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Simple Summary: Honeybees (Apis mellifera) are important pollinators and commonly used for
honey production. The oviposition behavior in honeybees is complex and errors in oviposition could
affect the development of the bee colony. Ecdysone receptor (EcR) and miR-14 were previously
reported to play important roles in egg-laying. Moreover, EcR was predicted to be the target gene of
miR-14 and may form miR-14-EcR cross-talk. By knocking down and overexpression of miR-14 and
EcR in queen model, the effect of RNA expression of miR-14 and EcR on the number of eggs laid by
honeybee queens was analyzed. We found that the expression of miR-14 and EcR was associated
with the egg number of queens. In specific, inhibition of miR-14 expression enhanced the egg number,
while overexpression of EcR enhanced the egg number in honeybee queens.

Abstract: Honeybees (Apis mellifera) are important pollinators and are commonly used for honey
production. The oviposition behavior in honeybees is complex and errors in oviposition could affect
the development of the bee colony. Recent studies reported that RNA–RNA cross-talk played a critical
role in several biological processes, including reproduction. Ecdysone receptor (EcR) and miR-14
were previously reported to play important roles in egg-laying. Moreover, EcR was predicted to be
the target gene of miR-14 and may form miR-14-EcR cross-talk. In this study, knocking down and
overexpression of miR-14 and EcR in queen model were implemented. The effect of RNA expression
of miR-14 and EcR on the number of eggs laid by honeybee queens were analyzed. Further, luciferase
assay was used to confirm the target relation between miR-14 and 3′UTR of EcR. The results showed
that the expression of miR-14 and EcR was associated with the number of eggs laid by queens. In
specific, inhibition of miR-14 expression enhanced the number of eggs laid, while overexpression
of EcR enhanced the number of eggs laid. Lastly, we determined that miR-14 directly targets the
mRNA of EcR. These findings suggest that the cross-talk of miR-14-EcR plays an important role in
the number of eggs laid by honeybee queens.

Keywords: honeybees; egg number; miRNA; EcR

1. Introduction

Honeybees (Apis mellifera) are important pollinators and are commonly used for honey
production [1]. Among the main traits of honeybees, oviposition behavior is an important
one. The oviposition behavior in honey bees is complex and errors in oviposition could
affect the development of the bee colony [2]. However, most reproductive traits are complex
in terms of their genetic architecture, present low heritability and are sex-limited [3,4]. Thus,
it is hard to be improved by using traditional selection methods, e.g., selective breeding.
With the development of molecular technologies, new approaches are being applied to
improve reproductive traits and other complex traits, such as marker-assisted selection
(MAS) and genomic selection [5,6]. These methods have been used widely in domestic
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animals for years. However, in honeybees, these strategies became popular only in recent
years [6].

One manifestation of the oviposition behavior is the number of eggs laid by queens.
Honeybees provide an excellent model for egg-laying studies, since queens specialize in
egg-laying. The queens are equipped with huge ovaries and with an egg-laying rate of ap-
proximately 2000 eggs per day for several years under ideal circumstances [7]. Numerous
studies have focused on the molecular mechanisms underlying the genetic mechanisms
of egg-laying of honeybee queens. Most studies have focused on gene expression profiles
to identify factors that control and regulate queens’ fertility. Comparisons have been per-
formed in various biological contexts ranging from gene-by-gene analyses [8–10] to large-
scale genetic studies [11–14]. In recent years, studies also found that non-coding RNAs,
such as microRNAs (miRNAs), lncRNAs, and circRNAs, play roles in a potentially complex
network that regulates egg-laying. Several candidate genes and miRNAs are reported
to play important roles in egg-laying of queens. For example, ecdysone receptor (EcR),
mushroom body large-type Kenyon cell-specific protein-1 (MBLK-1), ecdysone-induced
protein 74 (E74) and ultraspiracle (Usp) [15]. These genes are ecdysteroid hormones (Ec,
used hereafter to refer to all types of ecdysteroids) response genes and participate in Ec
signaling. Ec are the major steroid hormones of insects best known for their role in several
crucial biological processes, including egg-laying [16–18]. In addition, several miRNAs,
such as bantam, miR-8, miR-14, miR-184, and miR-315, have been reported to play impor-
tant roles in ovary development and caste determination in honeybees [7,19]. Additionally,
miR-14 has been suggested to be associated with juvenile hormones (JH) and ecdysteroids
(Ec), which play key roles in ovary development and other reproductive behaviors in
honeybees [20–26].

A better understanding of the genetic architecture of honeybees will help scientists
develop a better strategy for acceleration of the genetic improvement of the reproductive
traits. Our previous study found that differentially expressed coding and non-coding
RNAs in ovary have effect on ovary development and oviposition in honeybee queens. In
this study, we focus on miR-14 and EcR. Our previous study found that in the egg-laying
initiation process, the expression of miR-14 down-regulated significantly (p < 0.01), and EcR
expression up-regulated significantly (p < 0.01) [27]. We also found EcR had binding site of
miR-14, and they form EcR-miR-14 cross-talk [27]. In Drosophila, EcR’s expression and
activity levels have been shown to be negatively regulated by miR-14 [28]. In honeybees,
miR-14 was found to be down-regulated in Ec knock down bees, which indicated it was an
Ec response genes. EcR was also an Ec response gene [20,21,23,29]. Ec have been proved
to affect egg-laying [15,17,29]. miR-14 and EcR may interact with each other and play
roles in egg-laying by participating in Ec signaling. However, it was not clear whether the
RNA expression of miR-14 and EcR was directly associated with the number of eggs laid
by queens, and how the expression of miR-14 and EcR were related during honeybees’
egg-laying. In the present study, we further investigate the role of miR-14 and EcR in
egg-laying of honeybees. The knocking-down and overexpression of miR-14 and EcR in
queen model were implemented. The effect of RNA expression of miR-14 and EcR on
the number of eggs laid was analyzed. Further, luciferase assay was used to confirm the
target relation between miR-14 and 3′UTR of EcR. We show that the decrease of miR-14
expression and increase of EcR expression have a positive effect on the number of eggs laid
in honeybee queens. Furthermore, we found that miR-14 directly targets the mRNA of EcR.

2. Materials and Methods
2.1. Ethics Statement

The apiaries for honeybee sample collection were maintained by Institute of Apicul-
tural Research, Chinese Academy of Agricultural Sciences (IAR, CAAS), Beijing, China.
The sample collection was approved by the ethics committee of IAR, CAAS. Honeybees
were humanely sacrificed as necessary to ameliorate suffering. No specific permits were
required for the described studies.
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2.2. Sampling

All samples were obtained from Apis mellifera ligustica honeybee colonies. In June 2020,
100 sister queens from a single source colony were reared using standard beekeeping tech-
niques [30]. Five days before the emergence, the queens were transferred to an incubator at
36 ◦C and kept individually in plastic vials. One day old, the queens were marked and each
was introduced to her own nucleus colony. The strength of each colony was similar. The
entrance of each hive was covered with a queen excluder that confined the queen within
the hive but allowed workers to exit and enter.

Six-day-old queens were implemented instrumental insemination (QueenBee Artificial
Insemination Instrument VCFE-QBAII-H1.3, Victory & Explore Ltd., Shanghai, China). For
instrumental insemination, the source and quantity of the semen were the same for all
mated queens. The source and quantity of the semen was the same for all mated queens.
For semen collection, around 1000 drones were used from three different queens’ families
with different genetic background. For insemination, 8µL mixed sperm was used for each
queen. Queens that successfully laid eggs were included in the RNA injection experiment.
For each queen, around 800 eggs that were laid by the treated queen were examined a day
before RNA injection.

Injection of queens was implemented according to Amdam’s methods [31]. Queens
were injected with 1 µL dsRNA solution (5 µg/µL) or 1 µL nonsense sequence. Injections
were made dorsally between the 5th and 6th abdominal segments. The queens stayed in
the fixed position for one hour before introduction into the original colony. Eggs were
examined the next day after injection. The number of eggs per day was recorded using
Population Measurment Liebefeld method for three days (Figure S1). After the third time
of recording the number of eggs, queens were collected. Each sample consisted of a single
queen. Ten samples per treatment group were used for RNA extraction (total = 90 samples).

2.3. Oversupply/Inhibition of miR-14 and EcR in Honeybee Queens

Ago-mir14 with the sense strand (sense: 5′UCAGUCUUUUUCUCUCUCCUA3′, an-
tisense: 5′GGAGAGAGAAAAAGACUGAUU3′) and the stable nonsense control strand
(sense: 5′ UUCUCCGAACGUGUCACGUTT3′, antisense: 5′ACGUGACACGUUCGGAGA
ATT3′) synthesized by GenPharma (Shanghai, China). An inhibitor, antago-mir14 (5′ UAGG
AGAGAGAAAAAGACUGA3′) and inhibitor nonsense control (5′CAGUACUUUUGUGUA
GUACAA3′) was also synthesized. For EcR overexpressed vector, EcR cds fragment
(1890-bp, NM_001098215.2, cds sequence was the same for EcR-A and EcR-B) was synthe-
sized and amplified using 2 x SG PCRMasterMix (SinoGene, China). The EcR cds was
cloned into a pCDNA3.1 vector. EcR siRNA (siRNA1: 5′-GATCCTTACAGTCCCAACAGT-
3′, siRNA2: 5′-GAACGCGGTCTATCAGTGTAA-3′; siRNA3: 5′-GAGATGTGCTTCAGCCT
CAAGT-3′), and siRNA nonsense control (sense: 5′-UUCUCCGAACGUGUCACGUTT-3′)
was also synthesized. Injection with siRNA or nonsense sequence, and sampling queens
were implemented as described in 2.2.

2.4. RNA Isolation and Real Time Quantitative PCR

Total RNA was extracted from samples using Trizol reagent (Invitrogen, Carlsbad,
CA, USA) according to the manufacturer’s instructions. The purity of RNA was checked
using the NanoPhotometer spectrophotometer (IMPLEN, Westlake Village, CA, USA), and
the concentration was measured using Qubit RNA Assay Kit in Qubit 2.0 Flurometer (Life
Technologies, Carlsbad, CA, USA). The integrity of RNA was assessed using the RNA Nano
600Assay Kit of the Agilent Bioanalyzer 2100 system (Agilent Technologies, Santa Clara,
CA, USA).

For mRNA amplification, for each sample, first strand cDNA was synthesized us-
ing 1 µg of total RNA. M-MLV FIRST STRAND KIT (Invitrogen, Shanghai, China) and
oligo (dT)18 primer were used in a total of 20 µL reverse transcription reaction following
the supplier’s instruction. Transcript-specific primer pairs (Table 1) were designed with
Oligo 6.0 software. Standard PCRs on cDNA were carried out to verify amplification
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sizes. Transcript quantification was performed using SYBR Green mix (Roche Diagnostics
GmbH, Roche Applied Science, Mannheim, Germany) in a Roche LightCylcer 480 (Roche
Diagnostics GmbH, Roche Applied Science, Mannheim, Germany). The RT-PCR reactions
were prepared in a total volume of 20 µL containing 5 µL of cDNA (50 ng, 1:100 dilution),
10 µL of SYBR Green mix, 3 µL water contained in the kit and 0.02 µmol/L of both forward
and reverse gene-specific primers. β-actin served as the internal reference gene. Cycling
conditions were 95 ◦C for 10 min, followed by 45 cycles of 95 ◦C (10 s) and 60 ◦C (10 s)
where the fluorescence was acquired. Finally, a dissociation curve to test PCR specificity
was generated from one cycle at 95 ◦C (10 s) followed by 60 ◦C (1 min) and ramp up to
95 ◦C with acquired fluorescence during the ramp to 0.2 ◦C/s.

Table 1. Primer sequences used for qRT-PCR validation of miR-14 and EcR.

Primer 5′ to 3′

miR-14-F GCGCTCAGTCTTTTTCTCT
U6 CTTGCTTCGGCAGAACATAT
EcR-F GCCTCCGGTTACCACTACAA
EcR-R CTCGCAATTGTTCCCGTATT
β-actin-F CTGCTGCATCATCCTCAAGC
β-actin-R GAAAAGAGCCTCGGGACAAC

For miRNA amplification, for each sample, first strand cDNA was synthesized using
1 µg of total RNA. miRcute Plus miRNA First-strand cDNA Kit (TIANGEN, Beijing, China)
was used in a total of 20 µL reverse transcription reaction following the supplier’s instruc-
tions. Transcript quantification was performed using miRcute Plus miRNA qPCR Kit (SYBR
Green) in a Roche LightCylcer 480 (Roche Diagnostics GmbH, Roche Applied Science,
Mannheim, Germany). The RT-PCR reactions were prepared in a total volume of 20 µL con-
taining 5 µL of cDNA (50 ng, 1:100 dilution), 10 µL of miRcute Plus miRNA PreMix, 10 µM
Reverse primer contained in the kit and 10 µM forward primer (see Table 1). U6 served as
the internal reference gene. Cycling conditions were 95 ◦C for 15 min, followed by 45 cycles
of 94 ◦C (20 s) and 60 ◦C (34 s) where the fluorescence was acquired.

PCR efficiency of each gene was estimated by standard curve calculation using four
points of cDNA serial dilutions. Ct values were transformed to quantities using the
comparative Ct method. Relative gene expression was calculated using the 2−∆∆Ct method.
Comparisons of gene expression levels were made using a t-test.

2.5. S2 Cell Culture, Luciferase Reporter Assay and Western-Blot

A 575-bp fragment from EcR 3′ UTR and its mutant sequence were synthesized and
amplified using 2 × SG PCRMasterMix (SinoGene, China) (Table S1). The EcR 3′ UTR
and its mutant were cloned into a psiCHECK2 vector, respectively. For miR-14, agomir
and antagomir were used, respectively. Drosophila S2 cells were cultured with 10% fetal
bovine serum (HyClone) in Schneider’s Insect Medium (Invitrogen, Carlsbad, CA, USA).
Cells were seeded at 106 cells per well in a 12-well plate. One day later, miR-14 mimics
was co-transfected with either psiCHECK2- EcR 3′UTR, psiCHECK2- EcR 3′UTR-m, or an
empty vector in the cells using the calcium phosphate transfection method, as described by
Tiscornia et al. [32]. Twenty-four and forty-eight hours after transfection, luciferase assays
were performed using a dual-specific luciferase assay kit (Biyuntian, Shanghai, China).
Renilla luciferase activity provided normalization for firefly luciferase activity.

To confirm the regulation mechanism of miR-14 on EcR, miR-14 agomir and antagomir
were co-transferred with EcR overexpressed vector. For the EcR overexpressed vector, we
sub-cloned the cds fragment of EcR mRNA, which was the homologous sequence of EcR-A
and EcR-B, into a luciferase reporter plasmid designated as psiCHECK2- EcR. Twenty-four
and forty-eight hours after transfection, the mRNA expression of EcR was detected using
qPCR, and protein of EcR was detected using Western blot. Methods of mRNA extraction
and qPCR amplification were described in 2.4. For Western blot, proteins were extracted
from S2 cells using the Cell Total Protein Extraction Kit (Sangon Biotech, Shanghai, China).
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The protein samples were separated through a 4% denaturing polyacrylamide gel, and
transferred to nitrocellulose membranes (Pall Life Sciences, Shanghai, China). Non-specific
binding-sites on the membranes were blocked with 5% nonfat milk in TBST for 1.5 h at
room temperature. The membrane was incubated with TBST containing 5% nonfat milk
and diluted rabbit anti-EcR polyclonal antibody (1: 500) (made by ourselves, peptide se-
quence: LVLPSGVNMC) overnight at 4 ◦C. It was then washed, incubated with horseradish
peroxidase-labeled anti-rabbit IgG (1: 3000) (AC028, Abclonal, Wuhan, China) for an hour
at room temperature, and washed again. Finally, the membrane was colored using the DAB
kit (Invitrogen, Carlsbad, CA, USA) and exposed using Chemiluminescence Detection
Kit for HRP (Sunbio, Shanghai, China). Scanned images were quantified using Image J
analysis software.

3. Results
3.1. miR-14 Expression and Its Effect on Egg Number of Queens

Considering the importance of miR-14 in oviposition of queens, we decided to overex-
press and inhibit its expression to examine the possible effects on the number of eggs laid
by queens. The miR-14 antagomir and agomir were injected into queens. The qRT-PCR
confirmed the overexpression and inhibition of miR-14 in queens, respectively. As shown in
Figure 1, the miR-14 expression in queens from the agomir group increased by 137% compared
with that of the agomir stable NC group, while miR-14 expression from the antagomir group
decreased by 48% compared with that of the inhibitor NC group (Figure 1a).

Figure 1. (a) The expression of miR-14 in queens after treatment and (b) the effect of its expression on
the egg number of queens. NC, queens without treatment. miR-14 stable NC, miR-14 stable nonsense
sequence control. Inhibitor NC, inhibitor nonsense sequence control. * means p < 0.05, ** means p < 0.01.

To investigate the possible effect of miR-14 on the egg number in queens, the associ-
ation between the miR-14 expression and the egg number of queens was analyzed. The
results showed that the egg number of queens from the miR-14 agomir group decreased
by 35% compared with that of the agomir stable NC group (p < 0.05) (Figure 1b). The egg
number of queens from the miR-14 antagomir group increased by 50% compared with
that of the inhibitor NC group (Figure 1b). However, the egg number of queens from the
agomir stable NC and the inhibitor NC group was only 72~74% that of their original level
(Figure 1b). The results indicated that the expression of miR-14 has an effect on the egg
number of queens. Inhibition of miR-14 expression improved the egg number. However,
the damage caused by the injection to queens may also affect the egg number.

3.2. EcR Expression and Its Effect on the Egg number of Queens

Firstly, we detected the efficiency of siRNA in S2 cells. We transfected EcR siRNA1,
siRNA2, siRNA3 and NC into S2 cells, and used RT-PCR to detect the mRNA expression of
EcR. The results showed that the inhibition caused by siRNA1, siRNA2, and siRNA3 was
effective (Figure 2a). In the next steps, siRNA2 was used to inhibit the EcR expression.
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Figure 2. Effect of siRNAs and overexpressed vector on the expression of EcR. (a) Effect of siRNA on
the expression of EcR. (b) Effect of overexpressed vector on the expression of EcR. * means p < 0.05,
** means p < 0.01.

On the other hand, we subcloned the cds fragment of EcR mRNA, which is a homolo-
gous sequence of EcR-A and EcR-B, into a luciferase reporter plasmid named psiCHECK2-
EcR. We transfected blank vector and psiCHECK2-EcR into S2 cells, respectively. Then,
cells were collected at 24 h and 48 h after transfection to detect the expression of EcR. The
results showed that after transfection, the expression of EcR increased significantly at 24 h,
and was increased around 100 times at 48 h (Figure 2b).

EcR was also reported to relate with the oviposition of queens. We overexpressed and
inhibited the expression of EcR to examine possible effects on the egg number of queens.
The synthetic siRNA and overexpression vector were injected into queens. The qRT-PCR
confirmed the overexpression and inhibition of EcR in queens, respectively. As shown in
Figure 3a, the EcR expression in queens from the EcR overexpression group increased by
34% compared with that of the blank vector group, while EcR expression from the siRNA
group decreased by 52% compared with that of the siRNA NC group. The association
between the EcR expression and the egg number of queens was also analyzed. The results
showed that the egg number of queens from the EcR overexpressed group increased by
94% compared with that of the blank vector group (p < 0.05) (Figure 3b). The egg number
of queens from the siRNA group decreased by 31% compared with that of the inhibitor NC
group (Figure 3b). However, the egg number of queens from the blank vector group was
only 75% that of its original level and the egg number of queens in the inhibitor NC group
was 90% that of its original level (Figure 3b). The results indicated that the expression
of EcR has an effect on the egg number of queens. Overexpression of EcR improved the
egg number.

Figure 3. (a) The expression of EcR in queens after treatment and (b) the effect of its expression on
the egg number of queens. EcR siRNA NC, EcR siRNA nonsense sequence control. Normal control,
queens without treatment. * means p < 0.05, ** means p < 0.01.
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3.3. Confirmation of the Interaction of miR-14 with EcR Using a Luciferase Reporter Assay

To test whether miR-14 actually targets the EcR 3′ UTR, we sub-cloned a 517-bp
fragment of the 3′ UTR region of EcR mRNA that included the predicted miR-14 recognition
site (Figure 4a) into a luciferase reporter plasmid designated as psiCHECK2-EcR 3′UTR
(short for W). A sequence with mutations (m) was also constructed as the negative control
for the same reporter assay, named psiCHECK2-EcR 3′UTR-m (short for M). miR-14
mimics and inhibitor were directly used for co-transferred. When miR-14 mimics was
co-transfected with psiCHECK2-EcR 3′UTR in S2 cells, the luciferase activity significantly
decreased compared to the assay involving co-transfection with psiCHECK2- EcR 3′UTR-m
(p < 0.01, Figure 4b). The results indicated that miR-14 targeted the EcR 3′UTR.

Figure 4. (a) Sequences of the interaction sites between miR-14 and EcR 3′ UTR and (b) co-transfection
of psiCHECK2- EcR 3′ UTR resulted in dramatic suppression of the luciferase activity. a. Blue line
indicates interaction sites, and asterisks indicate mutated site. Nucleotides of interaction sites and
mutated sites are shown in red. Grey shaded areas indicate canonical 7mer “seed” region that aligns
with the target site, the vertical lines indicate contiguous Watson–Crick pairing. b. A normalized
firefly/renilla luciferase value was plotted with ±SD. ** means p < 0.01.

3.4. The Regulation Mechanism of miR-14 on EcR

To further confirm the regulation mechanism of miR-14 on EcR, miR-14 agomir/antagomir
and psiCHECK2- EcR were co-transfected in S2 cells. The mRNA expression of miR-14 and
EcR was detected by RT-PCR, and the expression of EcR protein was detected by Western blot.
The results showed that in the miR-14 inhibition group, the expression of miR-14 decreased by
70% at 24 h and 50% at 48 h, respectively (Figure 5a). In the miR-14 overexpressed group, the
expression of miR-14 increased by 145% at 24 h and 141% at 48 h, respectively (Figure 5a). For
the expression of EcR, in the miR-14 inhibition group, the mRNA expression of EcR increased
almost 18 times at 24 h and increased around 3.9 times at 48 h, respectively (Figure 5b). In the
miR-14 overexpressed group, the mRNA expression of EcR decreased by 60% at 24 h and 70%
at 48 h, respectively (Figure 5b). Western blot results showed that in the miR-14 overexpressed
group, the protein expression of EcR decreased by 56% at 24 h and 51% at 48 h, respectively
(Figure 5c). In the miR-14 inhibition group, the protein expression of EcR increased by 85% at
24 h and 138% at 48 h, respectively (Figure 5c). The results showed that miR-14 affects EcR
protein expression by regulating the expression of EcR mRNA. It indicated that miR-14 may
inhibit the transcription of EcR mRNA.
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Figure 5. Effect of miR-14 on mRNA and protein level of EcR. (a) Effect of miR-14 on mRNA level
of EcR. (b) Western blot result. (c) Effect of miR-14 on protein level of EcR at 24 h and 48 h after
treatment. * denoting p < 0.05, ** denoting p < 0.01. Data are from three replicates. β-actin was used
as the reference protein.

4. Discussion

Ec is recognized as one of the most important hormones regulating the reproductive
activities of honeybees [16,17,33]. Studies showed that the Ec titer in the ovaries of queens
and workers with outstanding reproductive ability was significantly high [12,15]. During
the first time of oviposition, Ec titer in queens’ ovary increased significantly [16–18]. In
Bumble terrestris, large amounts of Ec are produced in the ovaries of queens and reproduc-
tively dominant workers, which are reflected by high Ec titers in the hemolymph of these
bees [16,17]. The dynamic regulation of Ec in adult honeybees, and the growing evidence
that many behavioral changes in honeybees are associated with differential expression
of Ec responsive genes [15]. EcR is one of the most important Ec responsive genes. EcR
is the receptor of Ec, and Ec and EcR combined to form Ec response elements (EcRE)
regulating the Ec titer [12], and further affecting the oviposition of honeybees [16–19].
The key role of EcR for Ec signaling in honeybees was demonstrated by RNAi-mediated
down-regulation of both EcR transcripts (A and B) during pharate-adult development. EcR
down-regulation caused differential expression of 234 transcripts, and also promoted the
differential expression of 70 miRNAs [4]. This suggested an additional tier of regulation
that is mediated by the action of miRNAs on gene expression [4]. In recent years, the role of
miRNA in reproduction has been well established. Several miRNAs were found involved
in the ovarian functional remodeling and ovarian development in honeybees [7,19]. Re-
searchers also found that miRNAs were related to Ec and EcR [4,27,34]. Especially, miR-14
is found closely related to the activation state of honeybee ovaries and it was reported
to involve in regulating the expression and activity of EcR [4,7]. What is important, the
gene sequence of EcR has miR-14 binding site [4]. Further, our previous study found
that the expression of miR-14 was significantly down-regulated in egg-laying queens than
that of virgins [27]. Therefore, our hypothesis is miR-14 affects egg-laying by targeting
EcR [17,35–37]. We deduced that there is a good correlation between miR-14 and honeybees’
reproductive changes.

However, it was not clear whether the expression of miR-14 and EcR was directly
associated with egg numbers of queens, and the mechanism of mir-14 regulating the EcR’s
expression is also not clear. In this study, we concentrated on miR-14 and EcR. We recorded
the number of eggs per day of each queen by using Population Measurment Liebefeld
method, a method regularly used to accomplish this. We detected that the expression of EcR
and mir-14 was associated with the number of queens. In the group of EcR overexpression,
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the egg number was significantly higher than that of the control group. This was consistent
with the result in bumblebees, which showed that EcR promoted oviposition [17]. In the
group of miR-14 inhibition, the number of eggs was significantly higher than that of the
miR-14 stable control group. The number of eggs in the group of miR-14 overexpression
was decreased compared with inhibitor control group. Inhibition of miR-14 enhanced the
number of eggs (p < 0.05). These results are consistent with other species, in which miRNAs
was shown to a play role in oocyte maturation [38]. In addition, the expression of miR-14 is
largely confined to the ovaries of honeybee queens [27]. Thus, we deduced that there is a
good correlation between the expression of EcR and miR-14 and honeybees’ egg number.

We have previously predicted EcR to be a possible target for miR-14 [27]. Our lu-
ciferase assay confirmed that miR-14 targets the 3′UTR of EcR because transfection of
psiCHECK2-EcR 3′UTR reduced the luciferase activity and psiCHECK2-EcR 3′UTR m
rescued this suppression to the same level as that of the blank control (Figure 4). Moreover,
we detected the expression of EcR in groups of miR-14 inhibition/overexpression. The
result showed that overexpression of miR-14 significantly inhibited the mRNA and protein
expression of EcR in queens. These results strongly indicate that miR-14 directly targets
EcR. Combining results of the association between the egg number and gene expression,
we deduced that miR-14 may be involved in the regulation of egg-laying of honeybees
through its target gene EcR.

In the technical aspect, the damage caused by the injection to queens may also affect
the number of eggs laid since the number of eggs laid decreased slightly in the NC group.
In previous studies, the siRNA injection was usually implemented in pupae or adult
workers [4,39]. The observed behaviors were usually growth and development, nursing
and foraging [4,39]. These observed behaviors probably were not sensitive to the injection
damage. However, the queens may be sensitive to the damage by the injection. The number
of eggs laid by queens may be one of the easily observed reflect. The thinner syringe needle
may reduce the injection damage. Further studies are needed to confirm it.

The number of eggs laid by honeybee queens was not determined by one singular
cause. The number of eggs laid was one of the most important aspects of fecundity in
honeybees. Among the factors that influence the number of eggs laid, Ec was one of the
most important factors. It is reported that high Ec titer in queens’ ovaries improves the
number of eggs laid. Egg-laying, which is hormonally controlled, is affected by many
genes that have various cross-talks with other coding or non-coding RNAs. MiR-14 was
one of the non-coding RNAs that played an important role in egg-laying [11,14]. Our
study demonstrated that the expression of miR-14 and EcR was significantly associated
with the number of eggs laid in honeybee queens. Once the results are confirmed in other
populations, this study, in combination with traditional selection methods, can be used for
marker-assisted selection in honeybee breeding programs. However, there may be other
genes or loci interacting with EcR or miR-14. Specific mechanisms are needed to carry out
further studies.

5. Conclusions

In summary, we found that inhibition of miR-14 and overexpression of EcR enhanced
the number of eggs laid by queens. Moreover, we determined that miR-14 directly targets
the mRNA of EcR. These findings suggest that miR-14, by targeting EcR, plays an important
role in regulating honeybee egg-laying.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/insects12040351/s1, Figure S1 Counting the number of eggs per day using Population
Measurment Liebefeld method. Table S1: Sequence of EcR 3′UTR.
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