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The immune environment in primary tumor has a profound impact on immunotherapy.

However, the clinical relevance of immune environment in hepatocellular carcinoma

(HCC) is largely unknown. Here, the immune profile and its clinical response in HCC

were investigated. The gene expression profiles of 569 HCCs from three cohorts (The

Cancer Genome Atlas, TCGA, n = 257; Gene Expression Omnibus, GEO, n = 170;

International Cancer Genome Consortium, ICGC, n = 142) were used in the current

study. Five gene expression subtypes (C1–C5) responsible for global immune genes

were identified in HCCs at stage I/II. It was found that subtype C4 was associated with

upregulation and subtype C5 was associated with downregulation of immune profiles in

most metagenes. Immune-correlation analysis of the five subtypes demonstrated that

C3 and C4 had higher immune score and better prognostic outcome, as compared

with other subtypes. Moreover, the mutation frequencies of TP53, CTNNB1, and AXIN1

had significant difference in the five subgroups. Further, the expression of PDCD1,

CD274, PDCD1LG2, CTLA4, CD86, and CD80 was higher in subtype C4 in comparison

with the other subtypes. The WGCNA of immune-related genes in the five subtypes

revealed that blue and turquoise modules were positively correlated with subtype

C4 and were associated with 12 common pathways in the KEGG database. These

results were validated in external cohorts from the NCI (National Cancer Institute)

cohort (GSE14520) and the ICGC (International Cancer Genome Consortium) cohort. In

summary, one immune-enhanced subtype and one immune-decreased subtype having

different immune and clinical characteristics may provide guidance for developing novel

treatment strategies for immune system malfunction-related cancer.
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INTRODUCTION

Hepatocellular carcinoma (HCC) is ranked as the second cause of
cancer-related mortality and the fifth most common malignancy
in patients worldwide (1). It was estimated in 2012 that around
700,000 people die of HCC every year worldwide (2). The
incidence of HCC varies with geographical area, sex, age, and risk
factor related to cancer development (3, 4). Despite advances in
HCC treatment, such as liver transplantation, surgical resection,
and radiofrequency ablation, the prognosis of HCC patients is
still low, with a 5-year survival rate of <30% (5). Moreover,
the tumor heterogeneity and microenvironment cells also play
a critical role in treatment or analysis of tumor stage in
HCC (6). Notably, the molecular mechanisms by which the
microenvironment cells regulate the development of HCC have
not been extensively explored.

HCCs are mostly caused by chronically inflamed liver and
are considered as typical immunogenic cancers (7). Immune
procedures play important roles in HCC carcinogenesis and
progression. Immune suppressor cells, including regulatory
T cells (Tregs), tumor-associated macrophages (TAMs), and
myeloid-derived suppressive cells (MDSCs) in the HCC tumor
microenvironment (8), could result in tumor immune evasion
or immune escape by interfering with immune surveillance
(9). Moreover, the immune checkpoint, which is known to
modulate different stages and signaling procedures of the
immune response, is one of the mechanisms of escaping anti-
cancer immune surveillance. It has been revealed that immune
treatment targeting coinhibitory receptors (i.e., CTLA4 and PD1)
increase immune response by inhibiting the immunosuppressive
mechanisms in several cancers, such as metastatic melanoma
and lung cancer (10, 11), but immunotherapy has not been
successfully explored in HCC for decades (12). In addition, the
expression profile and clinical relevance of immune checkpoint
molecules in HCC have not been studied extensively.

Previous studies explored the effects of tumor
microenvironment in HCC. Survival outcome of HCC
patients was investigated using immunohistochemistry and
quantitative PCR techniques to elucidate the underlying
immune gene expression profiles (13). The expression of 49
immune genes was detected in 68 HCC patients. However, the
sample size may have reduced the reliability of the conclusions.
Moreover, qPCR method detected only two tumor phenotypes
(proliferation and apoptosis) and 49 immune genes that
were associated with the survival outcome of HCC patients.
There is a need to comprehensively detect all the tumor
phenotype and global immune profiles using high-throughput
techniques. Transcriptome analysis using next-generation
sequencing and microarray profiling is a powerful method
for systemically exploring the tumor microenvironment.
Previous studies revealed the presence of microenvironment
cells in tumor tissues via RNA sequencing and microarray
analysis of their underlying expression profiles (14, 15).
Using microarray analysis and qRT-PCR technique, a unique
inflammation/immune response-associated signature of the
liver microenvironment was found to be a predictor of venous
metastases, recurrence, and prognosis of HCC (16). However,
due to the cross-validation in training set and lack of external

validation, a larger HCC cohort is needed to further validate
the conclusions.

The current research aimed to comprehensively explore the
heterogeneous immune microenvironment phenotypes and their
associated clinical relevance in HCC at stage I/II. The Cancer
Genome Atlas (TCGA) cohort was used to successfully classify
257 HCC samples into five consensus molecular subtypes of
tumors with potential immune escape mechanisms and genomic
drivers underlying the gene expression profiles of global immune
genes. Both immune-enhanced and immune-decreased subtypes
were identified in HCC. Moreover, the five subtypes were
validated using an external dataset from the NCI (National
Cancer Institute) cohort and the ICGC cohort.

METHODS AND MATERIALS

Genomic Analysis of Immune Genes
Thirteen immune metagenes were obtained from an immune
gene set in the TIMER database (17, 18) to reflect the types
and functions of various immune genes. Median level of gene
expression reflected the scores of the metagenes. In addition,
scores of 10 types of immune-related cells were calculated using
the MCP counter R package (19).

HCC Sample Datasets
The RNA-seq data, SNP data, clinical data, and immune-
associated genes in HCC were retrospectively collected from
the TCGA database (20) (https://cancergenome.nih.gov/) and
the NCBI GEO database (21) (https://www.ncbi.nlm.nih.gov/
geoprofiles/). The gene expression profiles of clinical data from
257 HCCs were retrieved from the TCGA database with the
following criteria: (a) at stage of I and II; (b) accompanied
by detailed follow-up information; (c) accompanied by HCC
gene expression profiles; (d) genes with expression levels >0
in each sample accounting for more than 30% of the genes
identified in the immune gene set (22, 23). Disease-free survival
(DFS) and progression-free survival (PFS) were analyzed for the
TCGA cohort.

The external validation cohort included 445 HCCs that were
collected by the NCI from the GSE14520 dataset (24, 25). A
total of 170 HCCs with the desired gene expression profiles
and at stage I and II were included in the analysis. The other
external validation cohort was from ICGC, which included 142
HCCs (Table S1).

Data Preprocessing
The RNA-seq data were analyzed using the Illumina platform.
The fragments per kilobase of gene per million fragments
mapped with upper quartile normalization (FPKM-uq) and
single-nucleotide polymorphism (SNP) from TCGA Data Portal
were downloaded. Next, gene annotation was performed using
the Ensemble database. The gene expression value was log2-
transformed for further exploration. The gene expression of
the NCI cohort was calculated using Affymetrix HT Human
Genome U133A Array and Affymetrix Human Genome U133A
2.0 Array. The expression data and related clinical data of the
validation set were obtained from the Gene Expression Ominibus
(GEO) (GSE14520). Probe annotations were downloaded from
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the GEO database. The mRNA expression data and clinical
information were downloaded from ICGC. Entrez Gene IDs were
used for gene expression data analysis in the three cohorts. The
corresponding scores of six types of immune-related HCC cells
in each sample were downloaded from Timer database (https://
cistrome.shinyapps.io/timer/). The immune score, the matrix
scores, and identification of immune gene expression profiles
were achieved using the R package estimate (19).

Identification of HCC Subtypes Based on
the Immune Genes
The ConsensusClusterPlus package (26) was utilized to perform
consistent clustering and screening of molecular subtypes
based on immune gene expression profiles. The Euclidean
distance is used to calculate the similarity distance between
samples (27), and K-means is used for clustering (28). The
clustering was performed using 100 iterations, with each iteration
containing 80% of samples. The optimal cluster number was
determined by cumulative distribution function (CDF) curves
of the consensus score (29). SigClust analysis was applied
for pairwise comparisons to test the significance of clustering
among identified subtypes (30). The genes with high expression
in some subtypes were identified using Kolmogorov–Smirnov
test. Bonferroni correction was applied for multiple testing.
The Benjamini–Hochberg method was used to calculate the
false discovery rate (FDR), and genes with FDR < 0.05
were considered to be significantly upregulated genes. The
top 100 upregulated genes in each subtype were selected and
subjected to three-dimensional principal component analysis
(PCA) to distinguish different molecular subtypes (31). PCA is
a statistical method used to determine the main variables in a
multidimensional dataset, which represent the differences among
observations (32). Thus, several key clusters rather than all of the
selected upregulated genes were utilized to classify the subtypes
using PCA.

Gene Co-expression Network Analysis
The common pathways related to the six gene modules were
determined using theWGCNA R package (33). The construction
of the WGCNA network and module detection were conducted
using an unsigned type of topological overlap matrix (TOM), a
power β of 3, a minimal module size of 30, and a branch merge
cutoff height of 0.25. KEGG enrichment analysis was performed
using R package clusterProfiler with FDR < 0.05. The most
significant correlated genes with WGCNA edge weight >0.15
were visualized using Cytoscape 3.7.1 (34).

Validation of Five Immune-Related
Subtypes
To validate five immune-related subtypes identified from the
TCGA cohort, the genes in the co-expression genemodules (blue,
brown) that are closely related to the C3 and C4 subtypes were
selected, and the correlation between the genes and the modules
was calculated, and then the cancer samples in NCI cohort
were classified based on the featured genes with the correlation
coefficient>0.8. Moreover, the gene expression profiles extracted
from the validation set were used to classify the samples by the

Support Vector Machine (SVM). To further validate the five
immune-related subtypes, the normalized data of 445 samples
were downloaded from the GSE14520 dataset and 142 samples
from the ICGC. A total of 312 samples at stages I and II and
containing the gene expression profiles of the featured genes were
extracted and classified using SVM.

Statistical Analysis
The relationship between clinical variables and subtypes was
analyzed by chi-square test or Fisher’s exact test. Multiple testing
was corrected by Benjamini–Hochberg’s FDR. Kaplan–Meier
curves and log-rank test were used to compare the 10-year DFS
and PFS rates of the five immune subtypes. All tests were two
sided, and P < 0.05 was considered to be statistically significant.
Student’s t-test was used to compare the immune scores and
expression values of checkpoint genes among the HCC subtypes.
The FDR correction was performed to decrease false-positive
rates in multiple tests. All statistical tests were two-sided. All
statistical analyses were performed using R software (version
3.5.3, http://www.R-project.org).

RESULTS

Identification of HCC Subtypes Based on
the Immune Genes
The gene expression profiles of 778 immune-associated genes
were used to investigate the HCC subtypes from the TCGA
cohort. All tumor samples were divided into k (k= 2, 3, 4, 5, 6, 7,
8) different subtypes using Consensus Cluster Plus. The optimal
division was reached when k = 5 based on the CDF curves
of the consensus score (Figure 1A). Moreover, SigClust analysis
showed that the consensus clusters (k = 5) were significant in all
the pairwise comparisons (Figure 1B). There was no significant
difference in expression distribution of C1 vs. C5, C4 vs. C5,
and C2 vs. C3 (P < 0.05). However, significant edge effects were
detected in C1 vs. C2, C1 vs. C3, C2 vs. C4, and C3 vs. C5. Thus,
the five clusters of samples were separated and the 257 HCC
tumor samples extracted from the TCGA cohort were classified
into five molecular subtypes underlying the whole immune gene
expression profile (Figure 2A).

Five Subtypes Were Characterized in
Immune Microenvironment
The upregulated immune-related genes in each molecular
subtype in comparison with other subtypes were analyzed
using Kolmogorov–Smirnov test (FDR < 0.05). Among the 778
immune-related genes, 230 genes in subtype C1, 64 genes in
subtype C2, 118 genes in subtype C3, 125 genes in subtype C4,
and 72 genes in subtype C5 were significantly upregulated. More
importantly, 54 genes overlapped between subtypes C3 and C4,
and 54 genes overlapped between subtypes C1 and C4. However,
only a few overlapped genes were identified in the other pairs
of subtypes (Figure 2B). The top 100 upregulated genes from
each subtype were selected for three-dimensional PCA and the
top two principal components were extracted and visualized
using a scatter plot (Figure 2C). PCA results demonstrated that
these genes were clearly classified into five subtypes. To further
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FIGURE 1 | Identification of immune-associated subtypes of HCC in TCGA cohort. (A) The cumulative distribution function (CDF) curves is the integral of probability

density function, which can completely describe the probability distribution of a real random variable, and established using consensus clustering approach. CDF

curves of consensus scores based on different subtype number (k = 2, 3, 4, 5, 6, 7, 8) and the corresponding color are represented. (B) The CDF Delta area curve of

all samples when k = 4.

identify the gene expression pattern of each subtype, the selected
top 100 genes in each subtype were examined with a heatmap
(Figure 2D). The heatmap results showed a distinct expression
pattern in the immune upregulated gene profiles of each subtype.

Clinical Characteristics of the Five
Subtypes
To investigate the clinical relevance of tumor microenvironment,
clinical factors, including age, gender, tumor, node, metastasis
(TNM) staging, and stage in the five subtypes, were analyzed.
There was a significant difference in age distribution when the age
threshold was set as 60 (chi-square distribution test, P= 0.00019)
(Figure 3A). The average age in subtype C2 was relatively lower,
while it was relatively higher in subtype C5 as compared to
other subtypes (Figure 3A). Moreover, the stage relevance in the
five subtypes was further analyzed (Figure 3B). The proportion
of stage I in subtype C2 and the proportion of stage II in
subtype C3 were significantly lower (chi-square distribution test,
P < 0.001). Furthermore, the grade distribution in the different
subtypes was estimated (Figure 3C), and it was revealed that
the proportion of G1 in subtype C3 and the proportion of
G3 and G4 was significantly higher in comparison with other
subtypes (P < 0.001).

Of the TNM staging, only one type could not be compared
further in the different subtypes in terms of the node and
metastasis. The tumor staging in the five subtypes is shown
in Figure 3D, and the proportion of T2 in subtype C2 was
significantly higher in comparison with the other subtypes (P <

0.001). In addition, the relationship between subtypes and gender
was analyzed in Figure 3E. The result demonstrated that the
proportion of females in subtype C1 and the proportion of males
in subtype C2 were significantly higher in comparison with other
subtypes (P < 0.001). The molecular subtypes of HBV/HCV
were further explored for comprehensive genomic analysis of
HCCs that were reported in the five subtypes (Figures 3G,H).

According to previous studies (35), we classified the five subtypes
into three iclusters (Figure 3F). The proportion of icluster1 in
subtype C2 and the proportion of icluster3 in subtype C5 were
significantly higher in comparison with the other subtypes (P
< 0.001). However, there was no significant difference in the
HBV/HCV proportions among all the subtypes.

Tumor Immunogenicity of HCC
The potential immune escape mechanisms of HCC in the five
subtypes were further explored. The scores of 13 types of immune
metagenes, tumor immune component (matrix, immunity,
tumor purity), 6 types of immune infiltrating cells, and 10 types
of immune cell-related MCP counter were collected. Most of the
metagenes were overexpressed in subtype C4 and underexpressed
in subtype C5 (Figures 4A,B). The comprehensive immune
component score was significantly higher in subtype C4 and
was significantly lower in subtype C5 compared with other
subtypes (Figures 4C,D). Notably, the matrix score in subtype
C3 was relatively higher when compared with other subtypes
(Figures 4C,D). Of the 10 types of immune cell-related MCP
counter, the scores of T cells, and CD8 cells were significantly
higher in subtype C4 and were significantly lower in subtype
C5 in comparison with the other groups (Figures 4E,F). Of the
six types of immune-infiltrating cells, the scores of B cell, CB8
cell, neutrophil, dendritic, and macrophage were significantly
higher in subtype C4 and were significantly lower in subtype
C5 (Figures 4G,H). In summary, most of the immune signatures
were upregulated in subtype C4 and downregulated in subtype
C5 in comparison with the other subtypes, which suggested
that subtype C4 and C5 had enhanced immune profile and a
decreased immune profile (Figure S1).

The expression profiles of eight immune checkpoint genes,
which play a key role in immune modulation, were further
examined. As shown in Figure 8A, PDCD1, CD274, CTLA4,
CD86, and CD80 were upregulated significantly in subtype
C4 in comparison with the other subtypes, while CD276 was
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FIGURE 2 | Expression profile analysis of five HCC subtypes. (A) The consensus score matrix of HCC samples when k = 5 (1 = C1, 2 = C2, 3 = C3, 4 = C4, 5 = C5).

A high consensus score between two samples suggests that they have higher probability to be grouped into the same cluster in different iterations. (B) Venn diagram

of the overlapping significantly upregulated genes in five HCC subtypes. (C) Three-dimensional principal component analysis (PCA) of gene expression profile of the

upregulated genes. Each sample is represented with a single point, with different color for each of the five subtypes. (D) Gene expression heatmap analysis of top 100

genes that were significantly upregulated in each subtype. Heat map indicates relative gene expression value, with red for high expression and blue for low expression.

significantly upregulated in subtype C2 in comparison with the
other subtypes. Subsequently, the expression values of eight
immune checkpoint genes in the five subtypes (Figure 6B) were
analyzed. There was a significant difference in the expression
value of these checkpoint genes except in VTCN1.

Prognostic Significance of the Five
Molecular Subtypes
The poor prognosis in HCC is mainly caused by high incidence
of tumor progression and disease recurrence (36). Based on the
differently expressed immune profile, the association between
clinical outcome of HCC patients and the five subtypes was
subsequently investigated. In the TCGA cohort, Kaplan–Meier

curves suggested significantly different DFS (log-rank test, DFS,
P = 0.0486, Figure 5A) and PFS (log–rank test, P = 0.04426,
Figure 5B) of the HCC patients in the five subtypes. Patients
in subtype C5 had the worst outcome, and HCC patients in
subtype C3 had the best outcome among all the five subtypes
underlying both DFS and PFS. Notably, subtype C4 had the
highest immune score but did not show the best outcome, which
could have been as a result of the relatively small sample size.
The samples in subtype C3 and C4, which had relatively high
immune scores, were combined and the clinical outcome of
HCC patients in the four groups were further investigated. More
significant difference in DFS (log-rank test, P = 0.04318) and
PFS (log-rank test, P = 0.03802) are shown in Figures 5C,D,
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FIGURE 3 | Factor analysis of five HCC subtypes based on clinical characteristics. (A) Age distribution in the five HCC subtypes. (B) Stage ratio distribution in the five

HCC subtypes. (C) Histological grade ratio distribution in the five HCC subtypes. (D) T stage ratio distribution in the five HCC subtypes. (E) Gender ratio distribution in

the five HCC subtypes. (F) Distribution of subtypes underlying global classification in five subtypes. (G) Hepatitis C virus (HCV) distribution in the five HCC subtypes.

(H) Hepatitis B virus (HBV) distribution in the five HCC subtypes.

suggesting that high immune scores in early liver cancer could
be a protective factor in early HCC. To explore the relationship
between clinical outcome and immune score, DFS and PFS in
subtypes C3/C4 with high immune scores and subtype C5 with a
low immune score were compared and it was found that subtypes
C3/C4, two immune-enhanced molecular subtypes, showed
better clinical outcome (log-rank test, DFS, P = 0.0573; PFS,
P = 0.00444, Figures 5E,F).

Frequencies of Mutant Genes of the Five
Molecular Subtypes
Previous studies have reported that TP53 (37), CTNNB1 (38),
and AXIN1 (39–41) mutations are closely related to the
development of HCC. The genomic mutations of these three
genes in the five subtypes were subsequently investigated. The
results showed that there was significant difference in sample
proportions of TP53, CTNNB1, and AXIN1 mutations as well
as non-mutations among the five subtypes (Figures 6A–C). The
proportion of TP53mutations in the subtype C3 was significantly
lower than that of the other subgroups; the proportion of
CTNNB1 mutations in subtypes C2 and C3 was significantly
lower than that of the other subtypes; and the proportion of
AXIN1 mutations in the subtypes C2 was significantly higher
than that of the other subtypes. Notably, there were no mutations
in subtype C3. Moreover, there was a significant difference
in the frequencies of the mutant genes in the five subtypes
(Figure 6D). Similarly, the mutant frequencies in the subtype
C3 were significantly lower compared with that of the other
subtypes (P = 0.02). We further analyzed the relationship
between the expression of 8 immune checkpoints in these five

subtypes. As shown in Figure 7A, PDCD1, CD274, PDCD1LG2,
CTLA4, CD86, and CD80 were significantly higher in C4
than in other types, and CD276 was expressed higher in C2
than in other groups. Further analysis of the gene expression
distribution of the eight immune checkpoints is shown in
Figure 7B. It can be seen that there is a significant difference
in the expression distribution among the five types of samples
except VTCN1.

Gene Co-expression Network Analysis
To further explore the potential markers associated with
the immune microenvironment of HCC, the data on the
expression profiles of a total of 492 immune-related differentially
expressed genes were obtained, and the distance between
different transcripts was calculated using the Pearson correlation
coefficient. The scale-free co-expression network is that
logarithm log(k) of the node with the connection degree k
is negatively correlated with the logarithm log(P(k)) of the
probability of the node, and the correlation coefficient is >0.8.
To construct a scale-free network, the value of β was set as 3
(Figures 8A,B). The expression matrix was then converted into
an adjacency matrix, and the adjacency matrix was converted
into a topological matrix. Based on TOM, the average-linkage
hierarchical clustering method was used to cluster the genes
according to the criteria of the hybrid dynamic cut tree, and
the minimum number of genes was set at 30 per module. After
applying the dynamic shear method to determine the gene
module, the eigengenes of each module were calculated and
the cluster analysis for each module was performed. The closer
modules were then merged into new modules, and set height =
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FIGURE 4 | Immune profiles of the five HCC subtypes in the TCGA cohort. (A) The gene expression scores of 13 groups of immune metagenes in the five HCC

subtypes are displayed in the upper panel. Heatmap indicating the gene expression value, with red reflecting high expression and blue reflecting low expression. From

left to right are C1, C2, C3, C4, and C5. (B) Boxplot showing the expression scores of 13 groups of metagenes. (C) The tumor stroma scores, the immune scores,

and the tumor purity of the five HCC subtypes are displayed in the upper panel. (D) Boxplots indicating the tumor stroma scores, the immune scores, and the tumor

purity of the five HCC subtypes. (E) The scores of 10 groups of immune-related cells among the five HCC subtypes are shown in the upper panel. (F) Boxplot

showing the scores of 10 groups of immune-related cells. (G) The scores of six groups of immune cells across five subtypes are shown in the upper panel. (H)

Boxplots indicating the scores of 10 groups of immune-related cells.

0.25, deepSplit = 2, and minModuleSize = 30. Finally, a total of
seven modules with all immune-related differentially expressed
genes were identified using WGCNA (Figure 8C). Notably,
the gray module was a collection of genes that could not be
aggregated into other modules. The transcript statistics of each
module are shown in Table 1. A total of 371 transcripts were
divided into five co-expressionmodules. The correlation between
the eigengenes of six modules and five subtypes (Figure 8D)
was calculated. The blue module was positively correlated
with subtypes C3 and C4, and was negatively correlated with
subtype C5; the yellow module was positively correlated with
subtype C3, and was negatively correlated with subtype C5; the
turquoise module was positively correlated with subtypes C1,
C3, and C4, and was negatively correlated with subtype C5; the
green module was positively correlated with subtype C2, and
was negatively correlated with subtype C3; the brown and red

modules were positively correlated with subtype C1, and was
negatively correlated with subtype C2.

To investigate the biological functions of the five modules,
KEGG enrichment analysis was performed. The brown module
was mainly enriched in the B cell receptor signaling pathway;
the yellow module was mainly enriched in eight pathways
closely associated with cancer, such as EGFR tyrosine kinase
inhibitor resistance, small cell lung cancer, focal adhesion, and
other pathways; the blue module was mainly enriched in 24
pathways, including inflammation-related pathways, such as
Staphylococcus aureus infection, and intestinal immune network
for IgA production; the red module was mainly enriched in
cell adhesionmolecules (CAMs), transcriptional misregulation in
cancer, and inflammatory mediator regulation of TRP channels;
while the turquoise module was mainly enriched in 21 pathways,
such as T cell receptor signaling pathway, CAMs, Th1, and Th2
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FIGURE 5 | Survival analysis of the five HCC subtypes. Kaplan–Meier curves showing the distinct outcomes of HCC patients in the five molecular subtypes. The

P-value was calculated using the log-rank test, by comparing the overall five subtypes together or comparing C1, C2, C3, and C5 or subtype C3 vs. subtype C5 only.

(A) KM curve of disease-free survival (DFS) prognosis of five subtypes. (B) KM curve of non-progressive survival prognosis of five subtypes. (C) The prognosis

difference KM curve of the non-DFS of merged C3, C4, and other subtypes. (D) The prognosis difference KM curve of the non-progression-free survival (PFS) of

merged C3, C4, and others subtypes. (E) The prognosis difference KM curve of the non-DFS of merged C3, C4, and C5. (F) The prognosis difference KM curve of the

non-PFS of merged C3, C4, and C5.

FIGURE 6 | Mutation analysis for the five subtypes of HCC. Red represents the mutation. The mutation ration of TP53 (A), CTNNB1 (B), and AXIN1 (C) in the five

HCC subtypes. (D) Frequency of gene mutation across the five HCC subtypes.
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FIGURE 7 | Identification of the five HCC subtypes in THE TCGA cohort. (A) Gene expression profile of eight checkpoint molecules (VTCN1, PDCD1, CTLA4, CD66,

CD60, CD276, CD274, and PDCD1LG2) across five HCC subtypes in the TCGA cohort. Five subtypes (columns) are presented by the centroids of the TCGA cohort.

Heatmap showing the associated gene expression value, with red denoting high expression and blue denoting low expression. (B) The expression profile scores of

eight checkpoint molecules (PDCD1, CD274, PDCD1LG2, CTLA4, CD86, CD80, CD276, and VTCN1) in the five HCC subtypes.

cell differentiation, cytokine–cytokine receptor interaction and
other immune-related pathways.

Subsequently, the relationship network of enriched pathways
in these modules was visualized. As shown in Figure 9, it was

found that these modules were enriched in 44 pathways. There
were 12 common pathways enriched in blue and turquoise
modules. Few intersections of the enriched pathways were
enriched in other modules, suggesting that the genes in the blue
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FIGURE 8 | Weighted gene co-expression network analysis (WGCNA) of differentially expressed immune-related genes in the five HCC subtypes in TCGA cohort.

Analysis of network topology for various soft thresholding powers (A,B). (C) Hierachical cluster tree displaying seven modules of co-expressed genes. The seven

modules were validated and are designated by the following colors: “Brown,” “Yellow,” “Blue,” “Red,” “Green,” “Turquoise,” and “Gray.” (D) Heatmap showing the

correlation between feature vectors of six modules (except gray modules) and five HCC subtypes.

TABLE 1 | Transcript data for six modules.

Modules Genes

Blue 77

Brown 66

Green 34

Red 31

Turquoise 121

Yellow 42

and turquoise modules may share similar regulatory processes in
the five subtypes.

External Validation of the Five Subtypes
A total of 73 featured genes with a correlation coefficient >0.8
were obtained from the co-expression gene modules (blue,
brown). The expression profile of the featured genes was further
extracted to serve as a training set and employed SVM to classify
the samples. The classification accuracy rate of SVM was 91.1%.
To further validate the five subtypes, 170 samples were classified

using SVM. Thirty-nine samples were predicted in subtype C1, 40
samples were predicted in subtype C2, 18 samples were predicted
in subtype C3, 29 samples were predicted in subtype C4, and 44
samples were predicted in subtype C5.

The expression distribution of 13 immune metagenes in
the five subtypes was subsequently analyzed as was shown in
Figures 10A–D. Most of the metagenes were highly expressed in
subtype C4, which was consistent with the result in training set.
Moreover, the immune scores were investigated as was shown
in Figure 10B. It was found that the immune score in subtype
C4 group was significantly higher as compared with the other
subtypes, and the matrix score of subtype C3 was significantly
higher in comparison with the other subtypes, which was also
consistent with the training set. Further analysis of the sample
immune scores is shown in Figures 10C,D; the results showed
that the immune score of subtype C4 was significantly higher
in comparison with the other subtypes, and the matrix score
of subtype C3 was significantly higher than that of the other
subtypes, which was consistent with the training set. Moreover,
the distribution of 10 immune-related cells in the five subtypes
of samples was analyzed as shown in Figures 10E,F. Similar
with the training set, it was found that the proportion of most
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FIGURE 9 | Cytoscape representation of the enriched pathways associated with co-expressed genes in the seven modules.

of the cells was higher in subtype C4 as compared with the
other subtypes. Finally, the age distribution of the five subtypes
was analyzed and the post-distribution difference is shown in
Figure 10G. It was found that the age distribution of the five
subtypes was also consistent with that of the training set. Similar
with these results, the expression profiles of immune metagenes
in the five HCC subtypes were further validated in the ICGC
database in Figures 11A–F. These data suggested that there were
immune-enhanced subtypes and immune-decreased subtypes in
early HCC, and there was a significant difference between the
two subtypes.

DISCUSSION

HCC is an aggressive malignancy, which is still the third
leading cause of tumor-related deaths. Although there have

been advances in treatment strategies, no effective molecular
targeted therapy has been successfully validated. The intricate
microenvironment, sustained by the production of growth
factors with parenchyma, as well as the infection of hepatitis
viruses, promotes the occurrence and development of HCC
(42). The current study aimed at systematically analyzing the
heterogeneous HCC microenvironment subtypes underlying
global immune genes in stage I/II and related clinical significance
using multi-omics data extracted from the TCGA cohort.
Five molecular subtypes in immune microenvironment were
found to exhibit significantly different clinical characteristics,
immune escape mechanisms, genomic alterations, signaling, and
outcomes. Subtype C4 was found to be an immune-enhanced
subtype while subtype C5 was found to be an immune-decreased
subtype in the immune microenvironment of HCC. The
TP53, CTNNB1, and AXIN1 mutations were closely associated
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FIGURE 10 | Immune profiles of five HCC subtypes in the validation set. (A) The gene expression scores of 13 groups of immune metagenes in the five HCC

subtypes are displayed in the upper panel. Heatmap showing the gene expression value, with red denoting high expression and blue denoting low expression. (B)

Boxplot showing the expression scores of 13 groups of metagenes. (C) The tumor stroma scores, the immune scores, and the tumor purity in the five HCC subtypes

are displayed in the upper panel. (D) Boxplots indicating the tumor stroma scores, the immune scores, and the tumor purity of the five HCC subtypes. (E) The scores

of 10 groups of immune-related cells across the five HCC subtypes are shown in the upper panel. (F) Boxplot shows the scores of 10 groups of immune-related cells.

(G) The HCC sample age distribution of five subtypes in the validation set.

with immune-enhanced molecular subtypes. Finally, these five
subtypes were validated in an external cohort of NCI.

Many previous studies have revealed some prognostic
subtypes and histological subtypes of HCCs underlying the
genome-wide profiles (43–45). The current study mainly
aimed to investigate the global immune profiles for a more
comprehensive analysis of immune landscape in HCC. A total
of five molecular subtypes were identified. The results revealed
that the immune profile of subtype C4 was significantly higher
in comparison with that of the other molecular subtypes,
and the immune profile of subtype C5 was significantly
lower than that of the other subtypes. Moreover, subtype C4
showed increased immune cell infiltration score (including
tumor matrix, immunity, purity), which was positively related
to the expression signatures of multiple types of immune-
related cells. These results demonstrated that subtype C2 was
correlated with an enhanced immune status in the HCC immune
microenvironment. On the contrary, subtype C5 showed lower
expression of immune profiles and had the lowest immune cell
infiltration score among the five subtypes, which was negatively
related to expression signatures of the selected immune-related
cells. Consistent with the findings of the training set, the
validation set also revealed that most metagenes were highly
expressed and showed higher immune scores in subtype C4
than that of the other four subtypes. Thus, it was hypothesized
that both immune-enhanced subtype and immune-decreased
subtype existed in theHCC immunemicroenvironment andwere

significantly different in terms of expression profile of metagenes,
the immune components score, the immune infiltration score,
and the MCP counter of immune cells.

This study further investigated the potential immune
escape molecular mechanisms of HCC. It is well-known
that there are two main aspects of intrinsic immune escape,
including immunogenicity and the expression of immune
checkpoint molecules (46). Mutations of TP53, CTNNB1,
and AXIN1 gene in HCC were validated by whole genome,
exome, and transcriptome sequencing (40, 41, 47). However,
the roles played by these gene mutations in the molecular
mechanism of immune microenvironment of HCC have
not been studied to date. This study revealed that the five
molecular subtypes were significantly different in terms of the
mutations and frequencies of TP53, CTNNB1, and ACIN1.
Previous studies reported that immune checkpoints are often
activated in HCC with high immune response accompanied
with upregulated gene expression (48). The most common
immune checkpoint receptors are BTLA, VISTA, PD-1, CTLA-
4, LAG-3, TIM-3, and OX40. The current study revealed
significant overexpression of checkpoint genes, including
PDCD1, CD274, PDCD1LG2, CTLA4, CD86, and CD80 in
subtype C4 than in the other subtypes. These results suggest that
the immune-enhanced subtype C4 may be closely associated
with intrinsic immune escape of HCC, which may provide
new insights into immunotherapy of HCC using immune
checkpoint blockers.
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FIGURE 11 | The expression profiles of immune metagenes in the five HCC subtypes in validation set from ICGC. (A) The expression of 13 types of immune

metagenes in five subtypes and the median value of the 13 categories of immunoreagents in the sample of the five subtypes in the validation set. (B) The median

value of the 13 categories of immunoreagents in the sample of the five subtypes in the validation set. (C) The matrix scores, immune scores, and tumor purity score in

five subtypes in validation set. (D) The matrix scores, immune scores, and median values of tumor purity scores in five subtypes in the validation set. (E) The scores of

10 types of immune-related cells in five subtypes in validation set. (F) The distribution of the median value of the 10 types of immune-related cells in the sample of the

five subtypes in validation set.

Valerie and colleagues reported that the survival outcome
of HCC patients is positively correlated with higher expression
of a group of innate immune-related and inflammatory
genes, including NK-associated molecules and macrophage
(13). Moreover, many other targets have been considered as
prognostic indicators for HCC, including immunoregulatory
enzyme indoleamine 2,3-dioxygenase (IDO) (49), epithelial
neutrophil-activating peptide-78 (CXCL5) (50), CXCR6 (51), and
so on. It was found in the current study that these five molecular
subtypes were consistently associated with different survival
outcomes in HCC patients. Subtype C5 had the worst survival
outcome while subtype C3 had the best outcome among all the
five subtypes. Notably, subtypes C3 and C4, which had higher
immune scores, showed better survival outcome compared with
subtype C5, which suggests that the subtype with high immune
score may play a protective role in the early stage of HCC. Thus,
this study may provide immune signature for survival prediction
in the early stage of HCC.

The current research also explored the potential targets
and pathways of the five subtypes in the HCC immune
microenvironment usingWGCNA analysis. The immune-related
genes were enriched in six different modules, and the results
revealed that inflammatory pathways were mainly enriched in
the blue module, and the immune-related pathways were mostly
enriched in the turquoise module. The blue and turquoise
modules shared the most common pathways of all pairwise
comparisons, which suggests that the genes in these two modules
may play similar roles in the HCC immune microenvironment.
Consistent with the current results, previous studies reported
that the tumor immune microenvironment plays key roles in
regulating the process of hepatocarcinogenesis, tumor invasion,
and metastasis (52). Innate immunity plays a critical role in
modulating HCC tumor occurrence and development because
the liver is an organ with predominant innate immunity (53). It
has also been hypothesized that the adaptive immune response
may be induced in the progression of HCC (54). Therefore,
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clarifying the molecular mechanisms based on the immune
microenvironment of HCC may facilitate identification novel
therapeutic and chemopreventive targets for HCC.

There are some limitations in the current study. Firstly, to
comprehensively reflect the factors and effects influencing HCC
microenvironment phenotypes, more clinical characteristics and
demographic features of HCC patients should be included in
subgroup analysis. Secondly, the sample size in each subtype was
relatively small in training as well as validation set, and only
the NCI and ICGC cohorts were used for external validation,
which may have resulted in one-sided results and a high false-
positive rate. It will be helpful to perform cross-validation in
internal validation and increase the sample size for external
validation in future studies on the immune microenvironment of
HCC. Finally, more experimental evidence for immunogenomic
analysis is needed to validate the roles of mutation genes,
checkpoint genes, and the enriched pathways involved in
immune microenvironment.

CONCLUSION

The current study suggests that microenvironment phenotypes
of HCC could be classified into five molecular subtypes with
potential immune escape mechanisms in HCC. These subtypes
are distinct in immunity characteristics, immune checkpoint
molecules, and patient outcomes. Moreover, specific functional
pathways may drive the formation of microenvironment
phenotypes. These results may provide guidance for developing
novel strategies of immunotherapy in HCC.
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