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Abstract: (1) Background: Lipid metabolism is a fundamental hallmark of all tumors, especially of
breast cancer. Few studies describe the different lipid metabolisms and sensitivities to the microenvi-
ronment of breast cancer cell subtypes that influence the proliferation, aggressiveness, and success of
therapy. This study describes the impact of lipid microenvironment on endoplasmic reticulum (ER)
membrane and metabolic activity in two breast cancer cell lines with Luminal A and triple-negative
breast cancer (TNBC) features. (2) Methods: We investigated the peculiar lipid phenotype of a TNBC
cell line, MDA-MB-231, and a Luminal A cell line, MCF7, and their different sensitivity to exogenous
fatty acids (i.e., palmitic acid (PA) and docosahexaenoic acid (DHA)). Moreover, we verified the
impact of exogenous fatty acids on ER lipid composition. (3) Results: The data obtained demonstrate
that MDA-MB-231 cells are more sensitive to the lipid microenvironment and that both PA and DHA
are able to remodel their ER membranes with consequences on resident enzyme activity. On the
contrary, MCF7 cells are less sensitive to PA, whereas they incorporate DHA, although less efficiently
than MDA-MB-231 cells. (4) Conclusions: This study sustains the importance of lipid metabolism as
an innovative hallmark to discriminate breast cancer subclasses and to develop personalized and
innovative pharmacological strategies. The different sensitivities to the lipid environment shown by
MCF7 and MDA-MB-231 cells might be related to cell malignancy and chemoresistance onset. In the
future, this new approach could lead to a substantial decrease both in deleterious side effects for the
patients and in the cost of entire therapeutic treatments coupled with increased therapy efficiency.
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1. Introduction

Cancer is a highly complicated disease because of its genetic and metabolic hetero-
geneity and complexity. In each cancer subtype, distinct genetic alterations, oncogenic
signaling, and epigenetic changes are responsible for tumorigenesis [1]. Metabolic alter-
ations represent a hallmark of cancer controlling tumor progression and metastasis [2].
The most understood metabolic perturbation in cancer cells is the “Warburg effect”, an
energetically wasteful alteration of glucose metabolism [3]. Nevertheless, many altered
metabolic pathways characterize cancer proliferation and are correlated with different
extents to the cancer type and aggressiveness. While carbohydrate, protein, and amino
acid metabolism in tumor cells has already been extensively dissected, lipid metabolism
has only recently come to the attention of the scientific community. Although this field is
still largely unexplored, great benefits could come from a deeper understanding of cancer
cell lipid phenotype and the susceptibility to the lipid microenvironment.

In cells, lipids are responsible for maintaining cellular structures and for providing
energy. Moreover, they are involved in cell signaling as precursors of biological active
mediators. The bioactive lipid molecules are produced by the activation of multiple
signaling pathways and, in cancer, might regulate multiple cellular effects [4-6]. Fatty acids
(FA), glycerophospholipids (PL), sphingolipids (SL), and sterols, in particular, cholesterol
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(Chol), have relevance in cancer development and chemotherapy response. For instance,
FA are needed for energy storage, membrane structures, and precursors of signaling
molecules and SL are not only structural components of cell membranes but also bioactive
lipid molecules involved in apoptosis and/or chemoresistance [7]. In order to build more
complex lipids, FA are derived from either an exogenous source, such as diet, or from de
novo synthesis. Indeed, most of the enzymes and carriers involved in lipid synthesis and
uptake are abnormally expressed in cancer cells, and their chemical and genetic inhibition
might reduce proliferation or induce apoptosis [8]. Concerning the exogenous source,
previous studies have indirectly suggested that cancer cells utilize mainly exogenous FA
for energy or membrane synthesis. For example, Nieman et al., by co-culturing ovarian
cancer cells and adipocytes, demonstrated that cancer cells, for their metabolic needs,
obtain lipids from neighboring adipocyte stores [9]. Once in the active cell pool, FA might
also contribute to the constitution of structural lipids, such as SL, PL, and Chol, and non-
structural lipids, such as triglycerides (TG) and cholesteryl esters (CE), that might be stored
in cellular lipid droplets.

The characterization of many metabolic pathways sustained by cancer cells to retrieve
nutrients for growth and proliferation indicates that cancer metabolism is highly heteroge-
neous and subject to external cues. These observations have great impact on chemotherapy
and immunotherapy efficacy [10].

Breast cancer is the most commonly diagnosed cancer and one of the leading causes
of cancer death among women worldwide (American Cancer Society, 2015). Indeed, the
biological heterogeneity of this tumor, due to different molecular subtypes, risk factors,
clinical behavior, and responses to treatment, represents the major obstacle to therapy
success and survival. In particular, studies based on global gene expression analyses have
identified four main molecular subtypes of breast cancer known as Luminal A, Luminal
B, HER2-enriched (HER2E), and Basal-like. In addition to these subtypes, breast cancer
negative for an estrogen receptor, a progesterone receptor, and HER-2 is defined as a
triple-negative breast cancer (TNBC). All these breast cancer subtypes have been also
characterized based on their significant differences in terms of incidence, risk factors,
baseline prognosis, age at diagnosis, and response to treatment [11].

Advances in treatment strategies, including surgery, radiotherapy, and chemotherapy,
have greatly increased the overall survival rate, but it is still challenging to select a person-
alized therapeutic strategy for the treatment of progressive and advanced breast cancers.

The plasma lipid profile in breast cancer patients has been extensively investigated and
alterations have been associated with cancer development. However, the prognostic value
of serum lipid markers in cancer and the beneficial roles of nutritional interventions are still
under debate [12]. Few studies describe the different lipid metabolisms and sensitivities
to lipid environment of breast cancer cell subtypes that might determine breast cancer
proliferation, aggressiveness, and response to chemotherapy. Therefore, in this study,
we investigate both the peculiar lipid phenotype of a TNBC cell line, MDA-MB-231, and
a Luminal A cell line, MCF7, and their sensitivity to exogenous FA (i.e., palmitic and
docosahexaenoic acids) in order to evaluate the impact of a lipid microenvironment on
tumor metabolism.

2. Materials and Methods
2.1. Materials

Palmitic acid (PA, sodium salt) and cis-4,7,10,13,16,19-docosahexaenoic acid (DHA,
sodium salt) were purchased from Sigma-Aldrich (St. Louis, MO, USA). Palmitic acid was
dissolved in 50% ethanol, while docosahexaenoic acid was dissolved in 100% ethanol to a
concentration of 10 mg/mL; these stock solutions were stored at —80 °C under N; until
use. The rabbit monoclonal anti-Calnexin (C5C9) and the rabbit monoclonal anti-Histone H3
(D1H2) antibodies were purchased from Cell Signaling Technology, Danvers, MA, USA. The
mouse monoclonal anti-HSP60 (66041) antibody was purchased from Proteintech, Deansgate,
Manchester, UK. Bound primary antibody was visualized by proper secondary horseradish
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peroxidase (HRP)-linked antibody, purchased from Cell Signaling Technology, Danvers, MA,
USA. All solvents were purchased from Carlo Erba Reagents, Italy. Avanti Polar Lipids Inc.
(Alabaster, AL, USA) supplied the fatty acid methyl ester (FAME) standards for GC analysis
and neutral lipids (TG and CE) for LC analysis. Phospholipid standards were purchased from
Sigma Aldrich, St. Louis, MO, USA.

2.2. Cell Lines and Fatty Acid Treatment

Human breast cancer cells MDA-MB-231 (Basal-like and TNBC) and MCF7 (Luminal A)
were provided by ATCC. Both cell lines were routinely maintained in Dulbecco’s Modified
Eagle’s Medium (DMEM) supplemented with 10% fetal bovine serum (FBS), 100 U/mL
penicillin, 100 mg/mL streptomycin, and 2 mM glutamine (Gibco-BRL, Life Technologies
Italia srl, Monza, Italy). Cells were grown at 37 °C in 5% CO; at 98% relative humidity.
Before treatments, 1.5 x 10* cells/cm? of MDA-MB-231 cells and 3 x 10* cells/cm? of MCF7
cells were seeded to adhere with 18 mL of DMEM containing 10% v/v FBS for 48 h. After
48 h, the medium was replaced with fresh medium supplemented with PA or DHA. To this
aim, the FA stock solutions were diluted in culture medium at 50 uM and supplemented
with fatty acid free bovine serum albumin (BSA) to a final molar ratio of 6:1 for PA and of
5:1 for DHA. Both cell lines were treated for 72 h with FA. The experiments included control
cells (Ctr) treated with equal concentrations of ethanol, always less than 1%.

2.3. Endoplasmic Reticulum Isolation

The isolation of endoplasmic reticulum (ER) was performed using a commercial kit
(ER0100, Sigma-Aldrich, St. Louis, MO, USA) following the manufacturer’s instructions
with minor modifications. These modifications allowed for isolation of the microsomal
fractions from pellets of 200 x 10° MDA-MB-231 and MCF7 cells. The protocol allowed
to purify sequentially the following cell fractions: PNS (post nuclear surnatant), P1 (nu-
clei, heavy mitochondria and membrane sheets), PMF (post mitochondrial fraction), P4
(mitochondria, lysosome, peroxisome, Golgi membranes, and endoplasmic reticulum),
and finally CMF (microsomal fraction containing endoplasmic reticulum). The CMF was
characterized as a fraction highly enriched with the ER cellular compartment by western
blot, as described later.

In details, the PNS was centrifuged at 12,000x g, instead of 10,000x g, to allow
for better separation of the mitochondrial fraction or supernatant (PMF) to the pellet
(P4). Then, the pellet (P4) was resuspended in an IBc buffer (100 uL Tris-MOPS 0.1 M
+ 10 uL EGTA /Tris 0.1 M + 100 pL saccharose 1 M + 1 uL of protease inhibitor cocktail
10 x + 689 pL HpO ultrapure) and centrifuged at 7000x g for 10 min at 4 °C. The resulting
pellet (CMF), enriched in ER, was resuspended with 100 uL of isotonic extraction buffer
1 x (10 mM HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid), pH 7.8, with
1 mM EGTA, and 25 mM potassium chloride) and stored at —20 °C for further analyses.

The protein content of each fraction was determined by the Lowry assay [13].

2.4. Lipid Extraction and Analysis

Whole cell pellets and CMF fractions were extracted with three different chloroform/methanol
mixtures 1:1, 1:2, and 2:1 (v/v) and partitioned with chloroform/methanol/water, 47:48:1, v/v/v
and then with water. Each solvent contained 50 uM 2,6-bis(1,1-dimethylethyl)-4-methylphenol
(BHT) to protect lipids from oxidation. The organic phase was dried and resuspended in chloro-
form/methanol (2:1) for the analysis of total FA, PL, and neutral lipids (TG and CE) [14].

Total FA were determined as methyl esters (FAME) by gas chromatography. The
methyl esters were obtained by derivatization with 3.33% (w/v) sodium methoxide in
methanol and injected into an Agilent Technologies (6850 series II) gas chromatograph
equipped with a flame ionization detector and a capillary column (AT Silar) (length 30 m,
film thickness 0.25 pm). The carrier gas was helium, the injector temperature was 250 °C,
the detector temperature was 275 °C, and the oven temperature was set at 50 °C for 20 min
and then increased to 200 °C at 10 °C min~! for 20 min. A standard mixture containing all
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FAME was injected for calibration, and TG C17:0 was added before sample manipulation
and used as internal standard [15].

Specific fatty acid ratios were utilized to calculate the relative activity of ER key
enzymes of lipid metabolism: desaturases A5D (20:4n-6/20:3n-6), A6D (18:3n-6/18:2n-6),
stearoyl-CoA desaturase 1 (SCD-1 n-7: 16:1/16:0, SCD-1 n-9: 18:1/18:0), elongases Elovl-6
(18:0/16:0), Elovl5 (20:3 n-6/18:3 n-6), and de novo lipogenesis or DNL (16:0/18:2n-6).

The PL and neutral lipid (NL) quantifications were achieved as previously described
by high-pressure liquid chromatography (HPLC) (Jasco, Tokyo, Japan) equipped with an
ELSD detector (Sedere, Alfortville Cedex, Paris, France) and silica normal-phase LiChro-
spher Si 60 column (LiChroCART 250-4; Merck, Darmstadt, Germany) [16].

2.5. Western Blot

To confirm the purity grade of microsomal fractions, the presence of both non-ER
biomarkers (Heat Shock Protein HSP60 and Histone H3) and an ER biomarker (Calnexin)
was determined in the CMF fraction of each sample by western blot.

Ten micrograms of the protein from each CMF fraction, purified from control and
treated cells, were separated on 10% SDS-PAGE gel and transferred to a polyvinylidened-
ifluoride transfer membrane (PVDF) (Bio-Rad). Membranes were then probed with the
following antibodies: rabbit anti-Calnexin monoclonal antibody (1:1000) marker of endo-
plasmic reticulum, rabbit anti-Histone H3 monoclonal antibody (1:2000) nucleus marker,
and anti-mouse anti-HSP60 monoclonal antibody (1:400) mitochondria marker.

The blots were incubated for 1 h at room temperature with horseradish peroxidase-
linked to the appropriate secondary antibodies diluted 1:3000 in a blocking buffer. All
blots were developed by the ECL Western Blotting Detection LiteAblot® plus Kit Reagent
(Euroclone S.P.A, Pero, Italy) following the manufacturer’s protocol.

The immunocomplexes were detected by the Li-Cor Odyssey FC system (LI-COR®
Biosciences, Lincoln, NE, USA) and the relative intensities of the chemiluminescent signals
were quantified by a digital scanner.

2.6. Immunofluorescence

For immunofluorescence analyses, MCF7 and MDA-MB-231 cells were cultured on
8-well slides. After 72 h of treatment, cells were fixed with 4% paraformaldehyde in
phosphate-buffered saline (PBS) at room temperature for 10 min; permeabilized in ice-cold
0.5% Triton X100, HEPES buffer (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) for
4 min; and blocked with 1% bovine serum albumin (BSA) in PBS for 10 min.

For the detection of the ER, rabbit monoclonal anti-Calnexin antibody (1:100) followed
by incubation with goat anti-rabbit IgG-Alexa Fluor 488 (1:1000) was used.

Actin filaments were stained by the incubation of cells in Phalloidin (Phalloidin Tetram-
ethylrhodamine B isothiocyanate, Sigma-Aldrich; St. Louis, MO, USA, 50 ug/mL). Lipid
droplets were stained by incubation with Bodipy ((E,E)-3,5-bis (4-phenyl-1,3-butadienyl)-
4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) (493/503, Molecular Probe, Invitrogen, Life
Technologies, Carlsbad, CA, USA) (0.001 mg/mL).

The nuclei of cells were stained with 4/,6-diamidino-2-phenylindole (DAPL; Sigma-
Aldrich, St. Louis, MO, USA) (0.01 mg/mL).

The fluorescence images were acquired using an Eclipse TE200 inverted microscope
equipped with immersion objective at 60x magnification and digital camera (Nikon,
Tokyo, Japan).

2.7. Statistical Analysis

All data are expressed as mean + SE. Student’s unpaired t-test was utilized for
comparisons between the two cell lines and to compare treated and control cells. The level
of statistical significance was set at p < 0.05.
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3. Results

3.1. Impact of Lipid Microenviroment on Lipid Phenotype of MCF7 and MDA-MB-231 Breast
Cancer Cells

3.1.1. Effect of Exogenous Fatty Acids on Cell Lipid Profile

To evaluate the different effects of exogenous FA, we chose two kinds of breast cancer
cell lines, MDA-MB-231 and MCF7, characterized by several phenotypic and genotypic
differences [17]. The MCEF?7 cell line is characterized by positive estrogen receptor and/or
progesterone receptor expression and exhibits a high level of luminal feature-correlated
genes/ proteins such as ERx or luminal keratins and transcription factors such as GATA3
and FOXA1. These cells, classified as Luminal A, are more differentiated and have a
poor ability to migrate due to high cell-cell junctions. On the contrary, the MDA-MB-231
cell line is characterized by low or no expression of all three receptor markers and by
high invasivity and aggressiveness; this line is classified as triple negative breast cancer
(TNBCQ). In addition, in relation to the metabolic features, MCF7 cells are more Pasteur
type, relying on ATP production from oxidative phosphorylation at normoxic conditions
but increasing their glycolytic activity under hypoxia, while MDA-MB-231 cells are more
Warburg type, mainly relying on glycolysis for ATP production under both normoxic and
hypoxic conditions [18].

Few data are available about their specific lipid metabolic phenotype and their sensi-
tivity to microenvironment modulation. As little information is also available in relation to
the sensitivity of these cell lines to exogenous lipids, we preliminary exposed MDA-MB-231
and MCF?7 cells to increasing concentrations of a saturated fatty acid (PA) and an unsat-
urated fatty acid (DHA) for 72 h. Palmitic acid is the most common saturated fatty acid
in the human diet, and there is growing evidence that highlights its specific tumorigenic
properties and its ability to increase the metastatic features of cancer cells [19]. Among
unsaturated FA, in vitro and in vivo studies demonstrate that omega-3 PUFA, especially
DHA, enhance the sensitivity of cancer cells to chemotherapy. Indeed, DHA incorporation
induces the alteration of gene expression, modulation of cellular proliferation, and differ-
entiation, increasing drug transport across the cell membrane and generation of reactive
oxygen species (ROS) [20].

The cell viability and apoptotic effect were measured by the MTT test and cytofluo-
rometry, respectively (Figures S1 and S2). As shown in Figure S1, PA induces a progressive
reduction of cell viability in MDA-MB-231 cells; in particular, while the viability is sig-
nificantly reduced at PA concentrations above 100 uM, the exposure to 50 uM PA does
not appear to be cytotoxic. On the contrary, the MCF7 cell line does not show signif-
icant changes in viability at any PA concentrations. Considering DHA treatments, we
observe a significant reduction in MDA-MB-231 cell viability from 200 pM DHA while
no effects are revealed for MCF7 (Figure S1). Collectively, these results suggest that the
MCEF7 cell line is less sensitive to treatment with both exogenous FA compared to MDA-
MB-231 cells. Based on the MTT assays, PA and DHA were used at 50 pM concentration in
subsequent experiments.

To further investigate the possible toxic effects of exogenous FA, we measured apop-
tosis by Annexin V assay; the results confirm the minor responsiveness of MCF7 with
respect to MDA-MB-231 cells (Figure S2). Indeed, treatment with both exogenous FA at
50 uM slightly, even if significantly, reduces the viability only of MDA-MB-231 cells and
significantly increases the number of cells in both early and late apoptosis to a total value
of 20%. On the other hand, the MCF7 cell line also shows a slight but significant reduction
of viable cells after treatment with 50 tM PA or DHA but without indication of apoptosis.

Having established that the exposure of both cell lines to 50 uM PA or DHA does
not cause severe cytotoxicity, next, we evaluated the different modulations induced by
saturated FA, as PA, and unsaturated FA, as DHA, on lipid phenotype in MCF7 and
MDA-MB-231 cells.

As shown in Table S1, the evaluation of total fatty acid content and composition has
highlighted that both cell lines show, at baseline, a different and peculiar phenotype. In
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particular, MCF7 cells have a significant higher content of monounsaturated fatty acids
(MUFA) than MDA-MB-231 (40.5 £ 0.665 vs. 33.5 &= 0.214), and a significant lower content
of polyunsaturated fatty acids (PUFA) (21.4 £ 0.190 vs. 27.2 £ 0.303). The MCF7 cells have
a lower content of both n-6 (15.2 + 0.297 vs. 17.3 + 0.229) and n-3 PUFA (6.21 4+ 0.213 vs.
9.89 & 0.212). This different fatty acid profile detected in the analyzed cell lines suggest a
peculiar lipid metabolism that might be responsible for different susceptibilities to lipid
microenvironment changes simulated by PA and DHA treatments. Indeed, treatment with
50 uM PA for 72 h determines the significant changes in lipid phenotype in MDA-MB-231
but not in MCF7 cells. Specifically, PA exposition significantly increases the saturated
fatty acid (SFA) percentage, both palmitic acid and stearic acid (C18:0), and decreases
MUFA, especially oleic acid (C18:1, from 30.0 £ 0.226 to 24.1 £ 0.615), and PUFA, especially
arachidonic acid (C20:4, from 10.6 + 0.170 to 9.03 + 0.337) and docosahexaenoic acid
(C22:6, from 4.30 % 0.077 to 3.82 &£ 0.071) (Table S1). On the contrary, both cell lines exhibit
significant modulation of the FA profile after DHA treatment (Table S1).

To further characterize the effects of treatments and the cell fatty acid fate, we analyzed
the fatty acid composition of complex lipids, such as phospholipids (PL) and neutral lipids
(TG and CE). Figure 1 reports the enrichment in each cell line after PA and DHA treatment
relative to control, untreated cells. In total cell lipids after treatment with exogenous FA,
DHA was more enriched in comparison to PA in both cell lines; among complex lipids, PA
and DHA were highly enriched in neutral lipids (NL), more so than PL. Altogether, the
results collected highlight that, at 72 h after treatment with PA or DHA, the TNBC cell line,
MDA-MB-231, has a higher incorporation and metabolism to PL and NL of exogenous FA
compared to MCEF7 cells.

PA DHA
MDA-MB-231  MCF7  MDA-MB-231  MCF7 Max
TOTAL LIPIDS 1932 [171160 15.865 7.303 )
PHOSPHOLIPIDS 1.658 1.186 6.101 4.486 _
NEUTRAL LIPIDS 2.465 _ 22.365 15.266 Min

Figure 1. Enrichment heat map of palmitic acid (PA) and docosahexaenoic acid (DHA) in total lipids,
phospholipids, and neutral lipids isolated from breast cancer MDA-MB-231 and MCF7 cells after
treatment with PA or DHA (50 uM) for 72 h expressed as fold changes over control cells.

The characterization and quantification of NL isolated from control and treated cells
show not only a change in FA composition but also a significant alteration of their con-
centration, especially in MDA-MB-231 cells (Figure 2a). As a matter of fact, PA treatment
and incorporation determine a significant reduction of CE and TG in MDA-MB-231 cells
but not in MCF?7 cells. On the contrary, DHA incorporation and metabolism determine a
significant increase of both CE and TG in MDA-MB-231 cells but only of TG in MCF7 cells
(Figure 2b).

3.1.2. Effect of Exogenous Fatty Acids on Lipid Droplets

Due to modulation of the NL content, we decided to analyze the cellular distribution
of lipid droplets as the apolar core of these structures is constituted by TG and CE in
addition to the enzymes that regulate their storage and hydrolysis [21]. As shown in
Figure 3, after DHA incorporation and metabolism, the content of lipid droplets undergoes
an increase in both cell lines.
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Figure 2. Content (ug/ 106 cells) of total neutral lipids (NL), cholesteryl esters (CE), and triglycerides (TG) isolated from
breast cancer cells MDA-MB-231 (a) and MCF7 (b) treated with PA or DHA (50 uM) for 72 h: data are represented as mean
=+ SE obtained from four independent experiments. (* p < 0.05, ** p < 0.01, and *** p < 0.001 vs. Ctr cells of the same line).

MDA-MB-231

MCF7

Ctr

PA

DHA

Figure 3. Immunofluorescence analysis of lipid droplets in estrogen-sensitive breast cancer cells MCF7 (Luminal A) and

estrogen-insensitive MDA-MB-231 (basal-Like and triple-negative breast cancer (TNBC)) following treatment with PA
or DHA (50 uM) for 72 h: 4’ 6-diamidino-2-phenylindole (DAPI) (nucleus in blue), Bodipy (lipid droplet in green), and

phalloidin (cytoskeleton in red).

Moreover, as can also be seen in Figure 3, after FA treatment, the lipid droplets seem
to mainly localize adjacent to nuclear membranes, which are known to be associated with

the endoplasmic reticulum (ER).

3.2. ER Membrane Remodelling Induced by Exogenous Fatty Acids

The association between lipid droplets and the ER is strictly correlated with hydropho-
bic lipid ester transport, which drives lipid trafficking, important for membrane structure
and energy storage [22]. As the strong ER involvement in lipid droplet synthesis and
lipid metabolism is also well known, we analyzed the impact of exogenous saturated and
unsaturated fatty acids (PA and DHA) on ER lipid composition and metabolic activity. To
this aim, we purified microsomal fractions enriched in ER from MCF7 and MDA-MB-231
cells. The characterization of ER fractions, isolated as CMF from the control and PA- or
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Calnexin

HSP60

Histone H3

DHA-treated cells, with specific protein markers is reported in Figure 4; the isolated ER
fractions show an enrichment of the ER protein biomarker, calnexin, and a very low level
of mitochondrial and nuclear protein biomarkers HSP60 and Histone H3, respectively.

CMF CMF TOTAL LYSATE
MDA-MB-231 MCF7 MDA-MB-231 MCF7 MDA |MCF7
. — T T — — 90 kDa

- 60 kDa

w17 kDa

PA

DHA

- - - - + - + - -

Figure 4. Characterization of microsomal fractions (CMF) purified from control and PA- or DHA-treated breast cancer
MDA-MB-231 and MCF?7 cells (50 uM) for 72 h: the purity of the microsomal fractions (endoplasmic reticulum (ER)) is
evaluated using positive ER markers, such as Calnexin, and markers from other cell compartments, such as HSP60 and

histone H3.

After ER purification, we also extracted and analyzed the microsomal lipids in control
and treated cells. Table S2 and Figure 5 indicate that the fatty acid profile is consistent
throughout the cell structures and that, once again, a different fatty acid profile between the
two cell lines is evident. Indeed, also ER fractions from MCF7 cells have a higher content
of MUFA than MDA-MB-231 cells (38.5 = 0.662 vs. 34.5 & 0.768), especially of palmitoleic
acid (C16:1; 10.1 & 0.448 vs. 4.87 £ 0.588), and a lower level of PUFA (22.5 + 0.450 vs.
27.4 £ 0.405), especially of n-3 PUFA (6.37 £ 0.138 vs. 8.79 & 0.455).

Furthermore, the PA treatment determines a significant alteration in lipid composition
of the ER in MDA-MB-231 cells. Indeed, PA incorporation induces a significant increase
of SFA (from 38.1 + 0.765 to 44.4 £ 0.595) and a significant reduction of MUFA (from
34.5 £+ 0.768 to 30.5 £ 0.884), especially of oleic acid (from 29.6 &= 0.576 to 26.0 £ 1.15). On
the contrary, PA does not affect the ER lipid profile in MCF7 cells.

Interestingly, n-3 fatty acid DHA incorporation dismantles both cell-line ER lipid
assets, inducing a significant improvement of n-3 PUFA and a reduction of MUFA distri-
bution. Noteworthily, DHA does not modify the SFA content and it seems to promote a
metabolic retro conversion of DHA to eicosapentaenoic acid (EPA) (C20:5), especially in
MCF7, with an increase from 1.55 & 0.093 to 5.10 = 0.181. The similar distribution detected
in whole cells (Table S1) and ER fractions (Table S2) demonstrates that ER, a key site for
lipid biosynthesis, is altered by exogenous FA.

In addition, preliminary data obtained by immunofluorescence analyses suggest that
FA treatments might also induce ER membrane remodeling (Figure 6a). These structural
changes in MDA-MB-231 cells treated with DHA are also suggested by the reduction, even if
no statistically significant, of the ER marker calnexin analyzed by western blot (Figure 6b).
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Figure 5. Percentage distribution of fatty acids from ER fractions purified from MDA-MB-231 (a) and MCEF?7 cells (b), treated
with PA and DHA (50 uM) for 72 h: data are represented as mean + SE of four independent experiments. (* p < 0.05,
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The ER has a crucial role in metabolic pathways that synthesize a variety of lipids,
including FA, PL, Chol, and NL [23]. Many key enzymes involved in lipid synthesis are
embedded in the ER membrane. For example, FA elongation and desaturation occur in
the ER membrane [24,25]. The activity of the enzymes involved in lipid metabolism can
be estimated using product-to-precursor fatty acid ratios. In particular, we calculated
the relative activities of the delta 5 desaturase (A5D; 20:4n-6/20:3n-6), delta 6 desaturase
(A6D; 18:3n-6/18:2n-6), stearoyl-CoA desaturase 1 (SCD1n-7; 16:1n-7/16:0, and SCD1 n-9;
18:1n-9/18:0), de novo lipogenesis or DNL (16:0/18:2n-6), elongase 6 (Elovl-6; 18:0/16:0),
and elongase 5 (Elovl-5; 20:3 n-6/18:3 n-6) [26,27]. The ratios were calculated from the
amount of FA isolated in ER fraction normalized by protein content (ug FA /mg proteins).

The data obtained, reported in Figure 7, suggest that, at baseline, the MCF7 cell line
has a higher activity of SCD1 n-7 and de novo lipogenesis (DNL) and a lower activity of
A5D compared to MDA-MB-231 cells. The PA incorporation induces a decrease of SCD-1
n-9 activity only in MDA-MB-231 cells, while DHA treatment determines a significant
reduction of A5D in MDA-MB-231 cells and of SCD-1 n-9 in both cell lines. Noteworthily,
both exogenous FA, PA and DHA, do not affect de novo lipogenesis, indicating that the
measured TG increase induced by DHA exposure might be related to an improvement of
lipid storage activity. Our data suggest that DNL in breast cancer cells is a key metabolism
strongly resilient to microenvironment manipulations.
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MCEF7 cells treated with PA or DHA (50 pM) for 72 h: DAPI (nucleus in blue) and calnexin (ER in green).
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4. Discussion

Molecular mechanisms of tumor progression and therapeutic strategies remain crucial
subjects for investigation. Metabolic alterations are a hallmark of cancer controlling tumor
progression and metastasis. The most understood metabolic perturbation in cancer cells
is the “Warburg effect”, a phenomenon observed in a large variety of tumor types that
consume high glucose amounts, even under aerobic conditions [28]. A crucial role in tumor
progression has been also exerted by alterations of the tricarboxylic acid cycle and the
metabolic pathways of serine, glycine, and glutamine [29,30].

Nevertheless, many studies have provided strong evidence for reprogramming of
lipid metabolism in a tumor [31,32]. Different lipid synthesis and transport inhibitors have
shown promising antitumor effects in preclinical and early phases of clinical trials [33].
However, there are again many troubles in developing personalized cancer strategies based
on targeting altered lipid metabolism. These problems are closed to incomplete knowledge
of the mechanisms that modulate lipid synthesis, storage, utilization, and efflux in cancer
cells. Moreover, they could be also related to the specific lipid profiles and metabolism that
characterize each tumor type and its peculiar sensitivity to the lipid microenvironment.

Some studies highlight the link among lipid metabolism, growth, and metastasis
in breast cancer. For example, a recent report illustrated that 27-hydroxy cholesterol is
synthesized from cholesterol within cancer cells and increases breast cancer growth and
metastasis, binding to estrogen receptor alpha and activating oncogenic estrogen signal-
ing [34]. The expression of cytochrome P450 CYP27A1, which converts cholesterol to
27-hydroxy cholesterol, is high in epithelial breast tumors, and its expression is positively
associated with the tumor grade [35]. Moreover, the chemotherapy significantly alters
plasma lipids and apolipoprotein levels in cancer patients, especially in breast cancer
patients; indeed, many anticancer drugs target lipid metabolism [36]. The antiestrogen ta-
moxifen, for example, demonstrates several nongenomic activities, such as the inhibition of
sphingolipid metabolism [37]. Chemotherapy drugs also affect 3-hydroxy-3-methylglutaryl
coenzyme A reductase (HMGCoAR), the rate-limiting enzyme of cholesterol synthesis.
Doxorubicin decreases HMGCoAR protein levels, while paclitaxel increases HMGCoAR
expression; on the contrary, no lipid effect was associated with cyclophosphamide. These
data suggest variable effects of chemotherapy drugs on cholesterol synthesis that might
also be related to drug efficacy [38].

Unfortunately, the lipid mechanisms operating in different breast cancer types, such as
the estrogen receptor negative tumor cells, are still lacking. Therefore, in order to ensure the
success of chemotherapy and immunotherapy, the discovery of new connections between
lipid environment and cancer lipid phenotype could not only shed light on carcinogenesis
but also reveal new principles that establish and maintain the tumorigenic state and allow
for the selection of a personalized therapeutic strategy.

With our study, we demonstrate that two different types of breast cancer cell lines
exhibit specific sensitivity to lipid modulation. As a matter of fact, after 72 h of exoge-
nous FA treatment, we observe a selective sensitivity in the TNBC cell line MDA-MB-231
compared to the Luminal A cell line MCF7 correlating with a distinct lipid phenotype.
This specific cell response is strictly closed to the peculiar lipid profile and metabolism
that characterizes each cell subset. In addition, we demonstrate that the long exposure
to exogenous FA affects the lipid composition of the ER membrane. In particular, DHA
treatment determines a significant alteration of the MUFA and PUFA contents of the ER
compartment in MDA-MB-231 cells, with consequent changes in resident enzyme activity.
Indeed, the ER membrane is the site where FA can be further modified through elongation
and desaturation processes.

On the basis of different substrate specificity, elongases (Elovl) might be divided
into four groups: the first group elongates SFA and MUFA (Elovl-1, Elovl-3, Elovl-6, and
Elovl-7). The second group includes elongase 2 (Elovl-2) that elongates PUFA, while the
third group, that is elongase 5 (Elovl-5), catalyzes the elongation of long chain PUFA (18-22
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carbons). Finally, the last group is elongase 4 (Elovl-4) that elongates saturated as well as
unsaturated very long chain FA.

Concerning oxidative desaturation, mammals express different acyl-CoA desaturases,
which include mainly A5 desaturase (A5D), A6 desaturase (A6D), and A9 desaturase (A9D)
(also known as stearoyl-CoA desaturase or SCD). A5D and A6D catalyze the biosynthesis
of PUFA, and their most preferred substrates are FA with C16-C24, mainly of exogenous
origin as linoleic acid and «-linolenic acid. A9D catalyzes the introduction of a double
bond into SFA with the preferred substrates as PA (C16:0) and stearic acid (C18:0) [39].

A variety of enzymes associated with the ER membrane and involved in lipid metabolism
are able to regulate the behavior of cancer cells. For instance, a high expression of fatty acid
synthase and stearoyl CoA desaturase 1 (SCD1) is associated with relatively high risk of lung
carcinoma and with poor patient prognosis [40,41].

Our study indicates that exogenous FA, especially PUFA, are able to perturb ER
membrane architecture, modulating desaturase activity, in particular A5 desaturase and
SCD1, especially in MDA-MB-231 cells.

Overall, our results do not suggest any alteration of de novo lipogenesis in either cell
line after 72 h treatment. Indeed, in these cells, FA are mainly esterified, resulting in TG and
CE synthesis followed by their storage in lipid droplets, ubiquitous ER-derived organelles.
Lipid droplet synthesis is thought to occur through the TG accumulated between the
leaflets of ER, which bud into the cytoplasm. Although in the past lipid droplets were
considered inert fat depots, recently, many roles beyond energy storage are emerging,
including regulation of lipid trafficking, protein management and quality control, ER
homeostasis, and autophagy [42,43]. Of note, lipid droplets provide lipids, such as PUFA,
that act as signaling molecules by interacting with transcription factors such as peroxisome
proliferator-activated receptors (PPARs) and sterol-regulatory element binding proteins
(SREBPs), or they are converted into bioactive lipid mediators, such as eicosanoids, that
act as paracrine and autocrine messengers affecting inflammatory signaling, metabolism,
proliferation, migration, and metastasis [44,45]. Then, we suggest that the increase in
lipid droplets after DHA cancer cell exposition might be correlated to ER remodeling; this
effect, particularly evident in the MDA-MB-231 cell line, might be correlated with the
DHA-sensitizing effect in chemotherapy.

5. Conclusions

Lipid metabolic reprogramming and tumor microenvironment susceptibility are
emerging mechanisms that significantly influence the success of chemotherapy and im-
munotherapy. Given that, a specific lipid phenotype of breast cancer cells might be respon-
sible for resistance onset.

This study demonstrates not only that the analyzed cell lines with Luminal A and
TNBC features have a different lipid phenotype and a peculiar lipid metabolism that
influences their sensitivity to the microenvironment but also that it sustains the importance
of lipid metabolism as an innovative hallmark to discriminate breast cancer subclasses and
to develop personalized and innovative pharmacological strategies.
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