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Acute lung injury (ALI) is a severe form of sepsis that is associated with a high rate of morbidity and death in critically ill
individuals. 1e emergence of ALI is the result of several factors at work. Case mortality rates might range from 40% to 70%.
Researchers have discovered that epigenetic alterations are important in the pathophysiology of ALI and that using epigenetic
inhibitors may help reduce symptoms. In embryonic development, circadian rhythm, the cell cycle, and cancer, methylation of
m6A seems to be relevant all along the way. According to recent research, posttranscriptional methylation is a key player in the
development of alveolar lymphoma. In this study, we clustered ALI based on m6A-related factors, analyzed different classes of
immune cell enrichment and inflammatory cytokine expression, screened clustered differential genes for ALI to construct
coexpression networks, screened key ALI genes potentially regulated by m6A modifications, and then typed the disease based on
key genes to compare the consistency of different clustering results. Our findings have revealed a hitherto undiscovered prognostic
sign and a therapeutic target for ALI therapy in m6A and immune invading cells, respectively.

1. Introduction

Acute lung injury (ALI) is a severe form of sepsis that is
associated with a high rate of morbidity and death in
critically ill individuals [1]. Clinically severe hypoxia with
diffuse pulmonary infiltrates appeared abruptly in 1967 and
were originally defined as acute respiratory distress syn-
drome and acute lung damage [2]. Alveolar capillary
membrane rupture and pulmonary edema are hallmarks of

ALI. Furthermore, acute respiratory distress syndrome is a
more serious variant of ALI, with a death rate of about 40%.
Patients of all ages may be affected by these illnesses, which
often occur shortly after a well-detailed trigger event. 1e
emergence of ALI is the result of several factors at work. A
person is more prone to suffer from acute lung damage if
they have a predisposing condition, such as sepsis, that is
severe. Acute lung damage risk varies from patient to patient
based on a variety of factors. Examples include drinking,
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which has been linked to an increased risk of Alzheimer’s
disease. Direct damage causes alveolar macrophages, T cells,
and epithelial cells to produce cytokines and chemokines,
increasing lung permeability, causing neutrophil infiltration,
and resulting in ALI [3]. When age, underlying chronic
diseases, and the degree of non-pulmonary sickness, as well
as gas-exchange abnormalities, are taken into consideration
along with other risk factors, the results are comparable in
both categories of acute lung damage [4].

Acute respiratory distress syndrome is a medical term
for when hypoxaemia in acute lung damage is severe (partial
arterial oxygen pressure (PaO2)/fractional oxygen concen-
tration in inspired air (F1O2)< 200). Acute lung damage is
the general term used in most epidemiological and inter-
ventional investigations to describe the larger spectrum of
gas-exchange abnormalities (PaO2/F1O2< 300) [5]. 1ere
are limits to these criteria, such as the fact that conventional
ventilatory assistance is not required to meet physiological
thresholds. It is possible that the use of positive end-expi-
ratory pressure (PEEP) could enhance oxygenation indices
to the point that patients who previously met criteria for an
acute respiratory distress syndrome will now have acute lung
damage, and vice versa. To aid in the clinical diagnosis of
ALI, new auxiliary approaches are required.

Changes in gene expression that have nothing to do with
the DNA sequence or structure are the focus of epigenetics, a
branch of genetics. DNA methylation, histone modification,
noncoding RNA, and other epigenetic modifications are
examples of these. Atypical epigenetic alteration may be
linked to a wide range of disorders, just as a faulty base
sequence in traditional genetics. Researchers recently dis-
covered that ALI is caused by numerous epigenetic alter-
ations, and that using epigenetic inhibitors may help to
reverse this [6]. Aside from that, noncoding RNA may serve
as a biomarker for ALI. Covalent changes to RNA nucle-
otides are now known to impact RNA stability and trans-
lation, allowing them to modulate gene expression.
Posttranscriptional regulation occurs when RNA is modified
after transcription. 1ere are about 150 different forms of
RNA modifications. In addition to messenger and transfer
RNA, they are found in ribosomal and small noncoding
RNA, as well as in many other forms of RNA (lncRNA).
Over 60% of all RNA changes are caused by methylation of
RNA [7]. All four ribonucleotides (A, U, C, and G) contain
methylation alterations, including N6-methyladenosine
(m6A), 5-methylcytosine (m5C), 3-methyluracil (m3U), and
N7-methylguanosine (m7G), for example. 1e most prev-
alent kind of RNA methylation in mRNA is m6A methyl-
ation [8]. 1e Adenine’s sixth methylation site (m6A) is
largely found in RRACH RNA sequences, where it regulates
splicing, transport, localization, translation, and destruction
of target RNAs, among other functions [9]. A widespread
lncRNA alteration in higher organisms, m6A is found in a
broad range of eukaryotes, including yeast, plants, Dro-
sophila, and mammals. According to the research, over-
expression of ALKBH5 lowered pre-miR-21 m6A
methylation and reduced pre-miR-21 and miR-21-5p levels,.
By decreasing the TLR4/MyD88/NF-kB activity in a miR-21-
5p-dependent manner, reduction of ALKBH5 protects

against radiation-induced lung damage [10]. Even still, little
is known about precise molecular roles played bym6A in the
immune system’s ability to fight infection.

Here, we analyzed the expression of widely reported
m6A RNA methylation regulators in ALI using the gene
expression omnibus database (GEO database). As a starting
point, we looked at the overall pattern of m6A change in the
samples from patients with ALI. Two patient groups were
derived from a clustering of three m6A gene expression
pattern datasets. Later, these genes were utilized to construct
a m6A-related gene network, which included weighted gene
coexpression network analysis (WGCNA) and a protein-
protein interaction (PPI) network.1ese networks were then
built using the genes that had been found to be differentially
expressed. 1e total number of hub genes we discovered was
eleven. 1is hub gene served as a reference for further bi-
ological research. In three different m6A-clusters, hub gene
expression was organized as follows:
cluster2> cluster1> cluster3. In the GSE2322 dataset, hub
genes were also significantly expressed. Hub gene-cluster
subtyping was conducted based on the hub genes to better
understand how hub genes work in ALI. After that, we
looked at the subtype’s correctness in more detail. 1e
Sankey diagram showed that m6A-clusters and hub gene-
clusters had a high degree of consistency. M6A-cluster 1 and
hub gene-cluster 3 exhibited high levels of consistency,
resulting in almost identical expression patterns for hub
genes in the two clusters, showing that clustering findings
were stable and biologically significant. 1ese findings give a
starting point for further research into the connection be-
tween m6A and ALI, as well as a solid scientific foundation
for treating ALI in the clinic.

2. Methods

2.1. Data Sources and Preprocessing. All expression micro-
arrays matching ALI keywords were searched in the public
database-GEO database. We found GSE10474, GSE2322,
GSE3037, and GSE10361 after combing through every
publicly available database.1ere were 91 ALI samples in all.
With the help of the R package “limma,” we calculated final
gene expression levels by multiplying the predicted precision
weights of each observation by their corresponding log2.1e
mean of all probes for a particular gene was calculated.1e R
package “SVA” was used for batch rectification on four data
sets to ensure data consistency.

2.2. Consensus Clustering of m6A Regulators. All relevant
English-language research was thoroughly searched in the
PubMed databases from inception to September 28, 2021.
Only m6A RNAmethylation complex methylation regulator
genes found in animals or cells will be considered for this
investigation. 1ese genes include METTL3, METTL14,
METTL16, WTAP, VIRMA, RBM15, RBM15B, ZC3H13,
FTO, ALKBH5, YTHDC1, YTHDC2, IGF2BP1, IGF2BP2,
IGF2BP3, YTHDF1, YTHDF2, YTHDF3, HNRNPC,
HNRNPA2B1, and RBMX [7, 11–13]. Based on the ex-
pression profile of the m6A gene in 91 samples, Pearson
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correlation of m6A gene expression was calculated and
consensus clustering analysis was performed using the R
package “ConsensusClusterPlus.” Stable clustering results
were obtained by 1000 PAM iterations with an 80% sam-
pling ratio in each iteration.1e clustering effect was verified
by principal component analysis (PCA).

2.3. Clustering Expression and Immune Infiltration. 1e
expression of the m6A gene and inflammatory cytokines in
different categories were analyzed. 1e inflammatory cy-
tokines include TNF, IL1B, IL-6, IL8, IL10, IL11, IL15, IL16,
and IL18. And ssGSEA enrichment analysis was performed
on 28 kinds of immune cells using the R package “GSVA.”
Using the median value as the threshold, the differences of
m6A gene, immune cells, and inflammatory cytokines in
different clusters were analyzed by the chi-square test.

2.4. Difference Analysis and Weighted Gene Coexpression
Network Analysis (WGCNA). 1e chi-square test was per-
formed to examine the differential expression of all genes in
the expression profile from Step 1 in distinct groups based
on clustering findings from Step 2. A difference with a
p FDR < 0.05 or more was deemed significant. It is becoming
more common in bioinformatics to employ WGCNA, a
novel systems biology tool, to examine data from gene
expression microarray profiling experiments [14]. Modules
that are physiologically relevant are discovered once they
have been linked to external data. WGCNA may also be
utilized to find new treatment targets or biomarkers. Highly
linked genes may be organized into modules using a gene
coexpression network. By clustering eigengene networks, the
first principal component of gene expression for a mod-
ule—the module eigengene (ME)—was computed as well as
the interconnectedness of each module. 1e module
membership (MM) of a gene in the module correlates with
its expression profile in both positive and negative ways,
with a larger MM number indicating stronger association.
As gene significance (GS) increases, so does the biological
relevance of a gene’s function. GS measures how closely
genes are linked to their associated external features. We
utilized the WGCNA R package to find coexpressed genes in
microarrays that had all of their transcripts present. After
determining the characteristic, the important modules were
determined by looking at how well they are correlated with
the clustering category determined in Step 2.

2.5. Functional Enrichment Analysis. 1e R package “clus-
terProfiler” was used for GO and KEGG functional en-
richment analysis of all genes in key modules, and p< 0.05
was the significance threshold.

2.6. Screening for Hub Genes. Genes most related to cluster2
traits (GS> 0.5) and modules (MM> 0.8) in WGCNA key
modules were selected as hub genes in modules. All genes in
the key module of WGCNA were input into the STRING
website (https://string-db.org/) to search for the PPI net-
work, and genes with top 15% (≥6) gene connectivity were

selected as the hub genes of the PPI network. WGCNA key
genes and PPI key genes were intersected to obtain final hub
genes, and the expression of hub genes in different clusters in
Step 2 was analyzed.

2.7. Analysis of Hub Genes. Based on the expression data of
hub genes, the optimal number of classification was de-
termined by finding the optimal SSE inflection point. K-
means clustering combined with t-SNE dimension reduc-
tion was used to type the samples, and the expression of hub
genes in different types was further studied. 1e consistency
of m6A gene cluster and the hub genes cluster were analyzed
by the Sankey diagram.

2.8. Software and Versions. Rx64 3.6.1 was conducted to
process data, analyze data, and plot diagrams, and R
packages included limma, SVA, ConsensusClusterPlus,
GSVA,WGCNA, clusterProfiler, and t-SNE. Cytoscape 3.6.1
was performed to plot network diagrams.

3. Results

3.1. Sixteenm6ARNAMethylation RegulatorsWere Collected
via Systematic Review. Data preprocessing was used to
derive the expression profiles of 12355 genes from 91
samples. We used systematic review to compile a list of 21
m6A regulator genes, then confirmed gene expression using
the resulting datasets. Sixteen of the 21 m6A genes were
expressed in all four datasets, and the missing genes were
METTL14, VIRMA, ALKBH5, IGF2BP1, and RBMX.
METTL3, METTL16, WTAP, RBM15, RBM15B, and
ZC3H13 have all been identified as m6A writers. YTHDC1,
YTHDC2, IGF2BP2, IGF2BP3, YTHDF1, YTHDF2,
YTHDF3, HNRNPC, and HNRNPA2B1 were also among
m6A readers [15]. Erasers in the m6A family included FTO.
1ese results were shown in Table 1. 1e chromosomal
distribution of 16 m6A regulators was also examined, and
these 16 genes were shown to be widely distributed

Table 1: 1e name and type of m6A-related genes.

Gene symbol Types
METTL3 m6A writers
METTL16 m6A writers
WTAP m6A writers
RBM15 m6A writers
RBM15B m6A writers
ZC3H13 m6A writers
YTHDC1 m6A readers
YTHDC2 m6A readers
IGF2BP2 m6A readers
IGF2BP3 m6A readers
YTHDF1 m6A readers
YTHDF2 m6A readers
YTHDF3 m6A readers
HNRNPC m6A readers
HNRNPA2B m6A readers
FTO m6A erasers
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Figure 1: Sixteen m6A RNA methylation regulators were collected. (a) 1e location of the m6A gene on the chromosome is shown by
Circos. (b) 1e expression correlation of these m6A regulators.
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(Figure 1(a)). Figure 1(b) shows the expression correlation of
these m6A genes.

3.2.m6AMolecularSubtypesandConsensusClustering inALI.
As clustering stability rose from 2 to 6 in cohort, we per-
formed unsupervised cluster analysis on the expression
patterns of 16 m6A RNA methylation regulators
(Figure 2(a)). It seems that k� 3 was a suitable selection with

increasing clustering stability in the cohort (Figures 2(b) and
2(c)), including clusters 1, 2, and 3. 1is was based on the
expression similarity of m6A RNA methylation regulators.
1e sample numbers of each of the three clusters were 46, 38,
and 7, respectively. In addition, through PCA verification of
the three clusters, the three categories had clear differenti-
ation (Figure 2(d)). As seen in Figure 3, the three clusters
had distinct expression patterns for 16 m6A genes.
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3.3. Immune Status Heterogeneity of m6A-Cluster Subtypes.
A number of different factors may contribute to ALI, in-
cluding immune cell migration and activation in the lungs,
which can lead to damage to the alveolar-capillary mem-
brane.1ere are many different types of cells involved in this
inflammatory process. It is critical to understand ALI’s
immunological heterogeneity. Immune cells and inflam-
matory cytokines were evaluated in four different datasets in
our research. On the heat map, three distinct groups of
immune infiltrating cells could be seen. Activated CD4 and
CD8 T cells, as well as neutrophils, and others showed
substantial variations across the three immune cell groups
(Figure 4(a)). Figure 4(b) shows the expression levels of three
groups of inflammatory cytokine genes. Except for IL8, all
four datasets exhibited the same levels of other inflammatory

cytokines. Certain cytokines, such as TNF, showed sub-
stantial variation across the three groups.

3.4.Heterogeneity ofOtherBiological Functionofm6A-Cluster
Subtypes. 1e differential expression of 12355 genes in three
groups was evaluated after consensus clustering, and 257
genes had substantial changes in their expression. WGCNA
analysis was carried out using 257 genes that were found to
be different. It was decided to build six modules
(Figures 5(b) and 5(c)), each with a soft value of 8 (R2 � 0.71),
to represent the six primary colors of the rainbow
(Figure 5(a)). Turquoise, yellow, green, and brown modules
were significantly correlated with m6A-cluster (Figure 5(d)),
and these four modules were selected as key modules and for
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Figure 3: 1e specific expressions of 16 m6A genes were different in three clusters. Differences of 16 m6A regulators expression levels
among different m6A-cluster subtypes. ns, p> 0.05; ∗p< 0.05; ∗∗p< 0.01; ∗∗∗p< 0.001; ∗∗∗∗p< 0.0001.
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further functional analysis. 1ese four key modules con-
tained 169 genes. 1e results of functional enrichment
analysis of 169 genes mainly focused on multicellular or-
ganismal homeostasis (Figure 6(a)), protein serine/threo-
nine kinase activity (Figure 6(b)), cell-cell junction
(Figure 6(c)), receptor binding, and so on. And KEGG
enrichment showed the results mainly focused on human
papillomavirus infection, Yersinia infection, and so on
(Figure 6(d)).

3.5. ScreeningandAnalysis ofHubGenes. A total of 169 genes
were found in WGCNA important modules, including 50

essential genes (Figure 7(b)). Furthermore, the PPI network
revealed the existence of gene correlations in significant
modules. 1e PPI network had 102 genes, with 34 of them
being important genes with a link degree ≥3 or higher
(shown in green) (Figure 7(a)). We intersected the WGCNA
key genes and PPI key genes, and identified 11 hub genes
(Figure 7(c)), including GLP1R, GTF2H3, HNRNPL,
POLR2C, RHO, SORBS3, SERPINA10, MAPK3, WAS,
EGLN2, and PRKACA. Interestingly, the expression pat-
terns of hub genes in three m6A-clusters were
cluster2> cluster1> cluster3 (Figure 8(a)–8(k)), and hub
genes were highly expressed in the GSE2322 dataset
(Figure 9(a)–9(k)).
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3.6. Clustering of Hub Genes and Association Analysis.
Subtypes based on hub genes were created to better understand
how ALI’s hub genes work.1e ideal inflection point approach
yielded a total of three kinds (k� 3) (Figure 10(a)). 1e R

package “t-SNE” dimension reduction analysis revealed the
expression patterns of hub genes in the t-SNE1 and t-SNE2
dimensions could substantially differentiate the three groups of
samples through sum of squares. And three clusters included
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cluster 1 (blue) with 20 samples, cluster 2 (red) with 16 samples,
and cluster 3 (green) with 55 samples (Figure 10(b)). Hub genes
expression in m6A-clusters and hub gene-clusters was revealed
by the heat map (Figure 10(c)). Likewise, the expression
patterns of hub genes in three hub gene-clusters were
cluster2> cluster3> cluster1 (Figure 10(d)). 1en, we further
evaluated the accuracy of the subtype. 1e Sankey diagram
illustrated that there was a high consistency among m6A-
clusters and hub gene-clusters (Figure 11).

4. Discussion

It is easy to see that acute respiratory distress syndrome
(ARDS) and ALI are both well-defined and clearly

identifiable clinical illnesses that may be induced by a variety
of lung insults or predispositions to lung damage. It is
commonly known that this happens a lot in acute care.
Treatment for this illness relies heavily on providing great
supportive care to critically sick patients, many of whom
have comorbid disorders, including sepsis and organ failure.
1e only known treatment for ALI patients is limited volume
mechanical breathing, and fatality rates remain too high to
tolerate. A growing corpus of research has recently examined
various possible treatment targets for treating ALI, with
promising results. 1e classic TLR4-MYD88 and NFKB
signaling pathways play key roles in mTOR-autophagy axis’
mediating duties in ALI pathogenesis, with the former
serving upstream and the latter serving downstream [16].
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Activation of autophagy or mTOR inhibition may be po-
tential therapeutic options to avoid bacterial-induced ALI.
As a significant negative autophagy regulator, mTOR has
been implicated, but its precise mode of action remains a
mystery. Aside from that, it has been shown that METTL3
activated mTORC1 signaling and led to CRC development
by inducing GLUT1 translation in a m6A-dependent way

[17]. GLUT1, therefore, increased glucose absorption and
lactate generation. It was also shown that inhibiting
mTORC1 enhanced the anticancer effects of METTL3 si-
lencing in organoids generated from CRC patients as well as
METTL3 transgenic mice. As a result of these studies, it was
shown that mTOR was crucial in the development of ALI
and may have a connection with m6A regulators.
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Figure 9: 1e different expression levels of the hub gene among GEO datasets. (a–k) 1e expression patterns of hub genes in four GEO
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Inflammatory cytokines like IL-6 and TNF-α are produced
in greater amounts when TLRs are activated, which leads to
antibacterial responses via downstream signal transduction
pathways, particularly activation of nuclear factor κB (NF-
κB) and mitogen-activated protein kinase [18]. Infection
with SARS-CoV-2, a virus that has recently been linked to

ALI and ARDS, has been linked to an inflammatory storm
(marked by elevated levels of IL-6, IL-12, and IL-1, as well as
TNF and deficient type I interferon activity) [19]. As with
patients who have received CAR T cells treatment or anti-
bodies that engage bispecific T cells, this inflammatory re-
action is similar to cytokine release syndrome that may be
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addressed with anti-cytokine therapy that targets the IL-
6–IL-6 receptor (IL-6R) signaling pathway [20]. HESH3-
lysine-27 trimethylation (H3K27me3) was shown to induce
demethylation of histone H3, leading to an increase in the
production of proinflammatory cytokines and making m6A
more readily available for the cotranscriptional storage [6].
ALI is characterized by excessive intra-alveolar fibrin de-
position, driven, at least in part by inflammation. 1e im-
balance between activation of coagulation and inhibition of
fibrinolysis in patients with ALI favors fibrin formation and
appears to occur both systemically and in the lung and
airspace [21]. Intravascular coagulation factor predominates
over the anticoagulant factor at ALI, breaking the equilib-
rium state of maintaining blood mobility. Another study
revealed that activated platelets induce neutrophil extra-
cellular traps (NETs) formation, and NETs can increase the
permeability of endothelial monolayers, and NETs were
found in the lungs in both experimental and clinical
transfusion-related acute lung injury (TRALI) [22]. Pre-
venting platelet activation or interfering with NET con-
stituents results in marked lung protection in experimental
TRALI, suggesting that NETs may serve as a novel

therapeutic target to treat patients suffering from this severe
condition.

A search of all expression microarrays matching ALI
keywords in the public database-GEO database was per-
formed to get a better understanding of the relationship
between m6A methylation and ALI. And we draw a
graphical abstract to demonstrate the analysis workflows of
this study (Figure 12). We collected GSE10474, GSE2322,
GSE3037, and GSE10361 by removing unnecessary infor-
mation. We collected the total of 91 ALI samples with 12355
genes.1e ALI samples were retyped into three groups using
consensus clustering, and each of the three clusters could be
distinguished from the others. A comprehensive study
yielded a list of 16 m6A regulator genes. METTL3,
METTL16, WTAP, RBM15, RBM15B, and ZC3H13 have all
been identified as m6A writers. YTHDC1, YTHDC2,
IGF2BP2, IGF2BP3, YTHDF1, YTHDF2, YTHDF3,
HNRNPC, and HNRNPA2B1 were also among m6A
readers. Erasers in the m6A family included the FTO.

After that, we checked the datasets for evidence of gene
expression. 1ere are many different types of cells involved
in this inflammatory process. Clarification of ALI’s immune
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state heterogeneity is required. To find out more about
immune cells and inflammatory cytokines, we looked at four
different datasets. On the heat map, three distinct groups of
immune infiltrating cells could be seen. Macrophages dif-
fered significantly from neutrophils and TNF-α from
activated CD4 T cells in three subtypes. Resident and
recruited macrophages have been shown to play an im-
portant role in the initiation and maintenance of pul-
monary inflammation after a lung infection or damage.
TNF-α is highly secreted by alveolar macrophages, but
interstitial macrophages are better at releasing interleu-
kin-1β (IL-1β) and IL-6. 1e next step, we intersected the
WGCNA key genes and PPI key genes, and identified 11
hub genes, including GLP1R, GTF2H3, HNRNPL,
POLR2C, RHO, SORBS3, SERPINA10, MAPK3, WAS,
EGLN2, and PRKACA, and analyzed the expression
patterns of hub genes (cluster2 > cluster1 > cluster3). 1e
overview of all hub genes, including the function and
introduction, was shown in Table 2. 1e hub gene-cluster
subtype was performed based on hub genes to better
understand how hub genes operate in ALI. 1e consis-
tency and accuracy of these subtypes were then assessed.
1ere were 35 shared samples between m6A-cluster 1 and
hub gene-cluster 3, with a share of shared samples in
subtype clusters of 76% and 64%, respectively. Each
cluster had 16 common samples, which accounted for 42%
of the total and 100% of the hub gene-cluster 2 samples.
Figures 8 and 10(d) show that hub genes were found to be
widely expressed, with the greatest levels of expression

occurring in cluster 2 of various subtypes (Table 3). M6A-
cluster 1 and hub gene-cluster 3 exhibited high levels of
consistency, resulting in almost identical expression
patterns for hub genes in the two clusters, showing that
clustering findings were stable and biologically significant.

5. Conclusions

ALI is a common disease in adult and pediatric intensive
care units with high morbidity and mortality. m6A modi-
fications play important roles in mammals, such as upre-
gulation of RNA stability, localization, transport, shearing,
and translation at the posttranscriptional level, and play an
important role in the development of the disease. 1e
pathophysiology of ALI originates from a severe inflam-
matory response. In this study, we clustered ALI based on
m6A-related factors, analyzed different classes of immune
cell enrichment and inflammatory cytokine expression,
screened clustered differential genes for ALI to construct
coexpression networks, screened key ALI genes potentially
regulated by m6A modifications, and then typed the disease
based on key genes to compare the consistency of different

Table 2: 1e function of 11 hub genes.

Gene symbol Abbreviations Function

Glucagon-like peptide 1 receptor GLP1R
1is gene encodes a 7-transmembrane protein that functions as a receptor for
glucagon-like peptide 1 (GLP-1) hormone, which stimulates glucose-induced

insulin secretion [23].
General transcription factor IIH
subunit 3 GTF2H3 1is gene encodes a member of the TFB4 family. 1e encoded protein is a subunit

of the core-TFIIH basal transcription factor and localizes to the nucleus [24].
Heterogeneous nuclear
ribonucleoprotein L HNRNPL Functional annotation defined a set of essential spliceosome and RNA binding

protein (RBP) genes [25].

RNA polymerase II subunit C POLR2C 1is gene encodes the polymerase responsible for synthesizing messenger RNA in
eukaryotes [26].

Rhodopsin RHO Protein encoded by this gene is found in rod cells in the back of the eye and is
essential for vision in low-light conditions [27].

Sorbin and SH3 domain containing 3 SORBS3
SORBS3gene codes for the adapter protein vinexin, and has been shown to play a
role in growth-factor-induced signal transduction and a cytoskeleton structure

[28].

Serpin family a member 10 SERPINA10
Protein encoded by this gene belongs to the serpin family, predominantly

expressed in the liver and secreted in plasma. It inhibits the activity of coagulation
factors Xa and XIa in the presence of protein Z, calcium, and phospholipid [29].

Mitogen-activated protein kinase 3 MAPK3

Protein encoded by this gene is a member of theMAP kinase family. MAP kinases,
act in a signaling cascade that regulates various cellular processes such as

proliferation, differentiation, and cell cycle progression in response to a variety of
extracellular signals [30].

WASP actin nucleation promoting
factor WAS

In addition to its role in the cytoplasmic cytoskeleton, also promotes actin
polymerization in the nucleus, thereby regulating gene transcription and repair of

damaged DNA [31].
EGL-9 family hypoxia inducible factor
2 EGLN2 EGLN2 is involved in regulating hypoxia tolerance and apoptosis in cardiac and

skeletal muscle [32].
Protein kinase CAMP-activated
catalytic subunit alpha PRKACA In hepatocellular fibrolamellar carcinoma (FL-HCC), the fusion DNAJB1 to

PRKACA is suggested to be a diagnostic marker for this rare subtype of HCC [33].

Table 3: Comparison of two clustering results.

m6A-cluster Hub gene-cluster
cluster1 46 20
cluster2 38 16
cluster3 7 55
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clustering results. Our findings have revealed a hitherto
undiscovered prognostic sign and therapeutic target for ALI
therapy in m6A and immune invading cells, respectively.

Abbreviations

ALI: Acute lung injury
m6A: N6-methyladenosine
m5C: 5-Methylcytosine
m3U: 3-Methyluracil
m7G: N7-methylguanosine
GEO
database:

Gene expression omnibus database

PPI: Protein-protein interaction network
WGCNA: Weighted gene coexpression network

analysis
ME: Module eigengene
MM: Module membership
GS: Gene significance
ARDS: Acute respiratory distress syndrome
NETs: Neutrophil extracellular traps.
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