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Abstract

Staphylococcus aureus can colonize and infect both humans and animals, but isolates from both hosts tend to belong to
different lineages. Our recent finding of bovine-adapted S. aureus showing close genetic relationship to the human S. aureus
clonal complex 8 (CC8) allowed us to examine the genetic basis of host adaptation in this particular CC. Using total
chromosome microarrays, we compared the genetic makeup of 14 CC8 isolates obtained from cows suffering subclinical
mastitis, with nine CC8 isolates from colonized or infected human patients, and nine S. aureus isolates belonging to typical
bovine CCs. CC8 isolates were found to segregate in a unique group, different from the typical bovine CCs. Within this CC8
group, human and bovine isolates further segregated into three subgroups, among which two contained a mix of human
and bovine isolates, and one contained only bovine isolates. This distribution into specific clusters and subclusters reflected
major differences in the S. aureus content of mobile genetic elements (MGEs). Indeed, while the mixed human-bovine
clusters carried commonly human-associated b-hemolysin converting prophages, the bovine-only isolates were devoid of
such prophages but harbored an additional new non-mec staphylococcal cassette chromosome (SCC) unique to bovine CC8
isolates. This composite cassette carried a gene coding for a new LPXTG-surface protein sharing homologies with a protein
found in the environmental bacterium Geobacillus thermoglucosidans. Thus, in contrast to human CC8 isolates, the bovine-
only CC8 group was associated with the combined loss of b-hemolysin converting prophages and gain of a new SCC
probably acquired in the animal environment. Remaining questions are whether the new LPXTG-protein plays a role in
bovine colonization or infection, and whether the new SCC could further acquire antibiotic-resistance genes and carry them
back to human.
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Introduction

Staphylococcus aureus are major human and animal pathogens that

can produce a variety of diseases, from relatively mild skin and soft

tissue infections to life-threatening blood stream bacteremia and

endocarditis [1,2]. In addition, this bacterium is mastermind in

developing antibiotic resistances, and some strains have become

resistant to virtually all non-experimental drugs, including the

whole family of b-lactam molecules in the case of methicillin-

resistant S. aureus (MRSA) [3], as well as last-resort vancomycin

and daptomycin [4,5]. In humans, the major reservoir of S. aureus

is represented by healthy carriers, who account for up to 30% of

the population, and harbor the organism in their anterior nares

and sometimes other anatomic sites [6]. Besides, S. aureus carriage

was also reported in numerous animal species including dog, cat,

horse, pig, poultry and cattle [7,8,9]. However, while S. aureus are

quite ubiquitous in terms of host species, different animals tend to

harbor different lineages (i.e. clonal complexes, or CCs for short)

as recognized in pioneer work by Devriese and Oeding [10], and

amply confirmed thereafter [11,12,13,14,15,16,17]. Several stud-

ies suggested that critical modulators of this host specificity might

be mobile genetic elements (MGEs), gene decay, or adaptive

evolution of surface proteins [11,12,14,15,18,19,20]. For instance,

it has been suggested that the presence of the immune evasion

cluster (IEC), a gene cluster carried by b-hemolysin converting

bacteriophages, was strongly correlated with human isolates [21].

Such host-specific genes were suggested to be useful as epidemi-

ologic markers [20].

We recently observed a close genetic relationship between S.

aureus strains isolated from bovine suffering subclinical mastitis and

strains of the prominent human CC8, suggesting recent human to

PLOS ONE | www.plosone.org 1 March 2013 | Volume 8 | Issue 3 | e58187



bovine jump [17]. Here, we further compared the genetic makeup

of human and bovine CC8 S. aureus strains, using a collection of

epidemiologically independent isolates collected in Switzerland

[17]. We observed evidence for a human to bovine jump rather

than the contrary. Notably, the jump was associated with the loss

of a b-hemolysin converting prophage typical of human strains

[15,22,23], plus the acquisition of a new bovine-specific SCC

element, which lacked the methicillin-resistance mecA gene, but

carried a new LPXTG protein.

Materials and Methods

S. aureus Strains Selection
Nine epidemiologically unrelated human CC8 strains and 14

epidemiologically independent CC8 strains recovered from bovine

subclinical mastitis (labeled ‘‘M’’) were included in the study

(Table 1). All strains were isolated from humans or animals in

Western Switzerland. Concerning the human CC8 strains, three

were recovered from healthy carriers and were labeled ‘‘Laus’’,

four were isolated from patients with bloodstream infections and

were labeled ‘‘I’’, and two corresponded to the reference strains

USA300_FPR3757 (USA300) [24] and COL [25]. The bovine

CC8 strains were chosen to represent all spa types found among

400 isolates previously collected [17,26]. In addition, nine isolates

from four typical bovine lineages (CC20, CC97, CC151, and

CC479) were included.

Microarray Manufacturing and Design
To compare the genetic content of the investigated micro-

organisms we designed a microarray experiment based on nine

fully sequenced S. aureus genomes. The microarray chip was

manufactured by in situ synthesis of a set of 15,600 60-mer long

Table 1. Genotyping results for cow and human S. aureus strains used in this study (according to ref. [11], [17], [44], and [45] for
RF122, ‘‘M’’ strains, USA300, and COL, respectively).

CC/AFLP
Name of
isolates Source Spa-type Spa repeats

Sequence
Type

8 COL* Human infection t008 11-19-12-21-17-34-24-34-22-25 250

USA300* Human wrist abscess t008 11-19-12-21-17-34-24-34-22-25 8

I2* Human bloodstream infection t008 11-19-12-21-17-34-24-34-22-25 8

I29 Human bloodstream infection t121 11-19-21-17-34-24-34-22-25 8

I36 Human bloodstream infection t008 11-19-12-21-17-34-24-34-22-25 8

I37 Human bloodstream infection t622 11-19-12-21-17-34-22-25 8

Laus102 Human carriage t008 11-19-12-21-17-34-24-34-22-25 8

Laus270 Human carriage t121 11-19-34-24-34-22-25 8

Laus385 Human carriage t2293 11-19-34-24-34-22-25 8

M5 Bovine subclinical mastitis1 t2953 11-12-21-17-34-24-34-22-25-25 8

M20 Bovine subclinical mastitis1 t5694 11-12-17-34-24-34-22-25-25 8

M37 Bovine subclinical mastitis1 t024 11-12-21-17-34-24-34-22-25 8

M86 Bovine subclinical mastitis1 t5271 11-17-34-24-34-22-25-25 8

M117 Bovine subclinical mastitis1 t5694 11-12-17-34-24-34-22-25-25 8

M124 Bovine subclinical mastitis1 t6281 04-21-17-34-24-34-22-25-25-75 8

M160 Bovine subclinical mastitis1 t5270 11-12-21-17-34-24-34-22-25-25-25 8

M186 Bovine subclinical mastitis1 t024 11-12-21-17-34-24-34-22-25 8

M192 Bovine subclinical mastitis1 t5270 11-12-21-17-34-24-34-22-25-25-25 8

M222 Bovine subclinical mastitis1 t5268 11-21-17-37-24-34-22-25-25 8

M283 Bovine subclinical mastitis1 t2953 11-12-21-17-34-24-34-22-25-25 8

M308 Bovine subclinical mastitis1 t711 04-21-17-34-24-34-22-25 8

M313 Bovine subclinical mastitis1 t5268 11-21-17-34-24-34-22-25-25 8

M319 Bovine subclinical mastitis1 t5271 11-17-34-24-34-22-25-25 8

20 M3 Bovine subclinical mastitis1 t164 07-06-17-21-34-34-22-34 389

M159 Bovine subclinical mastitis1 t2094 26-06-17-21-34-34-22-34 389

M323 Bovine subclinical mastitis1 t164 07-06-17-21-34-34-22-34 389

97 M32 Bovine subclinical mastitis1 t524 04–17 71

M356 Bovine subclinical mastitis1 t524 04–17 71

151 RF122 Bovine subclinical mastitis1 t529 04–34 151

M52 Bovine subclinical mastitis1 t529 04–34 504

M330 Bovine subclinical mastitis1 t529 04–34 151

479 M126 Bovine subclinical mastitis1 t543 04-20-17 479

*MRSA; 1isolates collected in Switzerland.
doi:10.1371/journal.pone.0058187.t001
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oligonucleotide probes (Agilent, Palo Alto, CA, USA), selected as

previously described [27]. This set of 8,877 probes covers

approximately 96% of all ORFs annotated in strains USA300

[24], COL [25], RF122 [11], N315 and Mu50 [28], MW2 [29],

NCTC8325 [30], as well as MRSA252 and MSSA476 [31]. Each

gene was covered by one to 12 probes depending on gene length.

Preparation of Labeled Nucleic Acids for Microarrays
Probing

Purified genomic DNAs from the reference sequenced strains

used for the design of the microarray chip was labeled with Cy-5

dCTP [27] and used in microarray normalization [32]. Mixtures

of Cy5-labeled pooled DNAs and Cy3-labeled DNA of the test

Figure 1. Clustering analysis, using Spearman correlation, of patterns of genome hybridization to probes matching 2,609 genes
carried by the chromosome of strain USA300. Each probe set (i.e. collection of all probes hybridizing to USA300 genes) is represented by a
single row of colored boxes. The blue areas correspond to genes showing significant fluorescent signal (i.e present in a corresponding genome),
whereas yellow bars indicate genes poorly or not fluorescent (i.e. absent from a corresponding genome). The dendrogram on the right of the figure
(black lines) represents the similarity matrix of the strain set. Clonal clusters (CCs) are indicated on the left. Clusters and sub-clusters are indicated by
roman letters on the right.
doi:10.1371/journal.pone.0058187.g001
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strains [33] were hybridized and scanned as previously described

[34].

Microarray Data Analysis
Hybridization fluorescence intensities were quantified using the

Feature Extraction Software v9.5 (Agilent Technologies, Santa

Clara, CA, USA). Local background-subtracted signals were

corrected for unequal dye incorporation or unequal load of the

labeled product, using a rank consistency filter and a curve-fitting

algorithm per the default LOWESS (locally weighted linear

regression) method. Data were analyzed using GeneSpring 8.0

(Silicon Genetics, Redwood City, CA, USA) as previously

described [34] and lists of probes over-represented either in

human or cow strains were further investigated manually using an

Excel spreadsheet. For this manual step, genomes of S. aureus

strains showing a hybridization signal value $ to 50% of the

lowest value obtained with the genome of a reference strain,

known to carry the corresponding gene, were considered as

carrying a corresponding gene homolog. This 50% threshold was

validated by PCR amplification of several genes (data not shown).

The complete microarray dataset (accession number GPL7137) is

posted on the Gene Expression Omnibus database (http://www.

ncbi.nlm.nih.gov/geo/).

Figure 2. Schematic map of SCCM186. Genes are represented by black arrows pointing in the direction of transcription. The positions of attL and
attR flanking the cassette are indicated by asterisks. The gene coding for the potential new LPXTG (orf1) is represented by an oblique dashed arrow.
CcrB (orf7) and ccrA (orf8) are represented by dotted arrows.
doi:10.1371/journal.pone.0058187.g002
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Multiplex PCR for the Amplification of the int Genes of b-
hemolysin Converting Prophages and of their Insertion-
target Gene (hlb) in the S. aureus Chromosome

We further assessed the presence or absence of int genes of b-

hemolysin converting prophages and their chromosomal insertion-

target gene hlb genes by PCR. The multiplex PCR reaction

mixture was as follows: 250 mg of S. aureus genomic DNA, MgCl2
0.5 mM, dNTPs 0.2 mM, each of the following primers 0.2 mM

(hlb-2:59-AGCTTCAAACTTAAATGTCA-39; hlb-527:59-

CCGAGTACAGGTGTTTGGTA-39; WN315int-for: 59-

Table 2. Genetic composition of SCCM186.

ORF number on SCCM186 Homolog to % of amino acids identity Gene product

1 HMPREF9994_12940 74 Hypothetical protein

(last 400 aa)

GT20_0444 95

(PEG/QPGN domain)

2 SE0030 86 Hypothetical protein

SAUSA300_0056 88

3 SE0031 89 Hypothetical protein

SAUSA300_0057 91

4 SE0033 91 Hypothetical protein

SAUSA300_0059 90

5 SE0034 98 Carboxypeptidase

6 SE0035 94 PBP4

7 SE0036 92 CcrB

SAUSA300_0037 92

8 SE0037 96 CcrA

SAUSA300_0038 90

9 SE0038 84 Hypothetical protein

SAUSA300_0039 99

10 SAUSA300_0040 100 Hypothetical protein

11 SAUSA300_0041 96 Hypothetical protein

12 SAUSA300_0042 99 Transcriptional regulator

13 SE0129 98 Metallo-b-lactamase

SAUSA300_0044 95

14 SE0130 93 Rhodanese domain protein

15 SE0132 99 Hypothetical protein

16 SE0133 93 Sulfite exporter TauE/SafE

17 SE0126 97 CopA

SAUSA300_0078 97

18 SE0128 97 Putative lipoprotein

SAUSA300_0079 91

19 SE0134 92 ArsC

SAUSA300_1719 80

20 SE0135 92 ArsB

SAUSA300_1718 80

21 SE0136 100 ArsR

SAUSA300_1717 58

22 SE0137 99 ArsA

23 SE0138 99 ArsD

24 SE0139 100 ArsR

25 SE0140 99 Putative permease

26 SE0141 100 Hypothetical protein

Best hits obtained with blastp against the non-redundant protein database are shown. SExxxx and SAUSA_xxxx represent ORFs found in S. epidermidis strain ATCC
12228 and S. aureus strain USA300_FPR3757, respectively. HMPREF9994_12940 and GT20_0444 are found in S. epidermidis strain NIHLM088 and G. thermoglucosidasius
strain TNO-09.020.
doi:10.1371/journal.pone.0058187.t002
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GCTTTGAAATCAGCCTGTAG-39), GoTaqH 2.5 U in 25 mL

1X white buffer. PCR reactions were performed in a T

Professional PCR thermocycler (Biometra, Goettingen, Germany).

GoTaqH, white buffer, and dNTPs were from Promega (Madison,

WI, USA). Primers were purchased from Microsynth AG

(Balgach, Switzerland) and were described previously [19]. All

other chemicals were from Sigma-Aldrich (Saint Louis, MO,

USA).

Genome Sequencing and Assembly
Total genomic DNA was isolated from the bovine S. aureus

strain M186 using a protocol adapted from reference [35].

Bacterial cells from an overnight culture in Tryptic Soy Broth

(TSB) were pelleted and resuspended in Tris-EDTA (10 mM Tris-

Cl, 1 mM EDTA; pH 7.5) containing 400 mg/mL of lysostaphin

(Sigma-Aldrich). After 45 min incubation at 37uC, six volumes of

Nuclei lysis solution (Promega) were added and the mixture was

transferred to 80uC for 10 min. After cooling the sample to room

temperature, 50 mg/mL RNAse A (Sigma-Aldrich) were added

and a new incubation step of 30 min. at 37uC was performed. 1/

3.5 (vol/vol) of protein precipitation solution (Promega) was added

and sample was left on ice for 5 min, before it was centrifuged for

10 min at 4uC. The supernatant was transferred to 1 volume

isopropanol, thoroughly mixed and centrifuged at 4uC for 10 min.

The DNA pellet was washed with 1 volume ethanol 70% and

resuspended with 20 mL ultrapure H2O. In order to solubilize the

genomic DNA, overnight incubation at 4uC and further at 65uC
for 1 h were performed. The genomic DNA was finally stored at

220uC. Genome sequencing was performed with a Genome

Analyzer IIx (Illumina Inc., San Diego, CA, USA) at the Genomic

Technologies Facility of the University of Lausanne. A paired-end

library with approximately 600 bp insert was constructed from

5 mg of genomic DNA and 28 million paired-end 36 bp reads were

obtained following manufacturer’s instructions. In these condi-

tions, the theoretical coverage based on the average of published

genome size for S. aureus (ca. 2.86106 bp) was 7206. The quality

of the data obtained from the sequencing was verified using

FastQC (http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/

). Since most of the reads were of excellent quality (data not

shown), no trimming was required. Reads of insufficient quality or

contaminant sequences (less than 1%) were removed using locally

developed scripts (available upon request). The assembly was

performed using first SOAPdenovo [36], with kmers ranging from

19 to 35, and Gapcloser (http://soap.genomics.org.cn/about.

html#resource2). ORFs were detected using ORF finder and

potential functions were assigned using blastp and blastn (softwares

available on the National Center for Biotechnology Information

(NCBI) website (http://www.ncbi.nlm.nih.gov/)).

Minimum Inhibitory Concentrations (MICs) of Sodium
Arsenite

The MICs of sodium arsenite were determined in TSB for S.

aureus isolates carrying or not the new SCC element, using a

standard broth macro-dilution method [37]. The MIC was

defined as the lowest concentration of sodium arsenite that

inhibited visible bacterial growth following incubation for 24 h at

37uC. A minimum of three independent experiments were

performed. Sodium arsenite (NaAsO2) solution was purchased

from Sigma-Aldrich.

Results

Clustering of Strains According to the Presence or
Absence of USA300-specific Genes

To evaluate the relatedness between the various isolates, the

genomes of the 32 tested organisms (Table 1) were evaluated for

the presence or absence of 2,609 genes carried by USA300, and

the obtained patterns were clustered by Spearman correlation

(Figure 1). Clusters and sub-clusters were very similar to those

recently reported for the same isolates by amplified fragment-

length polymorphism (AFLP) and multi-locus sequence typing

(MLST) [17]. Two major clusters were delineated; the first called

cluster I, regrouped only CC8 strains, and the second called cluster

II, contained all the non-CC8 isolates. Cluster I further segregated

in three sub-clusters, among which sub-clusters Ia and Ib consisted

of a mix of human and bovine CC8 strains that were relatively

close to USA300, and sub-cluster Ic contained only CC8 isolates of

bovine origin. Cluster II contained only bovine strains, but

segregated in sub-clusters as well (Figure 1). Indeed, CC479,

Figure 3. Schematic representation of the proposed scenario
for the human to cow jump of S. aureus CC8 strains. The human
CC8 MSSA ancestor strain carried a b-hemolysin converting prophage
(Wb-HC), which is suggested to be important for survival in the human
environment. The upper part of the Figure shows the acquisition of
SCCmec by such ancestor, leading to human MRSA such as USA300. The
lower part of the Figure shows the progressive passage to the bovine
environment, which includes first the acquisition of the new mecA-
negative SCC, and then the loss of the b-hemolysin converting
prophage.
doi:10.1371/journal.pone.0058187.g003
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CC20, CC97, and CC151 isolates regrouped separately into four

sub-clusters, named IIa, IIb, IIc, and IId, respectively (Figure 1).

Thus, while clusters I and II broadly segregated between rather

human types and typical bovine types of isolates, sub-clustering

within CC8 strains further delineated differences between human

and bovine CC8 isolates.

Comparing Human and Bovine CC8 Isolates by
Microarray

1,816 genes were found to be present on the genomes of all

tested CC8 strains and corresponded to the so-called CC8 core

genome (data not shown). Amongst the 8,877 60-mer DNA probes

represented on the microarray chips, 198 (2.2%), corresponding to

127 genes, were found to have a higher prevalence in human than

in bovine CC8 isolates. Moreover, out of these 127 genes, 95

(74.8%) were related to bacteriophage genes, 19 (15%) to S. aureus

pathogenicity islands (SaPIs) genes, and 11 (8.7%) to staphylococ-

cal cassette chromosome mec (SCCmec) genes. Thus, .99% of the

genes associated with human specificity were carried by MGEs.

In symmetry, 43 probes (0.48%) corresponding to 29 genes,

were over-represented in bovine CC8 isolates. Out of these 29

genes, 14 (48.3%) were homolog to genes carried by diverse

SCCmec elements, eight (27.6%) corresponded to genes carried by

the S. aureus pathogenicity island 5 (SaPI5), and seven (24.1%) were

related to transposon genes. Thus, all genes associated with bovine

specificity were also carried by MGEs.

Altogether, the human and bovine CC8 genomes differed only

by a total of 156 genes, of which 154 (98.7%) were carried by

MGEs. Below, we attempted to sort out which of these genes, or

set of genes, might be the most likely candidates to promote

specificity of S. aureus CC8 strains for either the human or the

bovine host.

Comparing MGEs Gene Content
Since close to 99% of the genetic differences between human

and bovine CC8 isolates were related to MGEs, we concentrated

on these elements for further analyses. More precisely, we

evaluated our whole strain collection for the presence or absence

of homolog genes to every single gene carried by the major MGEs

found in the two human CC8 reference strains USA300 and COL,

as well as the bovine CC151 reference strain RF122.

With Respect to the Genomic Islands vSaa and vSab
The non-phage and non-SCC vSaa and vSab genomic islands

are well conserved in all sequenced S. aureus [38]. Therefore, they

were expected to be present in most of the studied isolates.

Accordingly, both CC8 and typical bovine clusters uniformly

carried several genes that were homolog to those of the vSaa and

vSab of USA300 (Table S1 and S2, respectively). Nevertheless,

while the entire group of CC8 strains presented quite uniform

patterns for both vSaa and vSab, they were clearly different from

the patterns found in typical bovine clusters, in which even inter-

cluster differences were observed. Thus, the CC8 strains were

clearly different from the typical bovine clusters in this respect.

Moreover, this segregation was further confirmed when the strain

collection was compared to the vSaa and vSab of COL and the

reference bovine strain RF122 (Table S8–S9 and S10–S11,

respectively).

With Respect to the USA300 Prophages WSa2 and WSa3
USA300 is lysogenized by two bacteriophages. WSa2 carries the

Panton-Valentine Leukocidin (PVL) [39], and WSa3, which is a

member of a family of b-hemolysin converting bacteriophages that

share a very similar integrase int (genes). Of note, WSa3 and related

prophages may harbor determinants implicated in immune

evasion [40], including a staphylokinase (SAK), a chemotaxis

inhibitory protein (CHIPS), and the staphylococcal complement

inhibitor SCIN.

Homologs of USA300 WSa2 prophage, devoid of the PVL lukF-

PV and lukS-PV genes, were only found in the CC8 sub-cluster Ia,

which contained USA300 and a few human and bovine CC8

strains, as well as in two typical bovine strains of sub-clusters IIc

and IId (Table S3). Thus, WSa2 did not discriminate between

human and bovine isolates.

In sharp contrast, WSa3-related b-hemolysin converting pro-

phages, were present in the two mixed human-bovine CC8 sub-

clusters Ia and Ib (except for COL), but notoriously absent from

the bovine-only CC8 sub-cluster Ic, as well as from all the typical

bovine clusters (Table S4). This observation was in agreement with

the fact that such prophages are typically associated with human S.

aureus isolates, but tend to be absent from animal strains

[11,20,23]. Thus, the presence or absence of b-hemolysin

converting prophages made a further distinction between sub-

clusters Ia and Ib, which contained mixed human-bovine CC8

isolates, and sub-cluster Ic that contained bovine-only CC8

isolates. Indeed, strains of the sub-cluster Ic, lacking b-hemolysin

converting prophages, were closer to typical bovine strains in this

regard. To further determine the chromosomal insertion site of b-

hemolysin converting prophages, we performed multiplex PCR

reactions on genomic DNA from all strains using specific primers

for the b-hemolysin converting prophage WN315 int gene and the

S. aureus b-hemolysin (hlb) gene [19]. The presence of amplicons of

the expected size confirmed the presence of WN315 int homologs

in the genomes of the isolates harboring b-hemolysin converting

prophages (not shown). Moreover, no amplification was obtained

for the chromosomal hlb gene, supporting the fact that this gene

was interrupted by the integration of the prophage, as described

elsewhere [19]. Of note, while all the identified b-hemolysin

converting prophages carried homologs to the typical WSa3 sak

and scin genes, only 6/18 of them carried homologs to the WSa3

chips gene.

With Respect to Other Non-SCC MGEs
Other non-SCC MGEs examined herein included the USA300

SaPI5 (Table S5); a USA300 transposon-related region (Table S6);

the COL prophage WSaCOL, which is closely related to WSa2

(Table S12); the COL SaPI3 (Table S13); as well as the bovine

RF122 SaPIbov [41], SaPIbov3 [42], vSabov, and prophage

WRF122 (Table S14, S15, S16, and S17 respectively). None of

these elements were discriminatory between human and animal

isolates except for the bovine genomic island SaPIbov3, which was

only present in typical bovine clusters but not in CC8 strains. This

further supported the fact that bovine CC8 strains were more

closely related to human CC8 than to typical bovine strains (Table

S15).

With Respect to the USA300 SCCmec Cassette
SCCmec is a genomic island conferring methicillin resistance

[43]. It is found in MRSA USA300, but not systematically in other

S. aureus isolates. Table S7 shows that only two strains (i.e. MRSA

I2 and COL) contained relatively numerous gene homologs,

including mecA/mecRI, to the USA300 SCCmec, which was

consistent with the fact that they were MRSA. Strikingly, a

different and restricted stretch of gene homologs was uniquely

present in all bovine CC8 isolates, but never found in human CC8

strains or isolates of the typical bovine clusters. This region

appeared as a truncated SCC, which carried homologs of the ccrA

Human-to-Bovine Jump of Staphylococcus aureus CC8
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and ccrB recombinase genes, as well as a few other determinants

present on the SCCmec of USA300. However, it lacked the

methicillin resistance determinants mecA/mecR1 and surrounding

gene (i.e. from sausa300_0027 to sausa300_0035) (Table S7). This

mecA-negative SCC element discriminated the bovine CC8 strains

from all other strains of the present collection, be it CC8 or typical

bovine CCs, and this observation was confirmed by comparison

with COL SCCmec (Table S18).

Genetic Organization of the Representative Non-mecA
SCC Cassette from Bovine CC8 Strain M186 (SCCM186)

Bovine CC8 strains were specifically associated with the

presence of a truncated SSC cassette, which was devoid of the

mecA gene. Thus, the nucleotide sequence of this cassette was

further extracted and annotated from the preliminary draft

chromosomal sequence of strain M186, and named SCCM186.

After assembly of the reads generated by Illumina with

SOAPdenovo and GapCloser, we obtained 129 contigs ranging

from 1,000 to 674,164 bp in length. To map SCCM186, we sought

for the orfx gene, which precedes the insertion site upstream of

SCC cassettes (28). orfx was localized on a single contig of

277,076 bp in length. A ca. 40,000 bp fragment, starting with the

first nucleotide of orfx (i.e. designed as position one), was extracted

from this contig, in which we further localized the chromosomal

15 bp direct repeats attL and attR that typically flank SCC cassettes

[44]. These were found at nucleotide positions 462–476

(AGAAGCTTATCATAA) and 30,741–30,755 (AGAGGCG-

TATCATAA). Thus, the deduced length of SCCM186 was

30,279 bp and contained 26 potential ORFs (Figure 2 and

Table 2). Based on its ORF sequences, SCCM186 appeared as a

composite cassette formed by three distinct regions. From the 59 to

39 ends, the first region was composed of six ORFs, of which one

(orf1) encoded for a potential new LPXTG-protein harboring a

LPDTG signature, which is described below. The five other

ORFs, encoded by orf2 to orf6, showed high degrees of amino acids

identity (i.e. from 86 to 98%) with ORFs regrouped on a unique

region encompassing SE0030 to SE0035 on the genome of S.

epidermidis strain ATCC12224 (Table 2). orf2, orf3 and orf4 coded

for three hypothetical proteins which were also found in USA300

(SAUSA300_0056, 0057, and 0059, respectively). Orf5 encoded

for a carboxypeptidase and orf6 for a putative penicillin-binding

protein 4.

The central region was composed of six genes showing a

conserved organization with the sausa300_0037 to _0042 genes of

the USA300 SCCmec. Within this region, orf8 and orf7 encoded for

the recombinases CcrA and CcrB, respectively. The ccrA and ccrB

genes were members of the ccr allotype II and both proteins

showed 90 and 92% identity, respectively, at the amino acid level

with corresponding proteins in USA300. The gene products of

orf9, orf10, and orf11 were annotated as hypothetical proteins with

very high (i.e. $96%) amino acid identity to USA300 proteins

SAUSA300_0039, 0040, and 0041, respectively. Eventually,

ORF12 of SCCM186, showed 99% identity to USA300_0042,

which could act as a transcriptional regulator.

The third region, starting with orf13, corresponded to a region

spanning from se0129 to se0141 in S. epidermidis ATCC 12224 with

only slight gene shuffling (se0126 and se0128) and two gene

deletions (se0127 and se0131). This region carried several

resistance determinants (see Table 2 for homologies at the amino

acid level), including a metallo-b-lactamase (orf13), a putative

cyanide-resistance gene (orf14) [45], a sulfite exporter (orf16), a

copper-resistance gene (orf17) [46], and an arsenic-resistance

operon (orf19 to orf24 corresponding to se0134 to se0139). This

region also carried a lipoprotein gene (orf18), which could be

involved in virulence [47,48,49].

Since resistance to chemicals such as arsenic may be pertinent in

the agricultural environment, we tested the susceptibility to sodium

arsenite of bovine CC8 isolates, carrying the new SCC cassette, as

compared to all other strains of the collection, which did not carry

the new SCC. The MIC of arsenite was 25 mM for all the bovine

CC8 isolates, including M186. In contrast, it ranged between 0.4

to 3 mM in all other strains, i.e. up to 8 times lower than in SCC-

positive strains.

New SCCM186-related LPXTG Protein
The deduced amino acid sequence of the orf1-encoded LPXTG-

protein of SCCM186 was composed of 1,151 amino acids and had a

theoretical molecular weight of ca. 124 kDa and a pI of 4.47 using

Compute pI/Mw tool (http://web.expasy.org/compute_pi/). A

search for conserved domains [50] identified an YSIRK type

signal peptide (YSIRKxxxGxxSIA, pfam04650) at position 23–35

and two G5 domains (pfam07501). Interestingly, the LPXTG-

protein harbored by SCCM186 showed significant homologies

(74% over the 400 amino acids at Cterminal) to SE0175, a

putative accumulation associated protein (AAP) found in S.

epidermidis ATCC 12224. Moreover, an LPDTG signature of S.

aureus adhesins was manually found at position 1112–1116.

Finally, the LPDTG motif was preceded by 25 proline-rich PE/

GQPGN repeats, which showed 95% of homology with a domain

harbored by a potential surface LPXTG-protein (GT20_0444) of

hypothetical function found in the environmental bacterium G.

thermoglucosidasius TNO-09.020.

Discussion

The present results indicate a clear segregation between S. aureus

strains from the CC8 cluster and typical bovine CCs. In addition,

they also show that some isolates of the supposedly human-only

CC8 cluster had permeated the bovine environment, as bovine

CC8 isolates resembled much more isolates of the human CC8

than isolates of the typical bovine clusters. These observations may

provide clues for the speculated jump of CC8 strains from human

to cattle [17].

Having assessed that 99% of the genetic differences observed

between the tested isolates resided in MGEs, we found that several

of them were not discriminative at all, because they were not

systematically represented in particular clusters. On the other

hand, a group of MGEs appeared to be present in all strains, but

demonstrated discrete differences in gene contents between CC8

isolates and isolates from typical bovine CCs. These included the

genomic islands vSaa and vSab, which are believed to have

evolved with S. aureus since a long time, and are present in all the

strains sequenced so far [38]. In our study, both islands adopted

clear patterns that differentiated the CC8 group (including human

and bovine strains) from typical bovine CCs. This suggested that

both vSaa and vSab emerged from a common ancestor and

further evolved divergently in either the human or the bovine

environment. Hence, the fact that bovine CC8 isolates shared very

similar vSaa and vSab with human CC8 isolates, supported the

hypothesis that they were originally human, and had jumped into

cattle at a more recent occurrence in time. Moreover, this

hypothesis was further supported by the fact that typical SaPIbov3

homologs were strikingly absent in CC8 isolates. Indeed, typical

genes of this island were recently reported to discriminate S. aureus

isolated in cattle with mastitis from human clinical strains [42].

Additional MGEs helped determine even more specific

differences within the human and bovine CC8 isolates. These
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were exemplified by b-hemolysin converting prophages and a new

composite SCC cassette. b-hemolysin converting prophages were

present in the two CC8 sub-clusters Ia and Ib, which contained a

mixture of human and bovine strains, but were absent from the

bovine-only CC8 sub-cluster Ic, as well as from all the typical

bovine CCs. This was highly reminiscent of recent studies on S.

aureus jumps between human and small ruminant, poultry, and pig

[15,22,23]. In all cases the postulated human to animal jump was

associated with the loss of b-hemolysin converting prophages from

the human strains, along with their establishment in animals. Since

such prophages disrupted the S. aureus chromosomal hlb gene,

encoding for hemolysin b it was proposed that this toxin was either

unnecessary for persistence of S. aureus in humans, or even

detrimental for it. On the other hand, it could be advantageous in

animals [19]. Accordingly, the finding that human-derived CC8

isolates lose b-hemolysin converting prophages upon transition to

becoming bovine-adapted is a strong evidence of a significant role

of b-hemolysin in the process of host adaptation in cows.

Likewise, adaptation of S. aureus to a new host is frequently

associated with the acquisition of new genetic determinants such as

pathogenicity islands, additional prophage(s), or new SCC islands

[15,22,23]. In the present observation, the bovine CC8 isolates

have acquired additional features that possibly helped them settle

in their new environment. This was substantiated by the the new

mec-negative SCC which was present only in bovine CC8 isolates,

but never in human CC8 or typical bovine CCs. This SCC was

reminiscent of the SCCmec acquired by porcine S. aureus CC398

[15,22,23], as it also carried genes conferring resistance to toxic

agents (e.g. arsenic and copper). In the strains described herein,

the MIC of sodium arsenite was uniformly 25 mM for all strains

harboring the new SCC element, as compared to #3 mM for all

strains that were devoid of it. This observation indicates that all

SCC+ strains carried a SCC equipped with a functional arsenic-

resistance operon that could represent an asset for survival in the

agricultural milieu. Although the new SCC shared the same ccrAB

allotype II with the SCCmec of USA300 and S. epidermidis ATCC

12228, it was a composite element composed of homologs to

regions found in S. aureus, S. epidermidis and environmental bacteria.

This chimeric construction indicates that it was not just the

descendant of an existing human SCCmec parent, but rather de novo

(re)-constructed from parts of different genomes, most likely in the

rural environment.

Of highest interest, was the fact that it carried a gene encoding

for a new LPXTG protein of unknown function, which was partly

homologous to a protein found in the environmental bacterium G.

thermoglucosidasius TNO-09.020 [51]. The presence of this LPXTG-

protein may well be explained by horizontal gene transfer from a

Geobacillus sp., a genus known as potential milk contaminant

[52]. S. aureus LPXTG proteins are involved in various functions,

including host colonization in which they play crucial roles in

bacterial adhesion to host tissues, and are therefore termed

adhesins [53]. The presence of a signal peptide which is found in

many staphylococcal surface proteins, and two G5 domains to

which a N-acetylglucosamine binding function has been attributed

[54], strongly suggests an adhesin function for this protein. This

possibility is reinforced by the significant homology with a S.

epidermidis AAP. Indeed, such proteins have been shown to play

major roles in the accumulation of S. epidermidis on polymer

surfaces, and thus biofilm formation [55,56].

Taken together, the present work is an additional illustration of

the adaptability of S. aureus to various hosts and the subtlety of the

biological tools underlying it. We obtained convincing evidences

supporting the human to bovine jump scenario of S. aureus CC8

rather than the contrary. We therefore propose that bovine CC8

strains originated from human CC8 strains following a scenario

depicted in Figure 3. This raises several academic and public

health issues. One is the contribution of the new SCC to bovine

colonization and/or infection, and whether it may definitively

hold the bovine CC8 strain in the bovine milieu. Another is

whether this new island could acquire a mecA/mecRI complex and

further spread methicillin resistance both in cattles and humans.

Such a precedent recently occurred in the swine-related MRSA

CC398, which first jumped from human to pig and then jumped

back equipped with SCCmec. In view of this case, bovine CC8

strains might well be a new threat for human and veterinary

medicine, which deserve concern and preventive control.
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