89 µM Cd from cadmium acetate (CdAc) for 60 hours, with or without zinc acetate (ZnAc)	 48 hours after treatment, Cd alone: Reduced embryo weight 48 hours after treatment, Cd with Zn: No reduction in embryo weight 	(Thompson and Bannigan, 2001)

Table S3. Key findings related to placenta development and function from epidemiological studies of maternal Cd burden

Population	Sample Type	Key Findings	Source
Matlab, Bangladesh	Placenta, cord blood	Birth: Elevated placental MT	(Kippler et al., 2012)
Shantou, Guangdong Province, China	Placenta	Birth:Shortened placental telomere length	(Lin et al., 2013)
New Hampshire, Rhode Island, and Massachusetts, USA	Placenta	 Birth: DNA hypermethylation in placenta Dysregulated expression of genes and loci related to inflammatory signaling, cell growth, and birth metrics in placenta 	(Everson et al., 2018)
Japan	Maternal blood	During pregnancy:Diagnosis of placenta previa	(Tsuji et al., 2019)
Zagreb, Croatia	Placenta	 Birth: Increased placental Cd accumulation in smokers Placental insufficiency in smokers Increased placental Zn in smokers No effect of smoking status on placental estrogen or progesterone (P4) 	(Stasenko et al., 2010)
New Hampshire, Rhode Island, and Massachusetts, USA	Placenta	 Birth: Placental upregulation of five miRNAs related to nervous system development 	(Tehrani et al., 2023)

Table S4. Key findings related to placenta development and function from experimental animal models of gestational Cd exposure

Species	Exposure Methods	Key Findings	Source
Opecies			oource
Wistar-Porton	Single maternal	GD20:	(Samarawickr
rats	intravenous (IV)	Degeneration of maternal vasculature	ama and
	Injection of 1.25 mg/kg	Loss of placenta architecture	Webb, 1979)
		Clotting and retroplacental hemorrhage	(1) 11 (1)
Wistar rats	Maternal SQ injection	GD19, 0.1, 0.4, 0.8, 1.6 mg/kg:	(Hazelhoff
	of 0-1.6 mg/kg CdCl ₂	Reduced placental weight:	Roelfzema et
		G019, 1.6 mg/kg	al., 1965)
	gestation	 Increase in collagen libers in the basal membranes of fetal vasculature. 	
Wistar rate	Maternal SO injection		(Roelfzema
WISIAI TAIS	of 0.49 mg/kg Cd as	 Elevated labyrinth divcogen 	(100011201112 et al. 1987)
	CdCl ₂ daily throughout		01 41., 1001)
	gestation		
Wistar rats	Maternal SQ injection	PND18-20:	(Hazelhoff
	of 0.49 mg/kg Cd as	Elevated labyrinth glycogen	Roelfzema et
	CdCl ₂ daily throughout	PND14-20:	al., 1987)
	gestation	 Increasing placental Cd accumulation over time 	
Sprague-	Maternal SQ injection	GD18:	(Cho et al.,
Dawley rats	of 40 µmol/kg CdCl ₂ on	 Ultrastructural cytological changes in the 	1988)
	GD18	labyrinth	
		Disturbed maternal and fetal circulation	
		Slight reduction in placental succinate	
		dehydrogenase activity	
Charles Foster	SQ Injections of 0.05	GD5:	(Nampootniri
1815	proestrus through CD5	Reduced 2n in MT fraction of the placenta	2008)
	proestrus through GDS	Reduced placental protein, DNA, RNA, sholesterel, total lipid, and divergen	2000)
		Reduced steroidogenic enzymes P4 and	
		estradiol (F2) in the placenta	
Wistar rats	3-50 ppm Cd ²⁺ from	GD20, 50 ppm:	(Ronco et al
	CdCl ₂ in maternal	Elevated placental corticosterone	2009)
	drinking water through	GD20, 3-30 ppm:	,
	GD20	No difference in placental corticosterone	
Fischer 344	Maternal SQ injection	GD20, 2.0 and 0.2 mg/kg/day:	(Lee et al.,
rats	of 0.2 or 2.0 mg/kg/day	Reduction in placental trophoblast cells	2009)
	Cd as CdCl ₂ from	Reduced placenta weight	
	GD11-19	Down regulation of lactogen genes in placenta	
		GD20, 2.0 mg/kg/day only:	
		Increase in junctional zone apoptosis.	
		No change in sponglotrophoblast and trophoblast	
		dose	
Wistar rats	70 mg/L CdCl ₂ in	GD21. Cd only:	(Enli et al
	maternal drinking	Cd accumulation in the placenta	2010)
	water throughout	 Increased oxidative stress in the placenta 	, ,
	gestation with or	No change in placenta weight	
	without 70 mg/L	GD21, Cd with Cu:	
	CuSO ₄	Alleviation of oxidative stress	
		No alleviation of placental Cd accumulation	
Wistar rats	30 ppm Cd from CdCl ₂	GD20:	(Ronco et al.,
	in maternal drinking	 Increased placental expression of NF-κB 	2011)
	Water during gestation	0000	
Sprague-	Naternal IP Injection of	GD20:	(vvang et al.,
Dawley rats	CdCl2 daily from GD5	Inickeneu vessel Walls Evenesive perivilleue fibrie desecition in the	2014)
	19	Excessive perminous librin deposition in the labyrintb	
		 Vacualization and swelling of decidua 	
		Increased placental corticosterope	
	L		L

		• Reduced placental 11β -HSD2 gene expression	
Wistor rate	50 mg/L Cd as CdCla		(Mikolić et al
Wistal Tats	in maternal drinking	 Elevated placental Zn 	(INIKOIIC et al., 2015)
	water throughout	No change in placental Fe. Cu. P4 and	2010)
	gestation	testosterone (T)	
Sprague-	1. 3. or 9 mg/kg/dav	GD20:	(Liu et al.,
Dawley rats	CdCl ₂ via oral gavage	Altered placental abundance of 15 proteins,	2016)
_	until GD20	including reduced ABCG2 and ABCB4	
Wistar rats	SQ 0.04 mmol/kg Cd	6-24 hours post-injection:	(Yamagishi et
	injection on GD18	 Placental necrosis and apoptosis 	al., 2016)
		Cd accumulation in the fetal portion of the	
	00::: :: :: :: :: ::	placenta	
Wistar rats	SQ injection of 0.5	GD15, 17, 19, and 21:	(Erboga and
	during destation	Reduced placenta size Inhibited traphoblast proliferation	Kanter, 2010)
	during gestation	 Infinitied trophobiast promeration Increased apoptosis in trophoblasts 	
Spraque-	Maternal IP injection of	GD20_0.25 mg/kg	(Zhang et al
Dawley rats	0.25 or 0.5 mg/kg	 Increased expression of oxidative stress and 	2016b)
	CdCl ₂ from GD4-19	antioxidant proteins	
		 Activated DNA repair in placenta 	
		Decreased placental total antioxidant capacity	
		GD20, 0.5 mg/kg:	
		fetal lethality largely prohibited analysis	
Wistar rats	Maternal SQ injection	GD20, all treatment timepoints:	(Diaz et al.,
	of 10 mg/kg Cd from	Changes in levels of placental glycosylated	2017)
	CdCl ₂ on GD4, 7, 10,	lectins	
CD-1 mice	Maternal inhalation of	e10.5·	(Blum et al
CD-1 IIICe	100 or 230 ug CdO	Reduced placenta weight	(Didifi et al., 2012)
	from 4.5 to 16.5 DPC	e14.5 and 17.5	2012)
		 Increased placenta weight 	
ICR mice	Maternal IP injection of	GD9, Cd alone:	(Wang et al.,
	4.5 mg/kg CdCl2 on	Decrease in placenta weight	2012)
	GD9 with or without	Decrease in average blood sinusoid area in the	
	pretreatment with	labyrinth	
	alpha-phenyl-IN-t-	Decreased proliferation and increased	
	antioxidant	apoptosis in the labyrinth	
	antioxidant	Increased placental endoplasmic reticulum (ER) stross	
		Increased placental oxidative stress	
		Decreased placental glutathione (GSH)	
		GD9 Cd with PBN:	
		Attenuation of decrease of placental GSH	
		Attenuation of increase in placental oxidative	
		stress and ER stress	
CD-1 mice	Maternal IP injection of	GD15, 8 hours post-injection:	(Hu et al.,
	3.0 mg/kg CdCl ₂ on	Upregulation of inflammatory cytokine genes (<i>II</i> -	2018)
	GD15	1β , MIP-2)	
		 Unregulation of inflammatory cytokine genes 	
		$(Tnf-\alpha Kc and Min-2)$	
		Activation of the Akt pathway	
CD-1 mice	Maternal IP injection of	GD18, Cd alone:	(Guo et al.,
	1.0 mg/kg/day CdCl ₂	Decreased placental weight	2018)
	from GD13-17 with or	Decreased internal space of blood vessels in	
	without co-injection of	the labyrinth	
	N-acetylcysteine	Reduced cell proliferation	
	(NAC)	ER stress	
		Reduced expression of growth factors and	
		nutrient transporters	
		Attenuation of placental officia	

C57BL/6J	1 or 50 ppm CdCl ₂ in maternal drinking water before and during gestation	 e18.5, 50 ppm: Decreased relative female placenta weight Increased expression of imprinted growth regulation gene <i>Cdkn1c</i> Increased labyrinth area fraction e16.5, 50 ppm: Decreased raw male placenta weight Increased relative male placenta weight 	(Simmers et al., 2023)
CD-1	50 or 150 mg/L Cd as CdCl ₂ in maternal drinking water from GD8-17	 GD18 Inhibited placental estrogen synthesis Reduced placental E2 Downregulation of estrogen synthases CYP17A1 and CYP19 	(Liu et al., 2022b)

Table S5. Ke	y findings from	in vitro studies	of the effect of (Cd exposure on th	ie placenta

Tissue/cell type	Exposure Methods	Key Findings	Source
Placental lobules from healthy, nonsmoking women immediately after birth	Perfusion for 4 hours with 10, 20 or 100 nmol/mL Cd as CdCl ₂ with or without ZnCl ₂	 10nmol/mL: Reduced placental transfer of Zn 20 and 100 nmol/mL Loss of volume in fetal-origin placental vasculature 100 nmol/mL: Placental necrosis No significant differences in oxygen consumption, lactate production, glucose consumption, or amino acid uptake for all doses 	(Wier et al., 1990)
Primary human trophoblasts	Cultured for 96 hours with 5, 10, or 20 µM CdCl ₂	 10 and 20 μM: Decrease in leptin transcript abundance 	(Stasenko et al., 2010)
JEG-3, hypertriploid human trophoblast cell line	Cultured for 48 hours with 0.028, 1, 10, or 25 µM CdCl ₂	 1-25 μM: Impaired cell migration 0.028 and 1 μM: Upregulation of <i>TGFB1</i> gene expression 10 and 25 μM: Downregulation of <i>TGFB1</i> gene expression Downregulation of <i>TGFB1R</i> gene expression Downregulation of <i>SMAD2</i> gene expression Upregulation of <i>SMAD3</i> gene expression 	(Brooks and Fry, 2017)
HTR-8/SVneo, human trophoblast cell line	Cultured for 24 hours with 2 or 20 µM CdCl ₂ with or without overexpression of S100P	 2 and 20 μM Cd alone: Inhibited cell proliferation Decreased gene and protein abundance of Ca²⁺ transporter S100P With over-expression of S100P: Attenuation of Cd-induced reduction in cell proliferation 	(Zhou et al., 2016)
JEG-3, hypertriploid human trophoblast cell line	Cultured for 6 hours with 0, 3.125, 6.25, 12.5, 25 or 50 μ M CdCl ₂ or with 25 μ M CdCl ₂ for 2, 6, 12 or 24 h	 25 μM of CdCl₂ for 24 hours: Upregulation of inflammatory cytokine genes (<i>IL8</i>, <i>IL6</i>, <i>TNFA</i>) Activation of Akt pathway 	(Hu et al., 2018)
BeWo, human epithelial choriocarcinoma cell line	Cultured for 24 hours with 2, 5, 10, or 20 μ M Cd as CdCl ₂ with forskolin (FSK), a differentiation inducer	 24 hours: Dose-responsive inhibition of FSK-induced differentiation 	(Ogushi et al., 2022)

Table S6. Key findings related to congenital anomalies from experimental animal models of early life Cd exposure

Species	Exposure Methods	Key Findings	Source
Wistar rats	Single maternal IV injection of 1.25 mg/kg Cd from GD9-15	 GD20: Hydrocephalus Anophthalmia Microphthalmia Gastroschisis Umbilical hernia 	(Samarawickrama and Webb, 1979)
Albino rats	100 ppm Cd in maternal drinking water from GD0- 20	GD20:No congenital anomalies observed	(Saxena et al., 1986)
Wistar rats	Maternal oral gavage of 2-20 mg/kg Cd from GD7-16	GD21No congenital anomalies observed	(Barański et al., 1982)
Sprague- Dawley rats	Maternal oral gavage of 10-50 mg/kg Cd from GD6-18	GD19No congenital anomalies observed	(Wardell et al., 1982)
Wistar rats	Single maternal IV or IP injection of 0.25-1.0 mg/kg MT-bound Cd between GD8-14	GD20:HydrocephalusUrogenital defects	(Webb et al., 1988)
Wistar-Porton rats	Single maternal IV or IP injection of 1.25 mg/kg Cd as CdCl ₂ on GD8, 10, 12, or 14	GD20, all dosing timepoints:Higher incidence of malformed fetuses	(Holt and Webb, 1987)
ICR mice	Maternal IP injection of 1 or 2 mg/kg Cd sulfate on GD7	GD18:Skeletal malformationExternal malformations	(Murata et al., 1993)
C57BL/6 mice	Single maternal IP injection of 4.0 mg/kg CdCl ₂ at 8 DPC	 e9 and e11 neural tube defects (open neural tube, midbrain, and hindbrain) 	(Fernandez et al., 2003)
C57BL/6J mice	Single maternal IP injection of 4 mg/kg CdCl ₂ on GD7, 8, 9, or 10	 e18.5: Exencephaly only when dosed on GD7 or 8 Primarily limb defects, but no central nervous system defects when dosed on GD9 or 10 Micropthalmia Omphalocoele Heart abnormalities Tail abnormalities Face abnormalities 	(Webster and Messerle, 1980)
MFI mice	Maternal injection of 4 or 6 mg/kg CdCl ₂ on GD7	 GD18: Exencephaly Abnormalities of the ear Exophthalmia and microphthalmia Mandibular/maxillary hypoplasia Edema Abnormalities of limbs and tail 	(Padmanabhan, 1987)
C57BL/6N and SWV/Fnn mice	Maternal IP injection of 4.0 mg/kg CdCl ₂ on GD9	 GD10: Right-sided preference of forelimb ectrodactyly in C57BL/6N embryos No anomaly in SWV/Fnn embryos 	(Chen et al., 2008)
C57BL/6J mice	Maternal IP injection of 4 mg/kg at e9.0	e18.0:Right-sided preference of forelimb ectrodactyly	(Elsaid et al., 2010)

Zebrafish	Aqueous exposure to 100 µM Cd from 4-24 hpf	24 hpf:Microphthalmia	(Chow et al., 2009)
Zebrafish	Aqueous exposure to 0.8- 104.1 μM from 0- 72 hpf	 72 hpf, 17.8 μM: Trunk abnormalities Hypopigmentation Head hypoplasia Microphthalmia Reduced interorbital distance 96 hpf, 17.8 μM: Trunk abnormalities Hypopigmentation Reduced interorbital distance 	(Zhang et al., 2015)
Zebrafish	Aqueous exposure to 100 μ M Cd from 5 hpf to 24, 48, 72, or 96 hpf, with or without co- exposure to taxifolin, a bioflavenoid	Cd alone, at all timepoints: • Yolk sac edema • Eye defect • Head defect • Sacculi/otoliths defect • Tail curvature defect • Tail tip defect With taxifolin: • All defects abolished	(Manigandan et al., 2015)
Zebrafish	Aqueous exposure 0.5 μM Cd a CdCl₂from 4-96 hpf	 96 hpf: No morphological defects or change in body length 	(Di Paola et al., 2022)
Zebrafish	Aqueous exposure to 0.5- 20 mg/L CdTe dots from 4-96 hpf	 24-96 hpf, 0.5-20 mg/L: Increase in spinal deformations, dependent on conjugate 	(Bosch et al., 2023)
Zebrafish	Aqueous exposure to 183.31 µg/L cd as CdCl ₂ with or without ZnCl ₂ from 0-96 hpf	 96 hpf, Cd alone: Pericardial edema Yolk sac edema Tail curvature Crooked bodies Skeletal malformations (kyphosis, lordosis, and scoliosis 96 hfp, with Zn: Partial or total correction of anomolies 	(Chouchene et al., 2022)
Cobb chickens	Shell-less culture with 89 µM Cd ²⁺ from CdAc for 60 hours, with or without ZnAc	 48 hours post-treatment, Cd alone: Limb abnormalities Anterior body wall defects Abnormalities of truncal curvature Defects of cranial aspect of neural tube Eye abnormalities Facial abnormalities 48 hours post-treatment Cd with Zn: Reduced malformation frequency 	(Thompson and Bannigan, 2001)

Table S7. Key findings related to cardiovascular development and disease from experimental animal models of early life Cd exposure

Species	Exposure Methods	Key Findings	Source
Long Evans rats	SQ injection of 10 μmol/kg Cd at PND9	 PND20: Decreased cardiac Zn PND36: Increased cardiac Zn Increased cardiac Cu 	(Thomas and Mushak, 1986)
Wistar rats	75 ppm Cd in maternal and paternal drinking water for two months prior to mating and during gestation	 PND7: Increased cardiac lipid peroxidation 	(Xu et al., 1993)
Wistar rats	50 ppm Cd in maternal drinking water throughout gestation	 PND42: Increase in overall cardiac RNA synthesis No significant differences in cardiac muscle protein synthesis 	(Konecki et al., 2003)
Wistar rats	30 ppm Cd in maternal drinking water throughout gestation	 PND60-70: Decreased endothelium-dependent reactivity in aortic rings Increased thickness of aortic and anterior left ventricular walls Increased aortic levels of HO-1 that was more prominent in females 	(Ronco et al., 2011)
Wistar rats	30 ppm Cd in maternal drinking water throughout gestation	 PND60-70: reduced ischemia-induced cardiac injury during myocardial infarction 	(Zepeda et al., 2012)
BALB/c mice	Maternal IP injection of 2.5 or 4.5 mg/kg Cd on GD9 with or without co- exposure to 6- Formylindolo[3,2- b]carbazole (FICZ, an endogenous activator of AHR)	 GD18, 2.5 mg/kg and 4.5 mg/kg Cd alone: Cardiac hypertrophy Increased cardiac connective tissue Increased mean cardiomyocyte volumes Increased cardiac expression of AHR-Wnt/β-catenin GD18, 4.5 mg/kg Cd alone: Increased length of microvessels Decreased volume of cardiomyocytes and cardiac vessels GD18 2.5 mg/kg and 4.5 mg/kg Cd with FICZ: Abnormalities were exacerbated 	(Omidi et al., 2019)
C57BL/6J mice	0.5 or 5 ppm Cd in drinking water from conception to 13 weeks of age	 PND90, 0.5 and 5 ppm: No induction of cardiac hypertrophy or fibrosis 	(Liang et al., 2019)
C57BL/6J and CAST/EiJ hybrid mice	1 or 50 ppm CdCl ₂ in maternal drinking water for 5 weeks prior and during gestation	 PND0, 1 ppm: Female cardiac hypertrophy PND0, 50 ppm: Cardiac hypertrophy Differentially expressed genes relevant to enlarged hearts, hypertension, abnormal heart and cardiovascular system development, nutritional disease, hypoxia, cellular energy and carbon metabolism, ROS, nitric acid homeostasis and metal homeostasis 6 months old, 50 ppm: Hypertension Increased tail blood volume 	(Hudson et al., 2019)
Zebrafish	Aqueous exposure to 100 μM Cd from 5-48 hpf	 48 hpf: Localized vascular defects in dorsal aortae, segmental, and cranial vessels Reduced complexity of the craniofacial vasculature 	(Cheng et al., 2001)

Zebrafish	Aqueous exposure to	48 hpf:	(Zhang et al.,
	25-300 µM Cd as CdTe	Reduced heart rate	2012)
	dots from 6-48 hpf	96 hpf:	
		Vascular hyperplasia	
		Vascular crossing	
		Vascular turbulence	
		Vascular bifurcation	
Zebrafish	Aqueous exposure to	120 hpf, 0.01-10 μM:	(Wold et al.,
	0.01-10 µM Cd from 24-	Dose-responsive increase in heart rate	2017)
	96 hpf		
Japanese	Exposure to sediment	168 hpf, 1x and 3x:	(Barjhoux et
medaka fish	with 0.3x, 1x, and 3x of	Increased heart rates	al., 2012)
	their environmental	PND0, 0.3x and 3x:	
	habitat's Cd	Abnormal heart positioning	
	concentrations	Heart looping	
American	Aqueous exposure to 1	PND7:	(Dal-Medico
bullfrog	ppb Cd for 2 or 16 days	Loss of cardiac contractility, more pronounced	et al., 2014)
		with longer exposure	

Table S8. Key findings related to neurodevelopment and behavior fromepidemiological studies of maternal Cd burden

Population	Sample Type	Key Findings	Source
Haguenau, France	Maternal hair	 6 years old: Impaired general cognitive, perceptual, quantitative, and motor skills 	(Bonithon- Kopp et al., 1986)
	Newborn hair	 6 years old: Impaired perceptual and motor skills 	
Hubei Province, China	Cord blood	4.5 years old:Lower IQ	(Tian et al., 2009)
Matlab, Bangladesh	Maternal urine	 5 years old: Lower IQ scores, more pronounced effect in female offspring 	(Kippler et al., 2012)
Flanders, Belgium	Cord blood	 7-8 years old: Higher risk of emotional problems in boys only 	(Sioen et al., 2013)
South Korea	Maternal blood	 5 years old: Lower performance IQ No difference in cognitive IQ 	(Jeong et al., 2015)
Crete, Greece	Maternal urine	4-5 years old:Lower general cognitive function	(Kippler et al., 2016)
Shandong, China	Maternal blood	 12 months old: Lower infant social domain developmental quotient 	(Wang et al., 2016a)
Spain	Placenta	4-5 years old:No difference in general cognitive function	(Freire et al., 2018)
Japan	Maternal Blood	 0.5-1.5 years old: Impaired gross motor function Impaired problem solving 2-3 years old All impairments resolved 	(Masumoto et al., 2022)
Guanxi, China	Maternal serum	2-3 years: Impaired gross motor function	(Liu et al., 2022a)
		Impaired language development	
Rio de Janeiro, Brazil	Maternal blood	 6 months: No impairment in social, language, or motor skills 	(de Assis Araujo et al., 2022)
Poland	Cord blood	 1-2 and 7 years old No impairment in behavior or cognition 	(Garí et al., 2022)
Rhode Island, New Hampshire, and Massachusetts, USA	Placenta	 Birth: Upregulated placental miRNAs related to nervous system development Decrease in infant quality of movement and increase in excitability 	(Tehrani et al., 2023)

Table S9. Key findings related to neurodevelopment and behavior from experimental animal models of early life Cd exposure

0	European March 1	Kau Findin an	0
Species	Exposure Methods	Key Findings	Source
Holtzman	Maternal IP injection of	GD21	(Rohrer et al.,
rats	2.0 mg/kg Cd on GD20	Formation of endothelial cell vacuoles in brain	1978)
			(D. () · · ·
Wistar rats	Maternal oral gavage of	PND60, 0.4 or 4 mg/kg:	(Barański et
	0.4 or 4 mg/kg Cd	Reduced exploratory locomotor activity	al., 1983)
	before and during		
0	gestation	DND05 50	
Sprague-	Maternal oral gavage of	PND35-56:	(Stewart et
Dawley rats	25 mg/kg/day Cd from	Reduced sorbitol dehydrogenase activity in	al., 1984)
	GD6-18	the brain	(0)
Wistar rats	50 ppm Cd in maternal	GD20:	(Sowa and
	drinking water	Decreased brain Cu	Steibert,
	throughout gestation	No changes in brain Zn or Fe	1985)
Long Evans	SQ injection of 2 or 10	PND20, 2 µmol/kg:	(Thomas and
rats	µmol/kg CdCl₂ on	Decreased cerebral Cu	Mushak,
	PND9	Increased cerebellar Cu	1986)
		PND20, 10 µmol/kg:	
		Decreased cerebral Zn	
		Decreased cerebellar Zn	
		Increased cerebellar Cu	
		PND36, 10 μmol/kg:	
		Increased cerebral Cu	
		Increased cerebellar Cu	
Wistar rats	4.2 or 8.4 µg/ml Cd in	PND3-12, 4.2 and 8.4 µg/ml:	(Ali et al.,
	maternal drinking water	Delay in cliff aversion response	1986)
	throughout gestation	Delayed development of straight-line	-
		swimming	
		No difference in surface and air righting and	
		visual placing	
		PND14-21, 4.2 and 8.4 µg/ml;	
		Increased spontaneous locomotor activity	
		PND60, 4.2 and 8.4 µg/ml:	
		Decreased spontaneous locomotor activity	
Wistar rats	60 ppm Cd in maternal	PND14:	(Barański,
	drinking water	Decreased brain Cu	1986)
	throughout gestation	PND70-154:	,
		Decreased exploratory locomotor activity	
		Decreased brain Zn	
		Decreased grooming behavior in males	
		Decreased avoidance behavior in females	
Wistar rats	60 or 180 ppm Cd in	GD20, 60 ppm:	(Barański
	maternal drinking water	Decreased fetal brain Zn	1987)
	GD1-20	No difference in fetal brain Cu	,
	_	GD20, 180 ppm:	
		No difference in fetal brain Cu or Zn	
CEY rate	Daily maternal SO	PND38-42: 0.62 and 2.0 mg/kg	(Lehotzky et
	injection of 0.2 0.62	Reduced horizontal motor activity	al 1990)
	2.0 mg/kg Cd from	Delayed acquisition and extinction of the	, 1000)
	GD7-15	conditioned escape response	
		 Increased time spent in immobility during a 	
		wim stress test	
		$PNDQ0_100: 0.2 0.62 and 2.0 ma/ka:$	
		Reduced horizontal motor activity	
		$= \frac{1}{1000} = \frac{1000}{1000} = \frac{1000}{1000}$	
		Delayed acquisition and avtination of the	
		Delayeu acquisition and extinction of the conditioned escape response	
		Longuioned escape response	
1		 increased aggression 	l

Albino Druckrey rats	50 ppm Cd in maternal drinking water throughout gestation	 PND7-14: reduced brain weights reduced activity of mitochondrial enzymes PND21:: No difference in brain weights Reduced activity of mitochondrial enzymes 	(Gupta et al., 1991)
Wistar rats	30 or 75 ppm Cd in paternal and maternal drinking water for two months before and throughout gestation	 PND7, 30 and 75 ppm: No change in brain weight PND7, 75 ppm only: Increased lipid peroxidation in the brain 	(Xu et al., 1993)
Albino Druckrey rats	20 ppm Cd in maternal drinking water during gestation and lactation	 PND1-21: Cd accumulation in brain No difference in brain weight Increased lipid peroxidation in brain Increased brain TSH Increased brain catalase activity Increased GSH reductase activity PND1 only: Reduced brain GSH Increased GSH peroxidase (GPx) activity PND7-21: Increased brain GSH Reduced brain GSH peroxidase activity 	(Gupta et al., 1995)
Albino Druckrey rats	20 ppm Cd in maternal drinking water during gestation	 PND1-21 Increased brain SOD activity Increased brain catalase activity Increased brain GSH reductase activity GD18 and GD 20 Decreased fetal brain GSH peroxidase 	(Gupta et al., 1996)
Albino Druckrey rats	10 ppm Cd in maternal drinking water during gestation, lactation, and up to PND45 in offspring water	 PND15-45: No change in brain weight Reduced total brain lipids Reduced brain cholesterol Increased brain phosphatidylethanolamine PND15 only: Increased total brain triglycerides PND15-21: Reduced brain Zn and Cu PND21-45: Reduced total brain gangliosides Altered brain phosphatidylcholine PND45 only: Reduced brain phosphatidylcholine, phosphatidylserine, and sphingomyelin 	(Gupta and Shukla, 1996)
Wistar rats	Maternal oral treatment with 3.5, 7.0 or 14.0 mg/kg Cd from CdCl ₂ during mating, gestation and lactation, with or without continued treatment and mating of the 2 nd generation	 2nd generation and 3rd generation, 3.5, 7.0 or 14.0 mg/kg: Dose-responsive increase in ECoG mean frequency and evoked potential latency in the somatosensory, visual, and auditory foci of the brain Dose-responsive increase in the refractory period of the tail nerve Dose-responsive decrease in the ordinate-conduction velocity of the tail nerve Dose-responsive decrease in ECoG index in the somatosensory, visual, and auditory foci of the tail nerve 	(Nagymajtényi et al., 1997)
Swiss albino rats	15 ppm Cd from CdCl ₂ in maternal drinking water during gestation,	PND60, with postnatal exposure:Impaired visual evoked potentials	(Yargiçoğlu et al., 1997)

	with or without continued exposure until PND60	 Increased lipid peroxidation in the brain PND60, without postnatal exposure: Visual evoked potential and lipid peroxidation parameters largely rescued 	
Sprague- Dawley rats	5 ppm Cd in maternal drinking water from PND0-19, with or without continued exposure until PND42	 PND42, with or without post-weaning Cd: No detected Cd in brain No change in brain weight PND42, without post-weaning Cd: Reduced cortical hippocampal levels of 5- hydroxyindoleacetic acid compared to those without lactational exposure Reduced cortical levels of serotonin compared to those without lactational exposure 	(Andersson et al., 1997)
Inbred albino Wistar rats	10 mg/L CdAc in maternal drinking water during gestation, with or without exposure until PND5	 PND0: Increased raw brain weight PND5: Increased raw and proportional brain weight Reduced brain nucleic acid content 	(Antonio et al., 1998)
Wistar rats	Daily IP injections of 1 mg/kg Cd to PND13-17 pups, with or without dexamethasone, an MT inducer	 PND18, Cd without dexamethasone: Increased striatal levels of Cd and MT Increased K+-evoked dopamine release from striatum Inhibited striatal tyrosine hydroxylase (TH) activity No differences in striatal homovanillic acid or dopamine levels when measured alone, but a significant increase in their ratio (HVA/DA) No difference in monoamine oxidase activity Increased striatal lipid peroxidation PND18, Cd with dexamethasone: TH activity and HVA/DA ratio rescued 	(Gutiérrez- Reyes et al., 1998)
Wistar rats	0.5, 7 or 14 mg/kg oral Cd treatment from CdCl ₂ on either: GD5- 15, GD5-15 + 4 weeks of lactation, GD5-15 + 4 weeks of lactation + 8 weeks offspring treatment	 PND84; 7 and 14 mg/kg, GD5-15 and lactation reduced horizonal open field ambulation reduced rearing activity reduced exploration of open field center PND84; 7 and 14 mg/kg, gestation, lactation altered electrophysiological findings 	(Dési et al., 1998)
Swiss albino rats	15 ppm Cd in maternal drinking water during gestation only, gestation and lactation until PND22, or gestation, lactation, and in offspring drinking water until PND60	 PND60, without post-weaning Cd Brain Cd accumulation Brain lipid peroxidation PND60, with post-weaning Cd: altered electrophysiological features, including slowing of peripheral conduction velocity 	(Agar et al., 2000)
Wistar rats	50 ppm Cd in maternal drinking water during gestation	 PND42: Increased overall RNA synthesis in the offspring brain No differences in brain protein synthesis 	(Konecki et al., 2003)
Sprague- Dawley rats	5 or 25 ppm Cd as CdCl ₂ in maternal drinking water	 PND38-42, 5 and 25 ppm Increased ambulation in a motor activity test PND38-42, 25 ppm Increased small movements, rearing, and total activity in a motor activity test No change in brain Zn, learning, or memory 	(Grawé et al., 2004)
Wistar rats	Maternal SQ injection with 0.3 or 0.6 mg/kg Cd from CdCl ₂ from GD7-15	 PND3-7, 0.6 mg/kg Delayed righting reflex Delayed cliff aversion 	(Minetti and Reale, 2006)
Sprague- Dawley rats	10 mg/L Cd from CdAc during gestation and lactation	 PND0: Increased proportional brain weight Decreased brain SOD activity Increased brain malondialdehyde (MDA) 	(Zhang et al., 2009)

		BND01	
		 PND21: Increased raw and proportional brain weight Decreased brain GPx activity Decreased brain SOD activity Increased brain MDA Cd accumulation in the brain Structural brain damage including mitochondrial damage and membrane disorganization 	
Wistar rats	Oral gavage of 0.98 CdCl ₂ from GD5-PND60	 PND16: Cd accumulation in the brain PND60 Cd accumulation in the brain Hyperactivity Increased grip strength Learning-memory deficit Multiple impaired features of astrocytes 	(Rai et al., 2010)
Wistar rats	10 mg/L Cd as CdAc in maternal drinking water during pregnancy and lactation	 PND21 Reduced hippocampal levels of serotonin and 5-hydroxyindolacetic acid Decreased glutamate in the hypothalamus Increased glutamate in the hippocampus Decreased GABA in the cerebral cortex 	(Antonio et al., 2010)
Norway rats	Maternal SQ injections of 1 or 2 mg/kg Cd as CdCl ₂ on GD6 with or without co- administration of Se	 PND21, 1 and 2 mg/kg Cd alone Dose-responsive increase in cerebellar Cd Altered histological features in the cerebellum and dose-dependent increases of Cd in the cerebellum thickening of cerebellar external granule cell layer PND21, 1 and 2 mg/kg Cd with Se Attenuation of thickening from 1 mg/kg Cd, but not 2 mg/kg Cd 	(Bekheet, 2011)
Wistar rats	Oral gavage of 2.94 ppm CdCl₂ from GD5- PND60	 PND24-60 Reduced abundance myelin-related proteins, including: Myelin basic protein (MBP) Myelin proteolipid (PLP) Cyclin nucleotide phosphodiesterase (CNPase) Myelin associated glycoprotein (MAG) Neurofilament (NF) 	(Rai et al., 2013)
Wistar rats	50 ppm Cd as CdCl ₂ in maternal drinking water during gestation and lactation	 PND21 Reduced cerebellar acetylcholinesterase (AChE) activity Increased frontal cortex AChE activity Increased cerebellar Na⁺K⁺ATPase activity Decreased frontal cortex Na⁺K⁺ATPase activity Decreased hippocampal Mg²⁺ATPase activity 	(Stolakis et al., 2013)
Wistar rats	50 ppm Cd as CdCl ₂ in maternal drinking water during gestation with or without continued exposure during lactation	 PND0 Increased brain AChE activity Increased brain Na+,K+-ATPase activity No difference in brain Mg²⁺ATPase PND21, with exposure during lactation Reduced brain AChE activity No difference in brain Na+,K+-ATPase activity No difference in brain Mg²⁺ATPase 	(Liapi et al., 2013)
Sprague- Dawley rats	Paternal oral gavage with 22.15mg/kg CdCl ₂ every 2 days for 9 weeks before mating	 PND2-15 Longer surface-righting time Longer cliff avoidance time Longer negative geotaxis response time Shorter forelimb hanging time PND70 	(Zhao et al., 2015)

		Reduced abundance of GSH and SOD	
Wistar rats	50 ppm Cd in maternal drinking water from 4 weeks before mating	PND0: PND1: PND11:	(Mikolić et al., 2016)
	through lactation	 Reduced brain Zn PND21: Reduced brain Fe PND49: Reduced brain Fe 	
		 Increased brain Zn Cross fostering to control dams rescued brain Fe No difference in raw or proportional brain weights at any time 	
Wistar rats	50 mg/L Cd as CdCl ₂ in maternal drinking water during gestation and lactation with or without ZnCl ₂	 PND21, Cd without Zn: Cd accumulation in the brain Reduced brain Zn Reduced brain SOD activity Increased brain MT Reduced brain gene expression of <i>Bdnf</i> Reduced brain gene expression of Zn transporters Delayed cliff avoidance response No difference in behavioral response to the open field test, suspension test, righting reflex, or negative geotoxis test PND21, Cd with Zn: All outcomes except cliff avoidance response were rescued by Zn co-exposure 	(Mimouna et al., 2018)
Wistar rats	50 mg/L Cd as CdCl ₂ in maternal drinking water during gestation and lactation with or without ZnCl ₂	 PND35 Cd alone: Detecteable Cd in the brain Reuced Zn in the brain Decreased volume of hippocampus and dentate gyrus Pyknosis in the hippocampus and dentate gyrus Decreased SOD activity in the brain Elevated brain MT levels PND35 Cd with Zn Partial rescue of brain Cd, Zn, and SOD activity Rescue of hippocampal volume loss and pyknosis 	(Ben Mimouna et al., 2018b)
Wistar rats	50 mg/L Cd as CdCl ₂ in maternal drinking water during gestation and lactation with or without ZnCl ₂	 GD20, without Zn No detectable Cd in the brain Decreased brain Zn No significant differences in relative brain weights Cortical and hippocampal pyknosis Increased brain SOD activity Increased brain MT Cd altered Zn transporter gene expression Cd reduced <i>Bdnf</i> expression Increased gene expression of <i>Mtf1</i> No difference in gene expression of two Zn finger proteins (<i>Sp1, Znf536</i>) GD20 with Zn SOD activity, Zn transporter gene expression and <i>Bdnf</i> gene expression were rescued by Zn co-exposure Pyknosis, MT, and <i>Mtf1</i> gene expression were not rescued 	(Ben Mimouna et al., 2018a)
Sprague- Dawley rats	Maternal oral exposure to 1 or 5 mg/kg Cd during gestation and lactation	 PND21, 1 and 5 mg/kg Detectable Cd in the cerebral cortex, but not the hippocampus 	(Feng et al., 2019)

		 Decreased postsynaptic density thickness and increased synapse cleft PND35, 1 and 5 mg/kg Increased escape latency in the Morris water maze (MWM) test Decreased postsynaptic density thickness PND56, 1 and 5 mg/kg Impaired response to spatial probe test in MWM Decreased postsynaptic density thickness and increased synapse cleft 	
CD-1 mice	50 or 150 mg/L Cd as CdCl ₂ in maternal drinking water from GD8-17with or without NAC or E2 supplementation	 PND140, 150 mg/L, without supplementation: Longer escape latency PND140, 150 mg/L, with NAC: Recovery of escape latency GD18, 50 and 150 mg/L, without supplementation: Disrupted estrogen signaling in fetal brain, including reduced E2 and estrogen receptor abundance Reduced bone-derived neurotropic factor (BDNF) GD18, 150 mg/L only, without supplementation: Impaired neuronal development, including reduced postsynaptic density protein 95 (PSD-95) and Synapsin-1 abundance GD18 with E2: Full or partial recovery of estrogen signaling and neuronal development 	(Liu et al., 2022b)
129/Ola and C57BL/6 mice, wild type and MT-null	10 mg/L CdCl ₂ in maternal drinking water from GD0-PND10	 PND10 Reduced serum thyroid hormone thyroxine (T4) in both WT and KO mice Increased brain type 2 deiodinase activity in KO, not WT No effect on brain type 3 deiodinase in either WT or KO 	(Mori et al., 2006)
C57BL/6J Jcl mice	10 ppm CdCl₂ in maternal drinking water from GD0-PND10	 PND10 Reduced gene expression of <i>Pgr</i> and <i>ER-α</i> in female brain Reduced gene expression of <i>ER-β</i> in male brain PND56 No differences in open field behavior 	(Ishitobi et al., 2007)
Swiss albino mice	3 ppm Cd through drinking water from GD0-PND5, with or without melatonin	 PND6 Increased brain lipid peroxidation and ROS Increased hippocampal Cd and Fe Decreased antioxidant activity and AChE content and activity Increased hippocampal GSH, Cu and Zn Maternal co-exposure to melatonin partially or fully rescued Cd-induced effects 	(Mukherjee et al., 2010)
mice	10 ppm Cd in maternal drinking water from GD1-PND10	 Increased transferrin receptor gene expression in the brain 	(Honda et al., 2013)
Swiss albino mice	Maternal IP injection of 1.2 mg/kg Cd daily on PND1-7, with or without quercetin, an antioxidant	Adulthood Impairment of memory Increased escape latency Increased oxidative stress in the brain Maternal co-exposure to quercetin rescued effect of Cd	(Halder et al., 2016)
Albino mice	Maternal IP injection of 10 mg/kg Cd on GD7, PND1, and PND15, with or without co-exposure to parsley juice	 PND30 Increased activity Reduced grip strength and balance Reduced brain tissue levels of neurotransmitters (dopamine, serotonin, acetylcholine) 	(Allam et al., 2016)

r			
C57BL/61	10 mg/L Cd in maternal	 Altered oxidative stress parameters in the brain, Chromatolysis and pyknosis in pyramidal neurons Degenerated Purkinje neurons Small and pyknotic medulla neurons Maternal co-exposure to parsley juice could partially or fully rescue phenotypes PND35-49 with destational exposure 	(Zhao et al
	drinking water during gestation and/or lactation	 Decreased time spent in target quadrant in MWM test Fewer visits to novel arm in the Y-maze test Decreased GABAaRa5 protein abundance (PND35) Increased GABAaRa5 protein abundance (PND49) 	2018)
Swiss albino mice	Maternal IP injection of 1.2 mg/kg Cd from GD14-21, until F1 birth, with continued breeding to generate F2, with or without quercetin supplementation	 PND100 Impaired memory in F₁ and F₂ mice that could be alleviated by maternal co-exposure with quercetin Increased activity and expression of oxidative stress enzymes (GSH S-transferase, catalase) in the F₁ brain 	(Halder et al., 2019)
C57BL/6J and CAST/EiJ hybrid mice (both directions of cross)	1 or 50 ppm CdCl₂ in maternal drinking water for 5 weeks before and during gestation	 PND0, 50 ppm Enlarged proportional brain masses Several molecular changes in the brain, (measured in females with C57BL/6J mothers only): Increased brain expression of genes related to myelination, oligodendrocytes, and RA Altered abundances of proteins related to cellular energy, hypoxia, myelin, and histone 1 subunits Increased abundance of 2-hydroxyvaleric acid, 2-hydroxycaproic acid, and xanthin in the brain PND0, 1 and 50 ppm (measured in females with C57BL/6J mothers only): Increased abundance of brain RA Significantly reduced brain mitochondrial DNA content months old, 50 ppm (C57BL/6J mothers only) Increased exploratory behavior Reduced social inhibition 	(Hudson et al., 2021)
Zebrafish	Embryonic aqueous exposure to 100 µM Cd from 4-24 hpf	 24 hpf Decreased head size Unclear boundaries between brain subdivisions Impaired commitment of neural progenitor cells Reduced expression of proneuronal genes Reduced differentiated neurons and glia in the facial sensory ganglia Reduced axonogenesis 	(Chow et al., 2008)
Zebrafish	Embryonic aqueous exposure to 100 µM Cd from 4-24 hpf	 24 hpf Impaired neuronal development in the retina that led to microphthalmia and blindness 	(Chow et al., 2009)
Zebrafish	Embryonic aqueous exposure to 0, 1, 4, 16 nM Cd from 6-48 hpf	144 hpf, 4 and 16 nMReduced swimming speed	(Zhang et al., 2012)
Zebrafish	Embryonic aqueous exposure to 0.1-10 µM Cd from 24-96 hpf	120 hpfProportionally heavier brains	(Wold et al., 2017)

Zebrafish	Embryonic aqueous exposure to 100 or 200 µg/L Cd from 2-144 hpf, with or without Wnt activation *behavior testing only conducted on 200 ug/L group	 144 dpf, 100 and 200 ug/L Cd alone: Reduced β-catenin abundance Upregulation of Wnt inhibitors <i>ddk1</i> and <i>gsk3β</i> Downregulation of Wnt/catenin signaling targets: <i>lef1, axin2, myca, ccnd,</i> and <i>sp52</i> 144 dpf, 200 ug/L Cd alone: Delayed achievement of embryonic nervous system development milestones Shorter swimming distance and duration, and increased turning angle With Wnt activation: Recovered Wnt signaling and motility and attenuation of developmental delays 	(Xu et al., 2022b)
Zebrafish	Embryonic aqueous exposure to 2.5-200 μg/L Cd from 2-144 hpf	 144 dpf, 50-200 μg/L: Dose responsive decrease in swimming distance, speed, acceleration, duration, and increase in turning angle Dose-responsive dysneurogenesis Reduced a1-tubulin and nestin transcript abundance 144 dpf, 100-200 μg/L: Reduced abundance of neurogenin1 transcript Increased abundance of apoptosis related transcripts: caspase-3a and caspase-9 144 dpf, 200 μg/L: Reduced abundance of neurodevelopment-related transcripts: shha, gfap, syn2a, gli2b, elav/3, and gap43 Increased neuronal abundance of apoptosis related transcripts: bax and caspase-8 	(Xu et al., 2022a)
Zebrafish	Embryonic aqueous exposure to 40 ppb Cd from 4-120 hpf with or without Ca, Zn or NAC supplementation	 120 hpf, Cd only: Increased rotational movement Hypersensitivity to auditory stimuli Reduced otolith size 120 hfp, Cd with Zn or NAC Cd induced phenotypes remained 120 hfp, Cd with Ca Cd-induced phenotypes recovered 	(Green et al., 2023)
American bullfrog	Aqueous exposure to 1 μg/L CdCl₂ from 7-23 days old	7-23 days oldSignificantly reduced activity levels	(Dal-Medico et al., 2014)

Table S10. Key findings related to reproductive function from experimental animal models of early life Cd exposure

Species	Exposure Model	Kev Findinas	Source
Norway rat	Maternal SQ injection	PND21, 1 and 2 mg/kg Cd without Se:	(Bekheet.
	of 1 or 2 mg/kg Cd as	 Cd accumulation in testes and ovaries 	2011)
	CdCl ₂ on GD6, with or	 Increase in diameter of seminiferous tubules 	- /
	without 1 or 2 mg/kg Se	Progressive sloughing of germ cells	
	as sodium selenite	Vacualization of Sertali cells	
	(Na ₂ SeO ₃)	Hyperplasia of Levidia cells	
	· · · · ·	 Reduction in the overvisize 	
		 Reduction in the ovary size PND21 1 and 2 ma/ka Cd with So: 	
		- Bosovory of Cd induced historiathological	
Wistor rat	Maternal oral exposure	CD 20, 3 mg/kg:	(Kariyazono
Wistai Tat	to 3 mg/kg Cd on GD15	 No changes in expression of steroidogenesis 	
		 No changes in expression of steroidogenesis dense encoding testicular steroidogenic acute 	et al., 2010)
		regulatory protein (StAR) and pituitary luteinizing	
		hormone (I H)	
		GD 20, 0.01 and 0.1 ppm	
	in maternal drinking	 Decreased transcript abundance of testicular 	
	water from GD1-20	Star	
		 No significant change in transcript abundance of 	
		nituitary I H	
Sprague-	Paternal oral gavage	PND21:	(Zhao et al.,
Dawley rat	exposure to 22.15	Cd accumulation in testes	2015)
	mg/kg CdCl ₂ every 2	 Reduced SOD activity and GSH content in 	/
	days for 9 weeks	testes	
	-	 No change in MDA content in testes 	
		PND70:	
		 Reduced SOD activity and GSH content in 	
		testes	
		 Increased MDA content in testes 	
Charles	Daily maternal SQ	PND56:	(Pillai et al.,
Foster rat	injection of 0.05 mg/kg	 Reduced epididymis weight 	2012)
	CdAc from GD1-PND21	 Reduced 17β-HSD and 3β-HSD activity in the 	
		testes	
		 Decreased serum T levels 	
		 Diminished testicular and cauda-epididymal 	
		sperm counts	
		 Reduced cauda-epididymal sperm motility 	
		 Derangements of the testes histoarchitecture, 	
		particularly in the testicular epithelium	
		 Decreased vitamin C and total cholesterol levels 	
		in testes	
		 Increased acid phosphatase activity in the 	
		testes	
		 Decreased vitamin C levels and acid 	
		phosphatase activity in the cauda-epididymitis	
		Decreased fructose content in the seminal	
		 Diminished GSH and antioxidant (SOD, GPx, and QAT) levels in the testes and souds 	
		and CAT) levels in the testes and cauda-	
		epialaymis	
		 Increased I BARS levels in the testis and cauda opididumic 	
Sprague-	Maternal IP injection of	PND0-38 5 ug/kg:	(Parodi et al
Dawley rat	5 or 50 µg/kg CdCla on	 Earlier onset of vaginal opening 	(1 a1001 et al., 2017)
	GD12 and GD17	 Increased transcript abundance of considerantin 	2017)
		releasing hormone (GnRH) in the hypothelemus	
		 Alterations in mammary gland development: 	
		 Increased number of mammosphere_forming 	
		cells in neonatal mice	

	1		
Wistor rot	E0 mg/l Cd og CdCl in	 Increased branching, number of epithelial cells, and density in prepubertal mice Increased mammary stem/progenitor cell populations, as well as overexpression and altered regulation of <i>ERα</i> in postpubertal mice Increased expression of <i>Aldh1A1</i> in earlier prepubertal mice PND0-38, 50 µg/kg: No change in onset of vaginal opening 	(Chomok at
	naternal drinking water from during gestation and lactation, with or without 60 mg/L Zn as ZnCl ₂	 No detected Cd or change in morphology in testes Decreased concentration of Zn in testes Gd20, Cd with Zn Recovery of testicular Zn PND12, Cd alone Cd accumulation and reduced Zn in testes No change in testicular histology or seminiferous tubule diameters PND12, Cd with Zn Partial recovery of testicular Zn Reduced Cd accumulation in testes PND21, Cd alone No change in testicular histology or seminiferous tubule diameters PND12, Cd with Zn Reduced Cd accumulation in testes PND21, Cd alone No change in testicular histology or seminiferous tubule diameters Cd accumulation and reduced Zn in testes PND21, Cd alone No change in testicular histology or seminiferous tubule diameters Cd accumulation and reduced Zn in testes PND21, Cd with Zn No recovery of testicular Zn Reduced Cd accumulation in testes PND35, Cd alone Increased burden of Cd in testes Decreased relative testes weight Decreased levels of plasma T No change in testicular Zn, histology or seminiferous tubule diameters Increase in abnormal seminiferous tubules PND35, Cd with Zn Recovery of testicular Cd Recovery of testes weight 	(Chemek et al., 2016)
Sprague-	1, 5, 10 mg/L CdCl ₂ in	PND0-84, all groups	(Luo et al.,
Dawley rat	maternal drinking water from GD0-PND21	 No difference in the age at testes descent in males No difference in the age of vaginal opening in the females No changes in serum hormone levels (T, FSH, and LH) in males or females No differences in sperm counts or motility, or incidence of abnormal sperm were observed in male adults No change in the length of the estrous cycle of females PND0-84, 10 ppm: Reduced testes weight 	2015)
Wistar rat	10 mg/L CdAc in maternal drinking water from GD0-PND21	 PND90: No change in ventral prostrate (VP) weight No difference in serum T levels No differences in cell proliferation and apoptosis indexes or androgen receptor immunostaining in VP Increased stromal inflammatory foci and multifocal inflammation of the VP 	(Santana et al., 2016)

Wistar rat	10 mg/L CdAc in maternal drinking water from GD0-PND21	 PND90: No change in the absolute and relative weights of male reproductive organs No changes in serum hormone levels (T, LH, and FSH) No differences observed in histopathological analyses of the testis and epididymis No changes in the number of mature spermatids in the testis, daily sperm production, the number of sperm in the caput/corpus and cauda-epididymis, or sperm transit time Decreases in sperm motility and morphology Increases in the rate of cell death in the testis 	(Banzato et al., 2012)
Sprague- Dawley rat	Daily paternal oral gavage with 0.5, 2.0, and 8.0 mg/kg CdCl ₂ from PND28-56	 <i>F</i>₁ PND56-63, 0.5 mg/kg No changes in testicular morphology No change in rates or markers of apoptosis in GCs Decreased <i>Bcl2, Caspase8</i>, and <i>Caspase9</i> mRNA abundance but no changes in protein abundances in GCs Differential expression of apoptosis-related miRNAs in GCs PND56-63, 2.0 mg/kg Incomplete cell nuclear membrane and abnormal sperm condensation in spermatogenic cells Increased lysosomes and decreased mitochondria but no apoptotic bodies in GCs Increased lysosomes and decreased mitochondria but no apoptotic bodies in GCs Increased lysosomes and decreased mitochondria but no apoptotic bodies in GCs Increased Bax, <i>Bcl-xl</i>, and <i>Caspase9</i> mRNA abundance in GCs Increased Bax, Bcl-xl, Cle-Caspase8, and Pro-Caspase9 protein abundance in GCs Differential expression of apoptosis-related miRNAs in GCs PND56-63, 8.0 mg/kg Abnormal sperm morphology, impaired sperm condensation, enlarged intercellular space pyknotic nuclei, and ill-defined cell membranes in spermatogenic cells Increased <i>Bax, Bcl-xl, Caspase8</i>, and <i>Caspase9</i> mRNA abundance and Bax, Cle-Caspase3, Pro-caspase9, and <i>Caspase9</i> mRNA abundance and Bax, Cle-Caspase3, Pro-caspase9, and Cle-Caspase9 protein abundance in GCs Differential expression of apoptosis-related miRNAs in GCs Differential expression of apoptosis related miRNAs in GCs No change in the mean methylation levels of the Bax, Bcl2, Cl-xl, Caspase3, Caspase8, and Caspase9 proteir abundance in GCs Differential expression of apoptosis-related miRNAs in GCs No change in the mean methylation levels of the Bax, Bcl2, Bcl-xl, Caspase3, Caspase8, and Caspase9 promoter regions in GCs Differential expression of apoptosis-related miRNAs in GCs 	(Sun et al., 2023b)

 Partial amelioration of the increased abnormalities in the head and tail of sperm in the epididymis F; PND56, 8.0 mg/kg; Swollen mitochondria in OGCs No change in apoptosis rate in OGCs No change in <i>BaC</i> gene expression in OGCs Altered expression of miRNAs that regulate Cd-induced apoptosis in OGCs Altered expression of miRNAs that regulate Cd-induced apoptosis in OGCs Altered expression of miRNAs that regulate Cd-induced apoptosis in Steroidogenic enzymes in OGCs No change in levels but decreased P4 levels in OGCs Increased 162 (Sp11at mRNA and protein abundance Decreased StAR marcript abundance but ochange in protein abundance Decreased StAR marcript abund		1		1
F2 PND56, 8.0 mg/kg: • Swollen mitochondria in OGCs • No change in apoptosis rate in OGCs • Increase in <i>Bcl2/Bcl2</i> transcript and protein abundance in OGCs • Altered expression of miRNAs that regulate Cd-induced apoptosis in OGCs Fr PND56, 8.0 mg/kg: • No change in <i>Bcl2/Bcl2</i> transcript and protein abundance in OGCs Sprague- Daily maternal (Fo) oral <i>F</i> : Dawley rat Daily maternal (Fo) oral <i>F</i> : Option GD0-PND0 <i>F</i> : <i>F</i> • No change in levels but decreased P4 levels in OGCs • Alterations in steroidogenic enzymes in OGCs: • Obcreased StAR mRNA and protein abundance • Decreased StAR mRNA and protein abundance • Decreased StAR mRNA and protein abundance • Decreased StAR mRNA and protein abundance • Decreased StAR mRNA and protein abundance • Decreased StAR mRNA and protein abundance • Decreased StAR mRNA and protein abundance • Decreased StAR mRNA and protein abundance • Decreased StAR mRNA and protein abundance • Decreased StAR mRNA and protein abundance • Decreased StAR mRNA and protein ab			 Partial amelioration of the increased abnormalities in the head and tail of sperm in the epididymis 	
Sprague- Dawley rat Daily maternal (Fo) oral gravage with 0.5, 2.0, and 8.0 mg/kg CdCl2 from GD0-PND0 Fr (Liu et al., 2020) • No change in levels but decreased P4 levels in OGCs • No change in protein abundance but no change in protein abundance but no change in protein abundance • • • Decreased St-1 transcript abundance but no change in protein abundance • • • • Decreased St-1 transcript abundance but no change in protein abundance • • • • No change in E2 levels but decreased P4 levels in OGCs • • • • No change in E2 levels but decreased P4 levels in OGCs • • • • No change in E2 levels but decreased P4 levels in OGCs • • • • No change in E2 levels but decreased P4 levels in OGCs • • • • No change in E2 levels but decreased P4 levels in OGCs • • • • No change in protein abundance • • • • • No change in protein abundance • • • • • No change in protein abundance • • • <			 <i>F</i>₂ PND56, 8.0 mg/kg: Swollen mitochondria in OGCs No change in apoptosis rate in OGCs Increase in <i>Bcl2</i>/Bcl2 transcript and protein abundance in OGCs Altered expression of miRNAs that regulate Cd-induced apoptosis in OGCs <i>F</i>₃ PND56, 8.0 mg/kg: No change in <i>Bcl2</i> gene expression in OGCs Altered expression of miRNAs that regulate Cd-induced apoptosis in OGCs 	
	Sprague- Dawley rat	Daily maternal (F ₀) oral gavage with 0.5, 2.0, and 8.0 mg/kg CdCl ₂ from GD0-PND0	 <i>F</i>¹ PND56, 0.5 mg/kg: No change in levels but decreased P4 levels in OGCs Alterations in steroidogenic enzymes in OGCs: Increased sf-1 transcript abundance but no change in protein abundance Decreased StAR mRNA and protein abundance Decreased Cyp11a1 mRNA and protein abundance PND56, 2.0 mg/kg: No change in E2 levels but decreased P4 levels in OGCs Alterations in steroidogenic enzymes in OGCs: Decreased StAR mRNA and protein abundance Decreased sf-1 transcript abundance but no change in protein abundance Decreased StAR mRNA and protein abundance Decreased StAR mRNA and protein abundance Decreased Cyp11a1 mRNA and protein abundance Decreased Cyp11a1 mRNA and protein abundance Decreased StAR mRNA and protein abundance Decreased StAR mRNA and protein abundance Decreased StAR mRNA and protein abundance PND56, 8.0 mg/kg No change in E2 levels but decreased P4 levels in OGCs Alterations in steroidogenic enzymes in OGCs: Increased sf-1 transcript abundance but no change in protein abundance Decreased StAR mRNA and protein abundance Decreased StAR mRNA and protein abundance Decreased StAR mRNA and protein abundance Decreased Cyp11a1 mRNA and protein abundance Decreased StAR mRNA and protein abundance Decreased StAR mRNA and protein abundance Altered expression of miRNAs that regulate Cd-induced steroidogenesis in OGCs <i>F</i>2 PND56, 8.0 mg/kg No change in E2 levels but decreased P4 levels in OGCs Alterations in steroidogenic enzymes in OGCs: Decreased StAR transcript abundance but decreased protein abundance Increased StAR transcript abundance but decreased protein abundance	(Liu et al., 2020)

		Altered expression of miRNAs that regulate Cd-	
		induced steroidogenesis in OGCs	
Dawley rat	gavage with 0.5, 2.0, and 8.0 mg/kg CdCl ₂ from GD0 to PND0	 PND21, 0.5 mg/kg: Increased seminiferous tubules (ST) diameter in testes Reduced T No difference in expression of steroidogenic genes Reduced protein abundance steroidogenic enzyme CYP11A1 PND21, 2.0 mg/kg: Increased ST diameter in testes Reduced T Downregulation of steroidogenic <i>Star</i> gene in testes Reduced protein abundance of Star and Cyp11a1 in testes PND21, 8.0 mg/kg: Increased ST diameter in testes Decreased serum GnRH, P4, and T levels Reduced gene expression of <i>sf-1</i> and other steroidogenic enzymes in testes, but not <i>Star</i> Decreased protein abundance of SF-1 and STAR in testes PND56, 0.5 mg/kg: Decreased ST diameter and decreased spermatogenesis activity in testes Reduced HSD3β and CYP17A1 in testes PND56, 2.0 mg/kg: No change in ST diameter or spermatogenesis activity in testes Reduced SF-1 protein in testes Reduced SF-1 protein in testes Reduced SF-1 protein in testes PND56, 8.0 mg/kg: Increased expression of <i>sf-1</i> in testes Reduced SF-1 protein in testes PND56, 8.0 mg/kg: Increased expression of <i>sf-1</i> and other spermatogenic cells, vacuolization within the cells, and shrunken spermatogonia and nuclei No change in S<i>tar</i> gene expression but increased expression of <i>sf-1</i> and other steroidogenic cerymes in testes No change in S<i>tar</i> gene expression but increased expression of <i>sf-1</i> and other steroidogenic enzymes protein levels in testes No change in S<i>tar</i> gene expression but increased expression of <i>sf-1</i> and other steroidogenic enzymes p	2020)

	I		T
		 F₂ PND21, 8.0 mg/kg: Decreased ST diameter in testes Increased nucleolar chromatin aggregation, nucleolar concentration and cytoplasm dehydration with vacuoles in testes No change in serum GnRH, LH, or P4 but increased T levels Increased <i>sf-1</i> and <i>star</i> gene expression in testes Reduced STAR and HSD3β protein in testes PND56, 8.0 mg/kg: Increased ST diameter and decreased spermatogenesis activity in testes Increased cell membranolysis and basement membrane thickness variation in testes No change in serum GnRH, LH, or P4 but increased T levels Increased ST diameter and decreased spermatogenesis activity in testes Increased Cell membranolysis and basement membrane thickness variation in testes No change in serum GnRH, LH, or P4 but increased T levels Increased STAR and other steroidogenic enzymes protein levels in testes 	
Sprague- Dawley rat	Daily maternal oral gavage of 1 mg/kg or 5mg/kg CdCl ₂ from GD0 to PND21	 Brite protect in receive in the receive i	(Li et al., 2018b)

-	1		
		 Decreased number of primordial follicles but increased secondary and antral follicles in ovaries Increased hypertrophy and epithelial hyperplasia in uterus (more severe than 1 mg/kg group) Increased serum P4 and E2 levels Activation of DLD-cAMP/PKA-ERK1/2 signaling pathway in ovaries Up-regulation of steroidogenic enzyme CYP19A1 in ovaries PND35, 5 mg/kg: Increased Cd burden in ovaries and uterus No change in relative ovary weight but increased relative uterus weight Decreased number of primordial follicles but increased secondary and antral follicles in ovaries Increased hypertrophy and epithelial hyperplasia in uterus (more severe than 1 mg/kg group) Increased serum P4 and E2 levels Activation of DLD-cAMP/PKA-ERK1/2 signaling pathway in ovaries Up-regulation of steroidogenic enzymes StAR, CYP11A1, and CYP19A1 in ovaries PND56, 5 mg/kg: No change in Cd concentrations in uterus but increased burden in ovaries Increased relative ovary and uterus weight Decreased number of primordial follicles but increased burden in ovaries Increased secondary and antral follicles but increased burden in ovaries Increased relative ovary and uterus weight Decreased number of primordial follicles but increased burden in ovaries Increased number of primordial follicles but increased secondary and antral follicles in ovaries Increased hypertrophy and epithelial hyperplasia in uterus (more severe than 1 mg/kg group) Activation of DLD-cAMP/PKA-ERK1/2 signaling pathway in ovaries 	
Sprague- Dawley rat	Daily maternal oral gavage of 1 or 5 mg/kg CdCl ₂ from GD0- PND21	 3β-HSD, CYP11A1 and CYP19A1 in ovaries <i>F</i>₂ PND21, 5 mg/kg: Decreased number of primordial follicles but increased antral follicles in ovaries Increased serum P4 and E2 levels No change in serum E2 levels but increased P4 Up-regulation of CYP11A1 and CYP19A1 in ovaries PND35, 5 mg/kg: Up-regulation of CYP11A1 in ovaries PND56, 5 mg/kg Up-regulation of CYP19A1 in varies PND21, 1 and 5 mg/kg: Decreased relative weight of testes Reduced phosphorylation of P-ERK1/2 in testes Decreased abundance of steroidogenic enzymes CYP11A1 and 3β-HSD PND21 5 mg/kg only: Cd accumulation in testes Increased serum P4 Reduced protein abundance of PKA in testes Reduced abundance of steroidogenic enzymes StAR and CYP17A1 	(Tian et al., 2018)

r			
Sproquo	Motornal ID injection of	 Decreased serum P4 Decreased abundance of steroidogenic enzyme 3β-HSD PND35, 5 mg/kg only: Cd accumulation in testes Reduced abundance of steroidogenic enzyme CYP11A1 Reduced protein abundance of PKA and phosphorylation of ERK1/2 PND56, 1 and 5 mg/kg: Reduced abundance of steroidogenic enzyme CYP11A1 PND56, 5 mg/kg only: Decreased relative weight of testes Decreased serum T Reduced protein abundance of PKA and phosphorylation of ERK1/2 	(lict al
Sprague- Dawley rat	Maternal IP injection of 0.25, 0.5 or 1.0 mg/kg Cd on GD12	 GD20, 0.25 mg/kg: No formation of multinucleated gonocytes in testes No change in testicular T levels No change in Leydig cell numbers in testes Decreased mRNA and protein abundance of Leydig cell-specific and Sertoli cell-specific genes in testes Decreased Leydig cell and cytoplasm size GD20, 0.5 mg/kg: No formation of multinucleated gonocytes in testes Decreased testicular T levels Decreased Leydig cell numbers in testes Decreased testicular T levels Decreased Leydig cell numbers in testes Decreased Leydig cell numbers in testes Decreased Leydig cell and cytoplasm size GD20, 1.0 mg/kg: No formation of multinucleated gonocytes in testes Decreased testicular T levels Decreased Leydig cell and cytoplasm size GD20, 1.0 mg/kg: No formation of multinucleated gonocytes in testes Decreased testicular T levels 	(Li et al., 2018a)
Wistar rat	50 and 200 ppm CdCl ₂ in maternal drinking water from GD9-21	 Decreased Leydig cell and cytoplasm size PND22-60, 50 ppm: Delayed onset of vaginal opening Altered estrous cyclicity PND22-60, 200 ppm: Delayed onset of vaginal opening Altered estrous cyclicity PND122-60, 200 ppm: 	(Samuel et al., 2011)

		 Decreased antioxidant enzymes protein levels in ovaries Increased lipid peroxidation enzymes protein levels in ovaries No change in serum P4 levels but decreases T and E2 PND10, 200 ppm: Decreased ovary weight Disorganized secondary follicles with altered oocytes in ovaries Decreased antioxidant enzymes protein levels in ovaries Increased lipid peroxidation enzymes protein levels in ovaries Decreased serum T, E2, and P4 levels PND21, 200 ppm: Decreased ovary weight Severe disorganization and damage of ovarian histoarchitecture with increased numbers of follicles at various stages of degeneration, remnants of disorganized granulosa cells, and cumulus oophorus dysfunction Decreased antioxidant enzymes protein levels in ovaries 	
Wistar rat	10 mg/L Cd from CdAc	Decreased serum T, E2, and P4 levels PND0:	(Corpas and
	in maternal drinking water from GD0-PND5	 No change in testes or ovary weight Decreased seminiferous tubule diameter (STD) and prospermatogonia (Pro-SPG) numbers in testes Decreased RNA and DNA contents in testes Decreased DNA content in ovaries PND5: Decreased testes and ovary weight Decreased STD and Pro-SPG numbers in testes Decreased DNA content in testes Decreased DNA content in testes 	Antonio, 1998)
Wistar rat	Daily maternal oral	PND1-40:	(Salvatori et
	from CdCl ₂ from GD6-	 Delay in age of vaginal opening Earlier descent of testes 	al., 2004)
	14	PND180:	
		 Decreased mount latency, increased number of mounts, and increased number of intromissions in males Decreased Lordosis coefficient (measure of power latency) in famelage 	
1			

		_	
Sprague- Dawley rat	Daily maternal intragastric exposure to 0.5, 1.0, and 2.0 mg/kg of CdCl ₂ from GD0- PND0	 <i>Fi</i> PND5, All doses Decreased diameter of seminiferous tubules (STs) in the 1.0 mg/kg group Increased necrosis, vacuolization, reduction of nuclear density, and impaired spermatogenic cell connection in Sertoli cells in the 2.0 mg/kg group No change in serum GnRH levels but increased FSH levels in the 2.0 mg/kg group Increased <i>Fshr</i> mRNA abundance at 0.5 mg/kg, increased <i>Fshr</i> mRNA abundance at 0.5 mg/kg, and increased <i>Foxo1</i> protein abundance at 1.0 mg/kg but increased <i>Domt3b</i> mRNA abundance at 2.0 mg/kg Decreased <i>Domt3a</i> and Dnmt3b protein abundance at 2.0 mg/kg Increased Dnmt3a and Dnmt3b protein abundance at 2.0 mg/kg Increased Dnmt3a and Dnmt3b protein abundance at 2.0 mg/kg Increased Drate at 2.0 mg/kg PND21, All doses No change in STs diameter Increased Foxo1 protein abundance but decreased Foxo1 mRNA abundance at 0.5 mg/kg Increased Foxo1 mRNA abundance but decreased Foxo1 protein abundance at 0.5 mg/kg Increased Foxo1 protein abundance at 2.0 mg/kg Increased Foxo1 protein abundance at 0.5 mg/kg Increased Foxo1 protein abundance at 0.5 mg/kg Increased Foxo1 protein abundance at 0.5 mg/kg Increased Foxo1 the general DNA methylation of <i>Fshr</i>, <i>Akt</i> and <i>Foxo1</i>-17 fragment in the 2.0 mg/kg group Decreased methylation levels at position 28 and 29 sites of the <i>Foxo1</i>-17 fragment in the 2.0 mg/kg group Increased Dnmt1 and Dnmt3a mRNA abundance at 0.5 mg/kg but no changes in protein abundances in any groups PND56, All doses No change in STs diameter No change in the 2.0 mg/kg group	(Li et al., 2023)
		Increased <i>Dnmt3a</i> mRNA abundance at 2.0 mg/kg and Dnmt3b protein abundance at 1.0	
		and 2.0 mg/kg	

		Γ.	
		PND5, All doses	
		No change in STs diameter	
		 Increased serum FSH levels in 0.5 mg/kg group 	
		but no change in GnRH levels	
		 Increased Pi3k, Akt, and Foxo1 mRNA abundance at 2.0 mg/kg but no abangee in 	
		protein abundances at any dose	
		 No changes in mRNA abundances at any of the 	
		doses	
		 Increased Dnmt1 protein abundance at 2.0 	
		mg/kg	
		ND21, All doses	
		 No change in serum GnRH or FSH levels 	
		 Decreased Fshr mRNA abundance at 0.5 and 	
		1.0 mg/kg	
		 Increased PI3k protein abundance at 2.0 mg/kg, 	
		decreased Akt protein abundance at 1.0 mg/kg,	
		ma/ka	
		 No change in the general DNA methylation 	
		of Fshr, Akt and Foxo1 genes in the 2.0 mg/kg	
		group	
		 Decreased methylation level at the fourth position site of the <i>Fshr</i>-8 fragment decreased 	
		methylation level at the 12th position site of	
		the Akt-33 fragment, and increased methylation	
		level at the 21st and 22nd sites of the Foxo1-	
		15 fragment in the 2.0 mg/kg group	
		mg/kg but no changes in protein abundances at	
		any of the doses	
		PND56, All doses	
		 Decreased diameter of STs in 0.5 mg/kg group but increased diameter of STs in 2.0 mg/kg 	
		droup	
		 No change in Johnsen score in testes 	
		No change in serum GnRH or FSH levels	
		 No change in the AOD of Fshr protein after 	
		immunohistochemistry staining of Sertoli cells in	
		 No changes in mRNA abundances at any dose 	
		 Increased Akt protein abundance at 1.0 and 2.0 	
		mg/kg and Foxo1 protein abundance at 2.0	
		mg/kg	
		 No change in the general DNA methylation of Eabr. Alt and Eaved genes in the 2.0 methylation 	
		or rsm, Aki and roxor genes in the 2.0 mg/kg	
		 Decreased Dnmt3a mRNA abundance at 0.5 	
		and 2.0 mg/kg but no changes in protein	
Corosus	Doily notornal and	abundance at any of the doses	(Sup st sl
oprague- Dawley rat	Daily paternal oral	F1 PND40-55 All doses	(Sun et al., 2023a)
Dameyrat	and 8.0 mg/kg CdCl ₂	 No change in the ovarian organ coefficient or 	20200)
	from PND28-56	vaginal opening time in females	
		Decreased duration of diestrus and total estrous	
		cycle in the 8 mg/kg group females	
		No change in serum Pg and F2 levels in	
		females	
		• Decreased Star, Sf-1, and Cyp11a1 mRNA	
		abundance but increased Cyp11a1 and Sf-1	
	l	protein abundance in GUS	

	 Changes in hormone synthesis-related 	
	miRNAs in GCs	
	 Increased Igf2 mRNA abundance in GCs 	
	Adult. 2.0 mg/kg	
	 Decreased serum Pri and F2 levels in females 	
	 Decreased Cyn11a1 mPNA abundance and 	
	• Decleased Cypinal mixing abundance and	
	Star protein abundance but increased Cyp19a1	
	mRNA abundance in GCs	
	 Changes in hormone synthesis-related 	
	miRNAs in GCs	
	 Increased H19 and Peg3 mRNA abundance in 	
	GCs	
	Adult, 8.0 mg/kg	
	 Decreased serum Pri and E2 levels in females 	
	Decreased Star and Cyn11a1 mPNA	
	Decleased Stal and Cyp11a1 mixinA shundanes and Star protein shundanes but	
	abundance and Star protein abundance but	
	increased <i>Cyp19a1</i> mRNA abundance in GCs	
	 No change in the mean methylation levels of 	
	Cyp11a1, Cyp19a1, Sf-1, and star in GCs	
	 Increased methylation levels at site 13 of the 	
	Cyp11a1-14 fragment, site 7.8.9.10.11 of the	
	Sf-1 fragment, and site 5 of the Star-18 in GCs	
	Changes in hormone synthesis-related	
	miRNAs in GCs	
	 Increased laf? Konat Most Dog? Dog12 and 	
	• moleaseu igiz, nongi, iviesi, regs, regiz, anu	
	Shirph mRINA expression in GCS	
	Increased Igr2, Peg12, Mest, and Shrph mRNA	
	abundance but decreased H19, Peg3, and Kcnq1	
	mRNA abundance in sperm	
	F ₂	
	PND40-55, All doses	
	 No change in the ovarian organ coefficient in 	
	females	
	 Increased ovarian organ coefficient in the 	
	2 mg/kg group fomalos	
	2 mg/kg group remaies	
	• Increased durations of metestrus, diestrus, and	
	total estrous cycle in the 8 mg/kg group females	
	 Increased duration of estrous in the 2 mg/kg 	
	group females	
	 Decreased proestrus duration in the 0.5 mg/kg 	
	group females	
	Adult, 0.5 mg/kg	
	No change in serum E2 levels but increased E2	
	levels in females	
	 Increased Star Cyn11a1 and Cyn10a1 mPNIA 	
	abundance and Cupinal, and Cupinal Michael	
	abundance and Cypreat, Stat, and Si-T protein abundance in CCs	
	Changes in normone synthesis-related	
	miRNAs in GCs	
	 No changes in imprinted gene mRNA 	
	abundance in GCs	
	Adult, 2.0 mg/kg	
	• No change in serum E2 levels but increased E2	
	levels in females	
	 Increased Star Sf-1 Cvn11a1 and Cvn19a1 	
	mRNA abundance and Cvn10a1 Star and Sf-1	
	nrotein abundance in CCe	
	Changes in hormone synthesis related	
	Changes in normone synthesis-related miDNAs in CO-	
	MIKNAS IN GUS	
	 Increased H19, Igf2, Kcnq1, and Snrpn mRNA 	
	abundance in GCs	
	Adult, 8.0 mg/kg	
	• No change in serum E2 levels but increased E2	
	levels in females	
•		

			-
		 Increased <i>Star</i>, <i>Sf</i>-1, <i>Cyp11a1</i>, and <i>Cyp19a1</i> mRNA abundance and Cyp19a1 and Star protein abundance in GCs No changes in the mean methylation levels of Cyp11a1, Cyp19a1, Sf-1, or Star or in the methylation levels at each site of the gene fragment in GCs Changes in hormone synthesis-related miRNAs in GCs Increased <i>H19, Igf2, Kcnq1, Mest, Peg3, Peg12</i>, and <i>Snrpn</i> mRNA expression in GCs 	
Sprague- Dawley rat	Maternal IP injection of 1.5 mg/kg CdCl ₂ on GD9, 11, 13 and every other day during lactation, with or without 50 mg/kg tamoxifen (TMX)	 GD18, Cd alone: Disordered arrangement of Sertoli cells and gonocytes in seminiferous tubules GD18, Cd with TMX Recovery of seminiferous tubule disorder PND30: Cd alone Decreased testes weight Increased ultrastructural damage of testes: Swollen mitochondria in Leydig cells Formation of myeloid structure Seminiferous tubule degeneration Decreased expression of StAR protein and Inhibin-B mRNA in Leydig cells PND30, Cd with TMX Recovery of testes weight Recovery of stAR protein abundance Partial recovery of StAR protein abundance Recovery of inhibin-B gene expression 	(Liu et al., 2021a)
Sprague- Dawley rat	Daily maternal oral gavage with 0.5, 2.0, and 8.0 mg/kg CdCl ₂ from GD1-20	 <i>F</i>₂ PND56-60, 0.5 mg/kg No change in serum Pg levels but decreased serum E2 levels Increased <i>Cyp11a1</i> mRNA abundance and Cyp19a1 protein abundance but decreased Star and Cyp11a1 protein abundance in ovarian granulosa cells (GCs) PND56-60, 2.0 mg/kg Decreased serum Pg and E2 levels Increased Sf-1, Star, and cyp11a1 mRNA abundance but decreased Cyp19a1 mRNA abundance in GCs PND56-60, 8.0 mg/kg No change in serum Pg levels but decreased serum E2 levels Increased <i>Cyp11a1</i> and <i>Cyp19a1</i> mRNA abundance and Sf-1, Star, and Cyp11a1 protein abundance in GCs PND56-60, 8.0 mg/kg No change in serum Pg levels but decreased serum E2 levels Increased <i>Cyp11a1</i> and <i>Cyp19a1</i> mRNA abundance and Sf-1 protein abundance in GCs 35 differentially expressed miRNAs in GCs Identified miRNA target genes were related to growth- and development-related gene ontology (GO) terms 50 and 61 gene promoter regions were hypermethylated and hypomethylated, respectively in GCs GO analysis of hormone synthesis-related miRNA target genes and GO analysis of genes with differential DNA methylation revealed enrichment in the cAMP/PKA signaling 	(Luo et al., 2023)

ICR mouse	Maternal IP injection of 5-6 mg/kg CdCl ₂ on GD 7.5 or 8.5	 <i>F</i>³ PND56-60, 0.5 mg/kg Increased serum Pg levels but no change in serum E2 levels Increased <i>Cyp19a1</i> mRNA abundance and Sf-1 protein abundance but decreased Cyp11a1 protein abundance in GCs PND56-60, 2.0 mg/kg Increased serum Pg and E2 levels Increased Star, <i>Cyp11a1</i>, and <i>Cyp19a1</i> mRNA abundance and Sf-1 and Cyp19a1 protein abundance but decreased Cyp11a1 protein abundance in GCs PND56-60, 8.0 mg/kg Increased serum Pg and E2 levels Increased <i>Sf-1</i>, <i>Star</i>, <i>Cyp11a1</i>, and <i>Cyp19a1</i> mRNA abundance but decreased Star and Cyp11a1 protein abundance but decreased Star and Cyp11a1 protein abundance in GCs 16 differentially expressed miRNAs in GCs Identified miRNA target genes were related to growth- and development-related GO terms 54 1,136 gene promoter regions were hypermethylated and hypomethylated, respectively in GCs GO analysis of hormone synthesis-related miRNA target genes and GO analysis of genes with differential DNA methylation revealed enrichment in the cAMP/PKA signaling GD13.5: Reduced genital ridges in males and females Fewer primordial germ cells in males A large number of primordial germ cells were found outside the genital ridges in males and females GD16.5: Reduced number of differentiating germ cells in males and females PND56-63: Increased incidence of sterility in males 	(Tam and Liu, 1985)
		 Incleased incidence of sternity in males Decreased litter sizes Reduced testes size Lowered fertilizing capability of spermatozoa 	
CD-1 mouse	Maternal IP injection of 0.5 mg/kg CdCl ₂ from GD13-17	 GD18: Reduced absolute and relative testes weights of the male fetuses Decreased testicular mRNA and protein levels of StAR and T biosynthesis enzymes (P450scc, P450_{17α}, and 17β-HSD) PND70: Decreased testicular StAR mRNA and P450scc mRNA and protein levels, but no changes in P450_{17α} and 17β-HSD mRNA or protein levels No abnormal morphological features or increases in apoptotic cells in testes Reduced serum and testicular T No differences in the numbers of spermatozoa, weights of the testes or epididymides, or testes histology No effect on male fertility or ability to mate Increased resorptions per litter and decreased live fetuses per litter in F2 generation 	(Ji et al., 2011)

C57BL/6J	10 mg/L CdCl ₂ in	PND21:	(Zhao et al.,
mouse	from GD0-PND21	No change in serum T levels in males PND35:	2018)
		No change in serum E2 levels in females	
		No change in serum T levels in males	
		 Reduced serum E2 levels in females 	
		No change in serum T levels in males	
		PND84:	
		 No change in serum T levels in males 	
C57BL/6J	1, 10, 100 μg/L CdCl ₂ in	PND70, all groups	(Zhang et al.,
mouse	maternal and paternal	No difference in gonadal histopathology	2019)
	or 5 months before	 No difference in TUNEL-positive cells in the 	
	mating with maternal	testes or ovaries	
	from GD0- PND21 and	No difference in gonadal MDA and SOD levels	
	offspring exposure	diameter or Leydig cell number	
	continuing via drinking	No difference in sperm count, motility or	
	PND70 (receiving same	morphology PND70_E1_5-month exposure to 100 µg/l	
	dose as parents)	Changes in spermatogenic epithelial staging	
		(stages VII and VIII) in the testes of males	
		 Decreased expression level of Cyp1/a1 (a Levdig cell specific gene) in the testes of males 	
C57BL/6J Jcl	1 or 10 ppm CdCl ₂ in	PND21-70, 1 ppm:	(Ishitobi and
mouse	maternal drinking water	No change in age at vaginal opening or normal	Watanabe,
		PND21-70, 10 ppm:	2005)
		• No change in age at vaginal opening or normal	
	Daily paternal IP	cyclicity of estrous	(Zhou ot al
mouse	injection with 1.0 mg/kg	 Increased atrophy of seminiferous tubules, 	(2022)
	CdCl ₂ for 5 weeks	number of lipid droplets in testicular interstitial,	
		and damaged and vacuolated mitochondria in the testes	
		Transcriptomic analyses of testicular tissues	
		revealed differentially expressed genes	
		synthesis and catabolism, flagellar movement of	
		sperm and ion channels	
		 Increased Fash and Acat1 mRNA abundance but decreased Poard Acsm5, Scd1, Pck1 	
		<i>Cd36</i> , and <i>Cyp7a1</i> mRNA abundance in the	
		 Increased testicular index and epididymal fat 	
		pad index in testes	
		Decreased serum T levels in males	
		decreased serum free cholesterol levels in	
		males	
		 Decreased sperm concentration in the cauda epididvmis 	
		• Decreased Star, P450scc, 3β-hsd, and 17β-	
		hsd mRNA and protein abundance in testes	
		interstitial of the testes	
		• Decreased Atgl, Hsl, Ldlr and Sr-bi mRNA	
		abundance and Atgl, Sr-Bi, and Ldlr protein abundance in testes	
		Decreased immunofluorescence and protein	
		abundance of mitochondrial and lysosome markers	
	l	voac1/2 and Lamp2 in the testes	

C57BL/6J	Paternal IP injection	PND6	(Zeng et al
mouse	with 1.0 mg/kg CdCl ₂ every other day for 5 weeks	 Increased mitochondria in Sertoli cells, type A spermatogonia, and interstitial cells of testes Increased immunofluorescence and protein abundance of mitochondrial and lysosome markers Vdac1/2 and Lamp2 in the testes PND112 Decreased immunofluorescence and protein abundance of mitochondrial and lysosome markers Vdac1/2 and Lamp2 in the testes 	2022)
C57BL/6J mouse	Paternal IP injection with 1.0 mg/kg CdCl ₂ every other day for 5 weeks	 PND6 Increased number of mitochondria in oocytes with increased vacuolization and broken outer membranes Increased mitochondrial vacuolization but decreased mitochondrial cristae in GCs PND70 Increased ovary index Decreased serum E2 levels but no change in serum AMH levels Decreased number of secondary follicles and antral follicles in the ovaries Decreased Star, <i>P450scc</i> and 17β-hsd mRNA abundance in ovaries Decreased P450scc, 17β-hsd, Cyp17a1 and Cyp19a1 protein abundance in ovaries Increased total serum cholesterol levels but decreased serum free cholesterol levels in females Decreased total cholesterol in ovaries Decreased Hmgcr, Srebp2, Ldlr and Abca1 mRNA abundance but no change in Ldlr in ovaries Decreased Hmgcr, Srbi, and Abca1 protein abundance but no change in Ldlr in ovaries Decreased lipid deposition in ovaries Decreased immunofluorescence and protein abundance but no chance in <i>Atgl</i> in ovaries Decreased <i>Drp1</i> and <i>Mfn2</i> mRNA abundance in ovaries Decreased immunofluorescence and protein abundance of Drp1 and Mfn2 in ovaries 	(Zeng et al., 2023)
CD-1 mouse	100 mg/L CdCl ₂ in	PND26-35:	(Nan et al.,
	paternal drinking water for 20 weeks	 No change in anogenital distance, testicular descent, or weight of testes PND70: No change in epididymal fat weight, prostate weight, or epididymal weight No change in staging of seminiferous tubules, histological morphology, or the number of atypical residual bodies per seminiferous tubule No increase in apoptosis of seminiferous tubules tubules 	2020)
NMRI mouse	Primary mouse testis and ovary tissue cultures exposed ex vivo to 1 or 10 µM Cd (from CdCl ₂) for 3 days	 Mouse testes 1 μM: No change in the total number of germ cells per testis No change in the apoptotic rate of germ cells No change in T secretion 	(Angenard et al., 2010)

		Maura avariaa	
		Decreased germ cell number after days 3 and	
		10	
		Increased percentage of apoptotic germ cells	
		after days 3 and 10	
		10 μM:	
		Extinguished germ cell population after day 3	
Human	Primary human testis	Human testes	
	and ovary tissue	0.1 μM:	
	cultures exposed ex	No increase in apoptotic rate of germ cells	
	<i>vivo</i> to 0.1, 1, 10, or 50	No change in T secretion	
	µM Cd (from CdCl ₂) for	1 µM:	
	4 days for testes and	 Decrease in total number of germ cells per 	
	for 8 days for ovaries	testis	
	-	 Increased apoptotic rate of derm cells 	
		No change in proliferation rate	
		No change in T secretion	
		το μινι.	
		 Increased apoptotic rate of germ cells 	
		• No change in 1 secretion	
		Human ovaries	
		0.1 µm:	
		No change in germ cell density	
		No change in percentage in apoptotic germ	
		cells	
		No change in proliferation rate of germ cells	
		1 μM Cd:	
		Decreased germ cell density	
		Increased percentage of apoptotic germ cells	
		No change in proliferation rate of germ cells	
		10 µM Cd:	
		Decreased germ cell density	
		 Increased percentage of apoptotic germ cells 	
		No change in proliferation rate of germ cells	
		50 µM Cd	
		Decreased germ cell density	
		Decreased germ cell density	

Table S11. Key findings related to liver development and disease from experimental animal models of early life Cd exposure

Species	Exposure model	Key Findings	Source
Spraque-	Daily maternal oral	Time course from GD15-PND56	(Stewart et
Dawley rate	davage of 25 mg/kg/dav	 Reduced benatic activity of fructose metabolism 	(Otewart et al 1084)
Dawley Tats	Cd from GD6-18	enzyme sorbitol dehydrogenase	al., 130 4)
	Cultoni GD0-18	Ne difference in heretic lectote debudre rences	
		No difference in nepatic lactate denydrogenase	
		or glucose-6-phosphate denydrogenase activity	
Wistar rats	Daily maternal SQ	PND16-20 ⁻	(Hazelhoff
Thotal Fato	injection of 0.49 mg/kg	No difference in fetal liver Zn	Roelfzema et
	Cd as CdCl ₂ starting at	No difference in fetal liver glycogen	al 1989)
	conception		u., 1000)
Wistar rats	60 ppm Cd as CdCl ₂ in	e20:	(Barański,
	maternal drinking water	 Decreased fetal liver Zn 	1986)
	during GD1-20		,
Wistar rats	50 or 500 mg/kg/day	PND21, 50 and 500 mg/kg/day:	(Jacquet et
	CdCl ₂ in maternal	No difference in plasma aspartate	al., 2019)
	drinking water for 3	aminotransferase (AST) or alanine	. ,
	weeks before mating	aminotransferase (ALT)	
	and during gestation	Dose-responsive hepatic Cd accumulation	
	and lactation	PND21_50 mg/kg/day:	
		 Impaired glucose tolerance 	
		 Elevated places non-actorified fatty acids 	
		(NEEA) indicitive of inculin resistance	
		(NEFA), indicitive of insulin resistance	
		FND20, 50 and 500 mg/kg/day.	
		No difference in glucose tolerance and plasma	
		Increased plasma adiponectin	
		PND26, 500 mg/kg/day:	
		 Reduced plasma C peptide, indicative of 	
		diabetes	
		PND60, 500 mg/kg/day:	
		Elevated plasma C peptide, indicative of insulin	
		resistance	
		No difference in glucose tolerance, plasma	
		NEFA or plasma adiponectin	
Wistar rats	10 ppm Cd as CdCl2 in	GD20:	(Castillo et
	maternal drinking water	In females:	al., 2012)
	from weaning until	 Increased hepatic GC receptor (GR) gene and 	
	mating, then 50 ppm Cd	protein abundance	
	during gestation until	 Hypomethylation in the hepatic GR promoter 	
	GD20	Decreased hepatic DNA methyltransferase 3a	
		(Dnmt3a) gene expression	
		In males:	
		Decreased hepatic GR gene and protein	
		abundance	
		Hypermethylation in the hepatic GR promoter	
		Increased hepatic <i>Dnmt3a</i> gene expression	
Charles	Daily maternal SQ	PND21:	(Pillai and
Foster rats	injection of 0.05	Decreased hepatic DNA	Gupta, 2005)
	mg/kg/day CdAc for 5-7	Decreased hepatic glycogen	, ,
	days before mating.	Decreased hepatic Zn	
	and during gestation		
	and lactation until		
	PND21		
Wistar rats	Daily maternal SQ	GD15 and GD 20:	(Yoruk et al.,
	injection of 0.49	No difference in fetal hepatic alvcogen	2003)
	mg/kg/day CdCl ₂ during		,
	gestation		
Sprague-	25, 50 or 100 µg/mL Cd	GD21; 25, 50, and 100 µg/mL:	(Sasser et al
Dawley rats	as CdCl ₂ in maternal	Dose-responsive reduced fetal hepatic Zn	1985)
,		concentrations	,

	drinking water from	No difference in etal hepatic MT	
Wistar rats	Daily Maternal oral gavage of 1 or 10 mg/kg CdCl ₂ from GD9- 19	 GD19, 1 and 10 mg/kg: Decreased liver weight GD19, 10 mg/kg only: Decreased hepatic Zn, Fe, and Cu Hepatic Cd accumulation 	(Kuriwaki et al., 2005)
Sprague- Dawley	0, 5, 50, or 100 ppm Cd as CdCl ₂ in maternal drinking water from GD6-20	 GD20, 50 and 100 ppm: Decreased Zn concentrations in the liver 	(Sorell and Graziano, 1990)
Wistar rats	Daily maternal SQ injection of 0.49 mg/kg Cd as CdCl ₂ starting at conception	GD16-20No change in fetal liver glycogen	(Roelfzema et al., 1987)
Wistar rats	50 mg/L Cd as CdCl ₂ in maternal drinking water during gestation and lactation with or without 60 mg/L Zn as ZnCl ₂	 PND21: Decreased hepatic insulin-like growth factor-I (IGF-I) in males 	(Mimouna et al., 2018)
Wistar rats	50 ppm Cd as CdCl ₂ in maternal drinking water during gestation until GD20	 GD20: Decreased fetal hepatic Zn, Fe, MT, and thionein-Zn Decreased hepatic nuclear and cytoplasmic Zn content Decreased hepatic microsomal Fe content 	(Sowa and Steibert, 1985)
Wistar rats	50 mg/L Cd from CdCl ₂ in maternal drinking water before and during gestation and during lactation	 PND0, PND11 and PND21: Decreased hepatic Fe PND21: Decreased hepatic Zn PND49: Increased hepatic Zn in females Hepatic Cd was detected in exposed offspring at all timepoints 	(Mikolić et al., 2016)
Wistar mice	30 or 75 ppm Cd in maternal and paternal drinking water for two months before mating, and during gestation and lactation.	 PND7, 75 ppm: Increased hepatic lipid peroxidation 	(Xu et al., 1993)
CD-1 mice	500 ppb CdCl2 in maternal drinking water for two weeks before mating until PND10	 PND42, females only: Increased dyslipidemia and hepatic lipid deposition Altered expression of MASLD-related genes Impaired glucose tolerance and insulin tolerance PND90 and PND120, females only: Increased incidence of preneoplastic hepatic lesions 	(Jackson et al., 2020)
C57BL/6J mice	5 ppm Cd from CdCl ₂ in maternal and paternal drinking water for 16 weeks before mating and until PND21	 29 weeks old: Increased susceptibility to HCC induction in males Impaired insulin tolerance in females 	(Men et al., 2021)
C57BL/6J x CAST/EiJ hybrids	50 ppm CdCl2 in maternal drinking water for 5 weeks before mating and during gestation	 PND0: Increased hepatic Na, Mg, and Mn Decreased hepatic Ca, Fe, K, P, S, Zn, Co, Cu, Mo, and Se 	(Hudson et al., 2019)
C57BL/6J mice	Daily maternal oral gavage of 5 or 10 mg/kg Cd from CdCl ₂ from GD1-18	 GD19, 5 and 10 mg/kg: Decreased hepatic expression of polyubiquitin gene Ubc GD19, 10 mg/kg only: Accumulation of hepatic polyubiquitinated protein 	(Kurita et al., 2018)

ICR mice	50 or 150 mg/L CdCl2 in maternal drinking water from GD8-17, with or without 500 mg/kg NAC supplementation	 Decreased hepatic monoubiquitin protein PND35, 50 and 150 mg/L: Decrease liver/fetal weight ratio Increased hepatic oxidative stress protein HO-1 Increased hepatic expression of gluconeogenesis gene <i>G6pc</i> and proteins p- Creb and Pcg-1α PND35, 150 mg/L only: Reduced fetal liver weight Increased hepatic oxidative stress proteins Nox2, Nox4, and Sod2 Increased hepatic GSH Hyperglycemia in males Increased hepatic expression of gluconeogenesis genes <i>Pcg-1α</i>, <i>Pepck</i>, and <i>Fbp1</i> and proteins Pepck and G6pc PND98, 150 mg/L only: Increased expression of gluconeogenesis proteins p-Creb, Pgc-1, and G6pc in males Impaired glucose tolerance in males No observed insulin resistance in males No effect on serum ALT With NAD supplementation: Glucose tolerance and oxidative stress parameters largely returned to normal 	(Yi et al., 2021)
C57BL/6J mice	Daily maternal oral gavage with 5 mg/kg Cd as from GD1-18	 GD19: 2.0-fold or more increase in 1,669 genes 0.5-fold or less decrease in 194 genes Altered pathways included cell cycle and cell proliferation, apoptosis, cell growth and differentiation, cellular defense, metabolism, transport, transcription, signal transduction, metal homeostasis, and ubiquitin protease system 	(Kurita et al., 2016)
C57BL/6J mouse	Paternal IP injection with 1.0 mg/kg CdCl ₂ every other day for 5 weeks	 PND112 Increased edema, number of mitochondria, and ruptured mitochondrial membranes in hepatic cells Increased immunofluorescence and protein abundance of mitochondrial and lysosome markers Vdac1/2 and Lamp2 in hepatic cells 	(Zeng et al., 2022)
CD-1 mouse	0.5 mg/L CdCl ₂ in maternal drinking water for 2 weeks prior to mating until PND10	 GD18 Increased Cd and Zn concentrations, decreased Fe concentration, a no change in Mn concentration in female livers Decreased Fe concentration and no change in Cd, Zn, and Mn concentrations in male liver Decreased <i>Mt1</i> mRNA abundance in female but not male livers No change in <i>Mt2</i> and <i>Mt3</i> mRNA abundance in either male or female livers PND1 Increased <i>Slc39a4</i> and <i>Slc25a16</i> mRNA abundance but decreased <i>Slc39a6</i> mRNA abundance in female livers PND21 Increased Cd concentration, decreased Zn and Mn concentrations, and no change in Fe concentration in female livers Metal content was below the limit of detection in male livers Increased <i>Slc39a4</i>, <i>Slc30a10</i>, and <i>Slc25a16</i> mRNA abundance but decreased <i>Slc39a14</i> mRNA abundance in female livers 	(Jackson et al., 2022)

		PND42	
		 Increased Cd concentration but decreased Zn, Fe, and Mn concentrations in female livers Increased Cd concentration but no change in Zn, Fe, and Mn concentrations in male livers Increased Slc30a6, Slc30a10, Slc39a3, Slc39a6, Slc39a8, and Slc39a13 mRNA abundance but decreased Slc39a2, Slc39a4, Slc39a14, Mt1, and Mt3 mRNA abundance in female livers PND90 Increased Cd concentration but decreased Zn, Fe, and Mn concentrations in female livers Decreased Fe concentration and no change in Cd, Zn, and Mn concentrations in male livers PND120 Increased Cd concentrations in female livers Decreased Fe concentrations in female livers 	
CD-1 mouse	50 or 150 mg/L CdCl ₂ in maternal drinking water from GD8-17, with or without daily 15 µg/kg E2 (E2) IP injections from GD8-17 (only for 150 mg/L group)	 Zn, and Mn concentrations in male livers GD18, 50 mg/L Decreased fetal liver weight in males Decreased Ki67 immunofluorescence in male livers Decreased Pcna protein abundance but no change in CyclinD1 in male livers Decreased sinusoidal area in male livers Decreased <i>Dll4</i> mRNA abundance in male livers Decreased Vegf-a and Notch3 protein abundance but no change in Dll4 in male livers Decreased Vegf-a and Notch3 protein abundance but no change in Dll4 in male livers Decreased Era protein abundance but no change in Cyp17a1, 17β-hsd, and Erβ in male livers GD18, 150 mg/L Decreased fetal liver weight and liver to body weight percentage in males Decreased Ki67 immunofluorescence in male livers Decreased Sinusoidal area in male livers Decreased Notch3 and Dll4 mRNA abundance in male livers Decreased Vegf-a, Dll4, and Notch3 protein abundance in male livers Decreased Ze levels in male livers Decreased Ki67 and Dll4 mRNA abundance in male livers Decreased Ki67 and Dll4 mRNA abundance in male livers Decreased Ki67 and Dll4 mRNA abundance in male livers Decreased Ki67 and Dll4 mRNA abundance in male livers Decreased Ki67 and Dll4 mRNA abundance in male livers Decreased Ki67 inmunofluorescence in male livers Decreased Ki67 inmunofluorescence but no change in Cyp17a1, 17β-hsd, and Erβ in male liver Rescued fetal liver weight and liver to body weight percentage in males Improved Ki67 immunofluorescence in male livers Improved Sinusoidal area in male liver Alleviated Vegf-a, Dll4, and Notch3 protein abundance in male livers 	(Fu et al., 2023)
C57BL/6J mouse	Paternal IP injection with 1.0 mg/kg CdCl ₂ every other day for 5 weeks	 PND112 Impaired glucose tolerance in males and females 	(Zeng et al., 2023)
L		1	1

		•	Increased random serum glucose and fasting	
			serum insulin levels in males and females	
		•	Increased serum total cholesterol (IC) and low	
			density lipids (LDL), decreased triglycerides	
			(IG), and no change in high density lipids	
			(HDL) in females	
		•	Increased serum IC, IG, and LDL but no	
			change in HDL in males	
		•	Increased lipid deposition in livers of males and	
			Temales	
		•	of moloo	
		-	Or males	
		•	linked to etty asid metabolism, long aboin fatty	
			acid metabolism, unsaturated fatty acid	
			metabolism, and arachidonic acid	
			metabolism in livers of male mice	
		•	Gene set enrichment analysis revealed	
		•	significant downregulation of arachidonic acid	
			metabolism AMPK signaling pathway PPAR	
			signaling pathway, and adipocytokine signaling	
			pathway livers of male mice	
		•	Increased Aclv. Acaca. Fasn and Scd1 mRNA	
			abundance and increased Fasn protein	
			abundance in livers of males	
		•	Decreased Acs/1 and Cpt1a mRNA and protein	
			abundance in livers of males	
		•	Decreased Ppard, Cd36, Cyp4a14, Cyp4a10,	
			and Pck1 mRNA abundance and Cd36, Pck1,	
			and Ppard protein abundance in livers of males	
C57BL/6	10 or 100 mg/L CdCl ₂ in	GD [.]	18, 10 mg/L	(Tan et al.,
mouse	paternal drinking for 10	•	No change in liver weight or liver to body weight	2023)
	weeks		percentage in males and females	
		GD	18, 100 mg/L No change in liver weight or liver to body weight	
		•	no change in males and females	
			Differential gene expression including pathways	
		•	enriched for phospholipid metabolism in livers	
			of females	
		•	Decreased Pitonb. Atp11a. Plekha3. Scp2. and	
			Apoc3 mRNA abundance in livers of females	
		•	Altered hepatic lipidomic profile including	
			multiple phospholipids in livers of females	
		•	No change in hepatic lipidomic profile in livers	
			of males	
		PN	D105, 10 mg/L	
		•	No change in fasting blood glucose or glucose	
			tolerance in males or females	
		PINL	D 105, 100 IIIg/L	
		•	ducose tolerance, in females	
			No change in fasting blood ducose or ducose	
			tolerance in males	
		PN	2125.10 mg/l	
		•	No change in liver weight or liver to body weight	
			percentage in males and females	
		PN	D125, 100 mg/L	
		•	No change in liver weights or liver to body	
			weight percentage in males	
		•	Decreased liver weight but no change in liver to	
			body weight percentage in females	
		•	Increased hepatic glucose content in livers of	
			remaies	
		•	increased p-Gs protein abundance in livers of	
			fomoloo	

		 Altered hepatic lipidomic profile including phase hetiduleheling (PC) has PC (LPC) 	
		phosphatidylcholine (PC), lyso PC (LPC),	
		phosphatidylinositols (FI) and	
		 Little to no change in lipidomic profile in livers of 	
		males	
		296 differentially expressed genes including	
		pathways to glucose and lipid metabolism in	
		livers of females	
		Increased <i>PppIr3c</i> , <i>Ptktb1</i> , <i>Dcxr</i> and <i>Gstm2</i>	
		Increased Abr protein abundance but decreased IR	
		and pAKT in livers of females	
C57BL/6	20 and 40 mg/L Cd as	E16.5, All doses	(Xu et al.,
moused	CdCl ₂ in maternal	No change in total amino acid levels in livers	2023)
	drinking water from	E19.5, All doses	
ByC hybrid	E7.0-19.0	Decreased total amino acid levels in livers DND0_1 nnm	(Piggl at al
	C57BL/6 I maternal	No change in liver mass in males or females	(Riegi et al., 2023)
mouse	drinking water for 5	No evidence of benatic lipid accumulation in	2020)
	weeks prior to mating	males or females	
	and during gestation	 No change in the expression of steatosis, 	
	until PND10	inflammation, and fibrosis genes in livers of	
		males or females	
		PND0, 50 ppm	
		 No change in liver mass in males or females No ovidence of hepotic lipid accumulation in 	
		 No evidence of nepatic lipid accumulation in males or females 	
		 No change in the expression of steatosis 	
		inflammation, and fibrosis genes in livers of	
		males or females	
		PND21, 1 ppm	
		No change in liver mass in males or females	
		No change in hepatic lipid or collagen	
		deposition in males or remaies	
		 No change in the expression of steatosis, inflammation, and fibrosis genes in livers of 	
		males or females	
		PND21, 50 ppm	
		 Decreased liver mass in males but no change in females 	
		 Increased hepatic lipid deposition in males and families 	
		Increased hepatic collagen deposition in	
		females but no change in males	
		Increased expression of steatosis,	
		inflammation, and fibrosis genes in livers of	
		 Increased expression of imprinted genes in 	
		livers of males and females	
		 No change in methylation status of Zac1 	
		imprinted control region in livers of males or	
		females	
		PND90, 1 ppm	
		INO change in liver mass in males or females	
		 No change in nepatic lipid deposition in males or females 	
		No change in the expression of steatosis,	
		inflammation, and fibrosis genes in livers of males or females	
		PND90, 50 ppm	
		 Increased liver mass in males but no change in famalas 	
		 No change in henatic linid denosition in males 	
		or females	

		No change in the expression of steatosis, inflammation, and fibrosis genes in livers of males or females	
Ross 306 broiler chickens	<i>In ovo</i> injection of 2, 4 or 8 μg/egg Cd as CdCl ₂ on E4	 E14, 8 µg/egg: Increase in the number and size of mitochondria Increase in the expansion of the lysosomal compartment More autophagic vacuoles in hepatocytes E18; 2, 4, and 8 µg Cd/egg: Changes in the structure and size of hepatocyte mitochondria Dose-responsive increase in hepatocyte swelling PND1; 2, 4, and 8 µg Cd/egg: Increase in hepatocyte mitochondrial swelling Increase in hepatocyte rough ER Extended hepatocyte lysosomal system 	(Dżugan et al., 2018)
Broiler chickens	In ovo injection of 0.43 or 430 μM CdCl ₂	 E14, 430 μM: Sinusoidal dilation and hepatic tissue necrosis Ruptured hepatocyte cellular membranes Irregular hepatocyte chromatin condensation Damaged hepatocyte organelles 	(Venter et al., 2015)

Table S12. Key finding related to kidney development and disease from experimental animal models of early life Cd exposure

Species	Exposure Model	Key Findings	Source
Wistar rats	Maternal inhalation of 1.48 mg/kg/ day Cd from a CdCl ₂ solution from GD8-20	 GD21: Markers of renal injury in amniotic fluid: Elevated albumin, OPN, VEGF, and TIMP-1 Decreased creatinine No difference in clusterin, calbindin, and IFN- inducible protein 10 (IP-10) Tubular damage and precipitations in the renal pelvis Cd accumulation in fetal kidney 	(Jacobo- Estrada et al., 2016)
Wistar rats	Maternal oral gavage of 0.5 mg/kg/day CdCl ₂ during gestation	 GD20-PND60: Increasing Cd accumulation over time PND60: Loss of renal function indicated by decreased GFR and urinary inulin Tubular dysfunction indicated by increased ion excretion fraction Altered tubular distribution of claudin proteins (CLDN2 and CLDN5) 	(Jacquillet et al., 2007)
Wistar rats	Maternal inhalation of 1.48 mg/kg/day Cd from CdCl ₂ during GD8-20	 GD21: Reduced renal <i>Vegf</i> gene expression Reduced renal DNA binding ability of HIF-1, a hypoxia-induced transcription factor No change in renal PHD1, HIF-1, or VEGF protein levels 	(Jacobo- Estrada et al., 2018)
Wistar rats	50 mg/L Cd from CdCl ₂ in maternal drinking water before and during gestation and during lactation	 PND0 and PND11: Decreased renal Fe PND21 Decreased renal Fe Increased renal Zn PND49: Increased renal Zn in females 	(Mikolić et al., 2016)
Wistar rats	Maternal oral gavage of 0.5 mg/kg/day CdCl ₂ from GD9-19	 GD19: Decreased renal Na/K ratio No difference in renal Na, K, Zn, Cu, Fe, Mg, or P No renal Cd detected 	(Kuriwaki et al., 2005)
Sprague- Dawley rats	Maternal IP injection of 2.5 mg/kg CdCl ₂ on GD8, 10, 12, and 14	 PND3: Decreased renal alkaline phosphatase (ALP) activity PND3 and PND12: No renal Cd detected No change in MT levels 	(Saillenfait et al., 1992)
Sprague- Dawley rats	Maternal IP injection of 2.0 or 2.5 mg/kg CdCl ₂ on GD8, 10, 12, and 14	 PND3, 2.0 and 2.5 mg/kg Elevated gamma glutamyl transferase (GGT) Elevated ALP Elevated <i>N</i>-acetyl-β-glucosaminidase (NAG) PND3, 2.5 mg/kg only Proximal tubule dysfunction indicated by β₂-microglobulin (β₂-m) PND12, 2.0 and 2.5 mg/kg All parameters returned to normal 	(Saillenfait et al., 1991)
Wistar rats	50 ppm Cd from CdCl ₂ in maternal drinking water for 5 months before mating and until GD20	 GD20: No detected renal Cd No change in renal succinic dehydrogenase, NADP-dehydrogenase, Mg-activated ATPase, or acid phosphatase activity Reduced number of developed nephrons 	(Steibert et al., 1984)
CD-1 mice	Maternal inhalation of 230 µg/m ³ CdO	PND10 and PND14	(Blum et al., 2015)

nanoparticles during GD4.5-16.5	 Decreased renal kidney injury molecule (<i>Kim-1</i>) gene expression No change in renal gene expression of NGAL, another kidney injury biomarker No change in uripary creating or Kim-1 	
------------------------------------	--	--