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INTRODUCTION

The maintenance of the correct balance of nucleotide pools is essential for many vital functions
(Bester et al., 2011; Garcia-Gil et al., 2018; Camici et al., 2019). The control of several enzyme
activities required for nucleotide metabolism contributes to this homeostasis. Among the involved
enzymes, cytosolic 5′-nucleotidases (NT5Cs) play a central role in the regulation of the purine
nucleotide pool (Figure 1). The major NT5Cs acting on purine nucleotides are cytosolic 5′-
nucleotidase I (NT5C1), which exerts its action mainly in skeletal muscle, and cytosolic 5′-
nucleotidase II (NT5C2), which is ubiquitously expressed. The preferred substrate for NT5C1 is
AMP, with a KM in the millimolar range (Hunsucker et al., 2001; Tkacz-Stachowska et al., 2005).
Although preferring IMP and GMP as substrates (KM in the micromolar range) (Tozzi et al., 2013),
NT5C2 catalyses also the hydrolysis of the phosphoester bond of AMP (with a KM in the millimolar
range) (Tozzi et al., 2013). The rate of the IMP-GMP cycle (Figure 1) which regulates the
intracellular purine nucleotide concentrations, depends on NT5C2 activity (Barsotti et al., 2003).
In fact, in the presence of high energy charge, NT5C2 catalyses the catabolism of excess IMP,
synthesized by de novo or salvage pathways, while allowing for IMP and AMP accumulation in case
of low energy charge (Pesi et al., 1994; Allegrini et al., 2004; Wallden and Nordlund, 2011; Camici
et al., 2018). For the regulation of the AMP cycle, both NT5C1 and NT5C2 activities are involved
(Figure 1). In the last decades growing evidence indicates the central “energy sensing” role played
by the AMP-activated protein kinase (AMPK) (Hardie et al., 2012; Garcia and Shaw, 2017). AMPK
is a heterotrimer composed of the catalytic α (α1 or α2), the regulatory β (β1 or β2) and the γ
subunits (γ1, γ2 or γ3). Alterations in the AMP:ATP ratio are perceived by the γ subunit of AMPK
which contains three AMP binding sites, two of which exchangeable with ATP (Xiao et al., 2007).
The binding of AMP further increases the kinase activity of AMPK both allosterically and
inhibiting its dephosphorylation (Sanders et al., 2007). The major upstream kinases that
activate AMPK by phosphorylation of Thr172 (Hawley et al., 1996), are the tumour
suppressor kinase LKB1 (Woods et al., 2003) and the Ca2+/calmodulin-dependent kinase
kinase β (Hawley et al., 2005). AMPK is activated when the cellular energy charge is low and,
acting on several protein targets, this protein kinase switches off the anabolic pathways that require
ATP and switches on the catabolic pathways that produce ATP (Figure 1). AMPK activation
brings about an increase in muscular glucose uptake and fatty acid oxidation, making AMPK
activators useful tools for the treatment of type 2 diabetes (Coughlan et al., 2014). In addition,
AMPK activation may be responsible for some of the tumour suppression functions of LKB1
(Hardie and Alessi, 2013). Since NT5Cs are the major responsible for the regulation of the AMP
level (Kulkarni et al., 2011), it is conceivable that alterations in their activities may affect the
numerous signaling pathways triggered by AMPK activation, and thus the regulation of biological
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processes including muscle contraction, functioning of the
nervous system, and control of body weight.

In Muscle
Gene silencing of NT5C1A by shRNA injection and
electroporation in mouse tibialis anterior muscle decreased
NT5C1A protein expression, increased phosphorylation of
AMPK and of its substrate acetyl-CoA carboxylase (ACC), as
well as glucose uptake (Kulkarni et al., 2011). Similar results were
obtained by using NT5C2 siRNA in cultured human myotubes.
The downregulation of NT5C2 led to an increase in the AMP:
ATP ratio, an increase in AMPK phosphorylation (Thr172), and
an increase in ACC phosphorylation (Kulkarni et al., 2011).
Overexpression of NT5C1A in human embryonic kidney

(HEK293T) cells caused a reduction in the oligomycin-
induced increase in AMP and ADP concentrations and a
decrease in AMPK activation (Plaideau et al., 2012).
Surprisingly, NT5C1A and NT5C2 deletion were not able to
potentiate AMPK activation following electrical stimulation in
soleus and extensor digitorum longus (EDL) mouse muscles
(Kviklyte et al., 2017). AMP:ATP or ADP:ATP ratios in the
knockout resting muscles were similar to those of wild type
(WT) mice, and contraction did not induce a potentiation of
these ratios in the muscle of the knockout animals (Kviklyte et al.,
2017). In fact, electrical stimulation induced a 4-fold increase of
AMPK activity compared to the resting state both in WT and
nucleotidase-deleted muscles. Also, downstream ACC
phosphorylation and glucose uptake appeared to increase to

FIGURE 1 | Interplay between purine cycles and AMPK. A selection of metabolic pathways regulated by AMPK is shown: the red background includes the anabolic
pathways switched off, and the green background the catabolic pathways switched on by AMPK. ACC: acetyl-CoA carboxylase; Ado: adenosine; ADP: adenosine-5′-
diphosphate; AMP: adenosine-5′-monophosphate; ATP: adenosine-5′-triphosphate; Gua: guanine; Guo: guanosine; GMP: guanosine-5′-monophosphate; HMGR: 3-
hydroxy-3-methylglutaryl-Coenzyme A reductase; Hyp: hypoxanthine; IMP: inosine-5′-monophosphate; Ino: inosine; NT5Cs: cytosolic 5′-nucleotidase I and II;
mTOR: mammalian target of rapamycin; PFK2: 6-phosphofructo-2-kinase; Pi: inorganic phosphate; PGC-1α: peroxisome proliferator-activated receptor-gamma
coactivator-1alpha; PPi: inorganic pyrophosphate; PRPP: phosphoribosylpyrophosphate; Rib-1-P: ribose-1-phosphate; Rib-5-P: ribose-5-phosphate; TBC1D1: TBC1
domain family member one; TIF1A: transcription intermediary factor-1α; UA: uric acid; ULK1: Unc-51 like autophagy activating kinase 1. Enzymes involved are indicated
by numbers inside circles: 1) Purine nucleoside phosphorylase; 2) Hypoxanthine-guanine phosphoribosyltransferase; 3) Adenosine kinase; 4) Phosphoribomutase; 5)
PRPP synthetase; 6) Adenosine deaminase; 7) AMP deaminase. Dotted red lines: inhibition; dotted green lines: activation.
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the same extent in EDL from electrically stimulated WT and
NT5C2-or NTC1A-knockout mice (Kviklyte et al., 2017). In
addition, the effects of the combination of NT5C1 deletion
plus inhibition of AMP deaminase on AMP:ATP ratio and
AMPK activity, measured in resting and electrically-stimulated
EDL muscle were not different between muscle from WT and
knock-out animals (Kviklyte et al., 2017). The authors
hypothesized that, during contraction, fluxes through
nucleotidases might be too reduced to influence AMP levels
and concluded that pharmacological inhibition of AMP-
metabolizing enzymes might not be useful for promoting
AMPK activation and glucose uptake in muscle of type-2
diabetic patients.

In Nervous System
In human neural progenitor cells (hNPCs), NT5C2 knockdown
by siRNA increased AMPK protein expression and
phosphorylation, and surprisingly, phosphorylation of 40S
ribosomal protein S6 (RPS6), without modification in RPS6
expression. It also altered transcription of several genes
involved in protein translation (Duarte et al., 2019). RPS6
correlates with mammalian target of rapamycin complex 1
(mTORC1) activation and it is frequently used to estimate
the rate of protein translation (Biever et al., 2015).
HEK293T cells overexpressing NT5C2 were used to further
investigate the association between NT5C2 and the regulation
of AMPK and RPS6. Duarte et al. (2019) found a decrease in
phosphorylated AMPK but not in total AMPK in these cells,
and a decrease in total RPS6 protein associated with 300%
increase in RPS6 phosphorylation. Therefore, the effect of
NT5C2 on RPS6 in HEK293T cells was opposite to that
observed in hNPCs. The authors suggested that the increase
in RPS6 phosphorylation observed in hNPCs as a consequence
of NT5C2 knockdown could be ascribed to a negative feedback
loop leading to increased protein synthesis after an initial arrest
in protein synthesis, already described during recovery in
muscle (Dreyer et al., 2006). Indeed, endurance exercise in
humans increased AMPKα2 activity and immediately
decreased protein synthesis. This was followed by increased
p70S6K phosphorylation, and increased protein synthesis
during the recovery period, 2 h after a bout of exercise
(Dreyer et al., 2006). It is worthy to note that since protein
synthesis has not been directly measured in hNPCs, it is
impossible to know whether the increase in phospho-RPS6
observed after NT5C2 knockdown (Duarte et al., 2019) does
reflect a raise in protein synthesis. Conversely, protein
synthesis was dramatically lower in NT5C2- knockdown
human lung carcinoma (A549) cells compared to control
cells (Pesi et al., 2018), but no modification of AMPK
activity has been found in these cells, probably as a
consequence of an inactivating mutation of LKB1 in A459
cells (Zhong et al., 2006).

NT5C2 is associated with disorders characterized by
psychiatric and psychomotor disturbances such as hereditary
spastic paraplegias (HSP) (Garcia-Gil et al., 2018), schizophrenia
(Cross-Disorder Group of the Psychiatric Genomics, 2013;
Duarte et al., 2016; Duarte et al., 2019) and Parkinson

disease. The aberrantly spliced NT5C2 described by Elsaid
et al. (2017) in individuals affected by HSP showed
substantial reduction in expression level in the in vitro study,
indicating marked instability of the mutant NT5C2 protein. The
authors suggest that homozygous alteration in NT5C2 might be
necessary to produce central white matter developmental defects
(Elsaid et al., 2017). It is interesting to note that knockdown of
the NT5C2 homologue in Drosophila melanogaster was
associated with abnormal climbing behavior when driven by a
neuronal promoter, supporting a role for NT5C2 in motility
(Duarte et al., 2019). The mechanisms underlying the
pathological effects of NT5C2 mutations are unknown. It
could be interesting to obtain information not only on the
levels of expression and/or activity of NT5C2, but also on the
possible variations of AMP:ATP ratio which could lead to an
upregulation of AMPK. A permanent activation of AMPK could
result in abnormal development of the nervous system. Indeed,
AMPK activation induces apoptosis in hippocampal and
neuroblastoma cells (Pesi et al., 2000; Garcia-Gil et al., 2003),
and reduces axonal growth (Williams et al., 2011). Moreover,
AMPK hyper-activation in differentiated primary neurons
reduces the number of synapses and leads to a loss of
neuronal network functionality (Domise et al., 2019) and
AMPK signaling has been associated with amyotrophic lateral
sclerosis, neurodegenerative and psychiatric disorders (Perera
and Turner, 2016; Rosso et al., 2016).

In Body Weight
Body weight of NT5C1A−/− and NT5C2−/− mice, fed a
normal-chow diet, was similar to their WT littermates
(Kviklyte et al., 2017). However, NT5C2−/− mice fed a
high fat diet (HFD) increased their body weight
significantly less as compared to WT mice (Johanns et al.,
2019). The difference was not due to changes in food
consumption or water intake. Although not significant,
the authors reported a tendency toward increased AMPK
activity in fat pads from NT5C2−/− compared with WT mice,
both in basal and noradrenaline-stimulated conditions,
while a significant increase in AMP concentration was
only seen in fat pads from NT5C2−/− mice in response to
noradrenaline treatment. Consistent with an activation of
AMPK, a significant increase in ACC phosphorylation was
associated to NT5C2 deletion and HFD (Johanns et al.,
2019).

Genome-wide association studies performed on Japanese
subjects revealed that the T-allele of rs11191548 in the NT5C2
gene was associated with reduced visceral fat area, subcutaneous
fat area and total fat area in women (Hotta et al., 2012).
Unfortunately, the authors did not measure the activity of
NT5C2, therefore we do not know whether the reported
single-nucleotide polymorphism affects the function of the
enzyme and the level of AMP. Although not supported by the
experimental data, it is conceivable to hypothesize an
involvement of AMPK, which has been reported to integrate
nutrient and hormonal signals to regulate food intake and body
weight, both in the hypothalamus and peripheral tissues (Xue and
Kahn, 2006).
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CONCLUDING REMARKS

The activity of NT5C2 is allosterically regulated by ATP that, at
high physiological level, stabilises a very active enzyme
conformation (Tozzi et al., 2013). In our opinion, high energy
charge activates NT5C2 and AMP deaminase activities, leading
to the hydrolysis of the excess of newly synthesized or salvaged
nucleotides. At low energy charge, the low activity of
both enzymes causes an accumulation of nucleoside
monophosphates, particularly AMP, that can either activate
AMPK, or be hydrolyzed by NT5C1, releasing adenosine, thus
starting the purinergic signaling. In fact, extracellular adenosine,
binding to widely distributed receptors (A1, A2A, A2B, and A3)
acts not only on metabolic regulation through modulation of
cyclicAMP intracellular concentration, but also on fine-tuning of
synapses and on the coordination of neuronal networks
(Agostinho et al., 2020). An increase of extracellular
concentration of adenosine might reflect on many biological
processes such as proliferation, regulation of blood flow,
inflammation and immunosuppression (Vijayan et al., 2017;
Jacobson et al., 2019). Conversely, in some cells or organs, the

low NT5C2 activity obtained by silencing, was unable to produce
significant AMP accumulation, casting some doubt on the
mechanism linking low NT5C2 activity and its metabolic
consequences. It will be very interesting to further investigate
on these molecular mechanisms, since the knowledge of this
matter will support the application of NT5C2 inhibitors not only
in cancer but also in pathologies such as metabolic syndrome,
obesity and diabetes.
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