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In the absence of oxygen human life is measured in minutes. In the presence of oxygen, normal meta-
bolism generates reactive species (ROS) that have the potential to cause cell injury contributing to human
aging and disease. Between these extremes, organisms have developed means for sensing oxygen and
ROS and regulating their cellular processes in response. Redox signaling contributes to the control of cell
proliferation and death. Aberrant redox signaling underlies many human diseases. The attributes
acquired by altered redox homeostasis in cancer cells illustrate this particularly well. This teaching
review and the accompanying illustrations provide an introduction to redox biology and signaling aimed
at instructors of graduate and medical students.
& 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. Oxidative stress preceded oxygen metabolism. A phylogenetic tree developed from sequence analysis of ribosomal RNAs [1,2]. The first semblance of life is at the base
of the tree and is referred to as the last universal common ancestor, or LUCA. Oxygen levels in the atmosphere did not increase appreciably until the appearance of the
cyanobacteria. Yet, LUCA had genetic material encoding for antioxidant defenses.
From Knoll A.H. (1999) Science 285: 1025–1026; http://www.sciencemag.org/content/285/5430/1025. Reprinted with permission from AAAS.
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thinking is that these enzymes became necessary only when cells
had to protect themselves from increased levels of reactive oxygen
species (ROS) that were produced as by-products of respiration.
Results from the quest for the earliest form of life on earth chal-
lenge this assumption. With modern sequencing technology,
rRNAs from multiple species have been compared and used to
construct a phylogenetic tree based on molecular rather than
morphological similarities between organisms (Fig. 1). The tree has
three domains: Bacteria, Archaea and Eucarya [1,2]. At the base of
the tree is the last universal common ancestor (LUCA), which is
Fig. 2. Oxygen sensing and signaling in LUCA and modern-day organisms. LUCA had a he
number of regulatory systems that respond to oxygen, hydrogen peroxide or superox
superoxide (SoxR/SoxS) or hydrogen peroxide (OxyR, PerR) and regulate gene express
proteins with one acting as the sensor and subsequently changing the location, activity
shown to participate in different aspects of redox signaling.
estimated to have appeared 3.5–4 billion years ago. Carl Woese
postulates that LUCA was not a single organism but a community
of primitive entities with a high frequency of lateral gene transfer
[3]. Collectively, this community was genetically and metabolically
complex, containing the molecular origins of all present life forms.
Over time, the ancestors of three major domains emerged from
LUCA.

LUCA was present a billion years before the rise of oxygen
levels in the atmosphere. Yet, sequence analyses suggest that it
was capable of detoxifying ROS [4]. The lack of an ozone layer at
moglobin-like protein that could have bound oxygen. Modern-day organisms have a
ide. Bacteria have redox-sensitive transcription factors that interact directly with
ion in response. In eukaryote cells, redox regulation frequently involves multiple
or expression level location of a regulatory protein. The listed proteins have been

http://www.sciencemag.org/content/285/5430/1025
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the time of LUCA would have resulted in approximately thirty
times more ultraviolet radiation reaching the earth’s surface.
Radiation splits water into ROS. With a hemoglobin-like molecule
to bind the small amount of oxygen present in the atmosphere and
catalase and superoxide to detoxify ROS, LUCA was protected from
oxidative damage. Importantly, LUCA teaches us that the ability to
respond to oxygen, hydrogen peroxide and superoxide is ancient
and was present well before the increase in atmospheric oxygen
and evolution of aerobic respiration.
Interaction of modern-day organisms with oxygen-derived
species

Modern day organisms have a number of regulatory systems
that respond to changing levels of oxygen, hydrogen peroxide or
superoxide (Fig. 2). The difference in structural complexity
between unicellular and multicellular organism is accompanied by
a difference in the complexity of these systems [5]. It could be
argued that to a certain extent, bacteria respond to ROS primarily
to protect themselves from potential damaging effects of these
species. As relatively small, single-celled life forms, bacteria ben-
efit from the ability to respond quickly to an increased level of ROS
in the environment. Thus, bacteria use transcription factors that
are modified by ROS to regulate genes that function to protect
against oxidative stress.

In eukaryotic cells, redox regulation frequently involves mul-
tiple proteins with one acting as the sensor. The more complex
systems seen in eukaryotes reflect evolution of redox signaling
pathways, in addition to protection against oxidative stress. Oxi-
dation (or reduction) of sensor proteins leads to changes in the
location, activity or expression level location of other key reg-
ulatory molecules [5]. An example of this is regulation of protein
turnover and cytoplasmic-nuclear trafficking as seen with the IκB
kinase/NF-κB or KEAP/NRF2 [6] protein pairs. A multi-component
system allows for greater flexibility in light of eukaryotic species
having cells with multiple compartments and the higher level
organization (i.e., different cell and tissue types) in multicellular
eukaryotes.
Redox signaling in Bacteria

Bacteria response to increasing levels of superoxide using two
proteins, SoxR and SoxS, that function in tandem to regulate gene
expression [7]. SoxR acts as a sensor through a mechanism
involving oxidation of an iron–sulfur group in the protein. Oxi-
dation increases SoxR-mediated transcription of the SoxS gene by
approximately 30-fold [8]. Genes regulated by SoxS function to
remove superoxide and repair oxidative damage. The bacterial
response to an increasing level of hydrogen peroxide involves the
oxidization of critical cysteine residues in the OxyR and PerR
transcription factors. Oxidation alters the proteins’ activation state.
These proteins have been most well-characterized in Escherichia
coli and Bacillus subtilis, respectively [9–11]. Both regulate genes
encoding antioxidant defense proteins (e.g., catalase and peroxir-
edoxin), but with OxyR functioning as an activator of gene tran-
scription and PerR as a repressor. Oxidation of Cys-199 in OxyR
leads to the formation of an intramolecular disulfide bond with
Cys-208 and, as a consequence, structural remodeling of the reg-
ulatory domain. The transcription factor is thereby activated to
recruit RNA polymerase. Redox regulation of PerR involves a
metal-coordinated cysteine residue. The metal group (Fe or Mn) is
essential for DNA-binding. A structural change in the protein upon
oxidation of the critical cysteine by hydrogen peroxide causes
release of the metal group followed by release of the PerR protein
from sites of gene repression.
Redox signaling in Eucarya

Distinct chemical properties of ROS

A primer on redox biology and signaling in eukaryotes might
well begin with a discussion of the chemical properties of the
different ROS. These have important ramifications for signal
transduction [12–14]. The hydroxyl radical is the most reactive,
giving it the shortest half-life in tissues (10�9 s) [15]. It oxidizes
virtually any cell component that it encounters and is the primary
cause of toxicity due to oxidative damage. Due to this reactivity
and lack of specificity, the hydroxyl radical is not thought to have a
signaling role in cells. The anionic charge on superoxide limits its
diffusion through membranes. Han et al. have provided evidence,
however, that superoxide can be transported frommitochondria to
the cytoplasm through the voltage-dependent anion channel
(VDAC) [16]. Superoxide has a high affinity for iron–sulfur clusters
in proteins and reacts with these at rates limited only by diffusion.
This can release free iron and promote structural changes to alter
protein activity. In solutions of purified proteins, superoxide reacts
with cysteine residues to generate a thiyl radical [17]. A sub-
sequent reaction of the thiyl radical with oxygen would regenerate
superoxide that then dismutates to form hydrogen peroxide. In
vivo, the rapid rate of spontaneous or enzyme-catalyzed dis-
mutation of superoxide to hydrogen peroxide makes it unlikely
that oxidation of protein thiols by superoxide is used for redox
signaling. Hydrogen peroxide is the most stable ROS, with an
estimated half-life in cells of approximately 1 ms. As a nonpolar
molecule, it can diffuse through membranes. Membrane transport
of hydrogen peroxide is further facilitated by aquaporin channels
[18,19]. Thus, chemical considerations point to hydrogen peroxide
as the major ROS involved in redox signaling in eukaryotes.

Cellular targets of ROS

Differences between superoxide and hydrogen peroxide are
further reinforced through an appreciation of their cellular targets
(Fig. 3). As mentioned above for the SoxR/S system in Bacteria, one
target of superoxide is iron–sulfur clusters in proteins as is seen
with superoxide-mediated inactivation of the mitochondrial
enzyme, aconitase [20]. Other iron–sulfur proteins are involved in
DNA replication, transcription and repair [21]. Superoxide can
react with nitric oxide to produce peroxynitrite, with various
sequelae [22]. The primary target of redox signaling by hydrogen
peroxide is cysteine residues in proteins, as discussed further
below.

Reversibility and specificity in redox signaling

One rule in signal transduction pathways is that the reactions
should be reversible; that is, the signaling components have on
and off states. Efforts to elucidate redox signaling pathways have
focused on oxidation of the amino acid cysteine, as this can be
reversed in contrast to oxidation of many other amino acids [12].
The two electron oxidation of cysteine residues by hydrogen per-
oxide generates sulfenic acid (Fig. 3). This intermediate can go on
to form inter- or intra-molecular disulfides or glutathionylated
proteins. Tyrosine phosphatases are well-recognized targets of
hydrogen peroxide [23]. These proteins generally turn off kinase
signaling pathways and thus, their inactivation can result in con-
stitutive signaling.



Fig. 3. Targets of superoxide versus hydrogen peroxide in cells. One source of ROS in cells is NADPH oxidases (Nox). These proteins transfer electrons from a NADPH on one
side of the membrane to oxygen on the other, generating the superoxide anion radical. The negative change on superoxide precludes diffusion through membranes; voltage
dependent anion channels (VDAC) can facilitate transfer. Superoxide reacts readily with iron–sulfur groups in proteins. Its reaction with nitric oxide produces peroxynitrite
(ONOO�). Interaction of peroxynitrite with proteins results in tyrosine nitration or S-glutathiolation. Spontaneous or enzyme-mediated dismutation of superoxide generates
hydrogen peroxide. Although hydrogen peroxide can diffuse through membranes, aquaporin channels (AQP) increase the rate of transfer. Two electron oxidation of a cysteine
residue in proteins by hydrogen peroxide generates a sulfenic acid group. Subsequent reactions lead to the formation of inter- or intra-molecular disulfides, or glutathio-
nylated proteins.
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A second rule in signal transduction pathways is specificity.
Central questions in the redox field with regards to this rule are:
(1) what proteins are targeted by ROS to initiate a signaling
pathway and (2) how is specificity achieved? It is worth empha-
sizing one key difference between redox signaling and traditional
signal transduction pathways [13]. The latter begin with a ligand
(e.g., growth factors, cytokines or steroid hormones) binding to a
surface or intracellular receptor. This is a non-covalent interaction
of large molecular structures: a lock and key mechanism. In con-
trast, redox signaling is initiated at the atomic level through a
covalent interaction; hydrogen peroxide reacts with the sulfur
group of a specific cysteine residue. The size of the cysteine pro-
teome in cells gives a large number of potential receptors, thus
raising the question of how specificity can possibly be achieved.

The limitations placed by signaling criteria provide an answer
to how specificity is achieved in redox signaling: key interactions
are limited to those that are fast, reversible and target a specific
cysteine in the target protein [24]. The likelihood of the oxidation
of a unique cysteine residue in a particular protein depends on the
concentration of this residue/protein in the cell, the amino acids
surrounding the cysteine, the location of the protein relative to the
source of hydrogen peroxide generation and the rate of reaction
with hydrogen peroxide. Proteomic approaches indeed indicate
that specificity is achievable, as only a small fraction of proteins
become oxidized when cells are subjected to oxidative stress
[25–27].

Peroxiredoxins are a family of proteins that exhibit particularly
high reaction rate constants with hydrogen peroxide, on the order
of 105–107 M�1 s�1 [14]. They are present in cells at a relatively
high concentration for proteins of approximately 20 mM. Modeling
studies indicate that the unique protein environment around the
peroxiredoxin catalytic cysteine residue stabilizes the transition
state of the reaction to make these proteins particularly well-
designed sensors of hydrogen peroxide [28]. The high reactivity,
relative abundance and the distribution of peroxiredoxin family
members across different cell compartments fits the expected
criteria for proteins that participate in cell signaling pathways.

The location of potential downstream targets relative to the
source of hydrogen peroxide generation is a further component of
specificity in redox signaling. This is illustrated with the protein
tyrosine phosphatase, PTP1B, and redox signaling downstream of
ligand binding to tyrosine kinase receptors. PTP1B must compete
with peroxiredoxins as a target for hydrogen peroxide. The reac-
tion rate constants of hydrogen peroxide with Prx2 and PTP1B are
2�107 M�1 s�1 [29] and 20 M�1 s�1 [23], respectively. According
to the ‘floodgate model’ (Fig. 4), signaling is achieved through local
inactivation of peroxiredoxins [30,31]. Ligand binding to tyrosine
kinase receptors results in phosphorylation and inactivation of
Prx1. Overoxidation of a critical cysteine residue in Prx2 converts
the thiol group to sulfinic acid and inactivates this enzyme. As a
result, sufficiently high levels of hydrogen peroxide can accumu-
late to target signaling pathway proteins such as PTP1B.

ROS function at the start of life

In animals, ROS have important functions for life from the
moment of fertilization. Otto Warburg was a notable German
chemist/physiologist working on the embryology of sea urchins in
the early 1900s [32]. He observed a rapid rise in oxygen con-
sumption upon fertilization of the oocytes and reasoned this was
due to increased respiration needed for the ensuing embryogen-
esis [33,34]. Subsequent studies have determined that while some
oxygen is consumed in oxidative phosphorylation, the majority is
used to produce nanomolar concentrations of hydrogen peroxide
at the egg surface within minutes of fertilization [35]. This is
accomplished by the NADPH oxidase family member designated



Fig. 4. Redox signaling – specificity by location. In what has been called the floodgate model, apparent kinetic limitations of redox signaling are overcome and specificity is
achieved through close proximity of a signaling target and the source of hydrogen peroxide generation [30,181]. The floodgate model is shown here with protein tyrosine
phosphatase 1B (PTP1B) as the signaling target. Peroxiredoxins (Prx) are present at a relatively high concentration in cells and are very efficient at reducing hydrogen
peroxide, as compared to the rate of reaction for PTP1B and hydrogen peroxide. Sufficient hydrogen peroxide can accumulate to oxidize PTP1B, however, after Prx1 is
inactivated by phosphorylation downstream of receptor tyrosine kinase activation by growth factors (GF) and a critical cysteine residue in Prx2 is irreversible oxidized to
sulfinic acid (SO2H).
Reprinted by permission from Macmillian Publishers Ltd, Dickinson, BC and Chang C.J. (2011) Nature Chem. Biol. 7 (8):504-511; http://www.nature.com/nchembio/journal/
v7/n8/full/nchembio.607.html.

Fig. 5. An oxidative burst at the time of fertilization prevents polyspermy. Studies of sea urchin oocytes have measured an oxidative burst within moments of fertilization
[37]. Activation of the dual oxidase called Udx1 results in the generation of high local concentration of hydrogen peroxide. Proteins on the outer surface of the fertilized
oocyte became cross-linked, thus preventing entry of more than one sperm [39].
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Udx1 [36,37]. The hydrogen peroxide cross-links tyrosine residues
in proteins of the extracellular matrix [38]. The functional con-
sequence of the oxidative burst is that the fertilization envelope is
rapidly converted into a physical structure that initially prevents
entry of more than one sperm cell and then protects the devel-
oping embryo [39] (Fig. 5).

Redox signaling for proliferation

ROS function in signaling pathways for proliferation that are
triggered by growth factors. This was first appreciated for basic
fibroblast growth factor [40], platelet-derived growth factor [41]
and epidermal growth factor [42] signaling in chondrocytes, vas-
cular smooth muscle cells and epidermoid carcinoma cells,
respectively. The ROS signal is generated downstream of the
growth factor receptor and upstream of mitogen-activated protein
kinase (MAPK) pathways [43]. Ras is an adaptor protein bridging
ligand-bound growth factor receptors and MAPKs (Fig. 6). It is
activated upon GTP binding and deactivated by hydrolysis of the
GTP.

Oncogenic forms of Ras (e.g., H-Rasv12) cause constitutive sig-
naling for proliferation, independent of the binding of growth
factors to their ligands. The mutations inhibit GTPase activity and
thus, keep Ras in its active state [44]. Transfection of NIH 3T3 cells

http://www.nature.com/nchembio/journal/v7/n8/full/nchembio.607.html
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Fig. 6. Redox signaling downstream of the Ras oncoprotein stimulates proliferation. Ras functions within signaling pathways for proliferation. It acts as a bridge between
growth factor receptors and downstream kinases that ultimately regulate gene transcription. Ras is activated by binding to GTP. Hydrolysis of the GTP turns Ras off. Cells
transformed with oncogenic forms of Ras (e.g., RasV12) can progress through the cell cycle in the absence of growth factors. These cells produce increased levels of superoxide
as the result of increased NADPH oxidase activity [45,46]. These findings were early evidence of redox signaling for proliferation and aberrant redox signaling in cancer cells.

Fig. 7. Oxygen and death – hypothesis on aging. Correlative data in support of the
free radical or oxidative stress [49] and rate of living [59] theories of aging are
obtained by comparing metabolic rate and superoxide production to the maximum
life-span of different species [56]. A long life-span is correlated with a lower
metabolic rate and low superoxide production. This fits the hypothesis that the loss
of function seen with aging is due to the accumulation of molecular oxidative
damage that ultimately results in cell death and aging of tissues.
From Sohal R.S. and Weindruch R. (1996) Science 273: 59–63; http://www.scien
cemag.org/content/273/5271/59. Reprinted with permission from AAAS.
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with H-Rasv12 leads to constitutive superoxide production [45]
(Fig. 6). This can be prevented by treatment of the cells with a
flavoprotein inhibitor, or superoxide dismutase, but not catalase.
This implicates an NADPH oxidase family member downstream of
oncogenic Ras. Indeed, overexpression of the NADPH oxidase,
Nox1 (also called mitogenic oxidase 1 or Mox1) confers cancer cell
phenotypes [46].

NADPH oxidases are widely expressed and could contribute to
redox signaling in many types of tissues (reviewed in [47]). The
family consists of seven members. Nox2 (originally called
gp91phox) is the catalytic subunit of the NADPH oxidase found in
phagocytes. It is notable for: (1) being the first of these enzymes to
be discovered and (2) setting a new paradigm that ROS can be
beneficial to cells [48]. The enzymes function as multi-protein
complexes. The core subunit transfers electrons from NADPH on
one side of the membrane to oxygen on the other side, thus
generating superoxide.

Redox signaling for death

The idea that free radicals are responsible for the gradual
decline in function seen across species, with the increasing age of
individuals, was first proposed by Denhan Harmon in 1956 [49].
His proposal was based on the idea of damage caused by the
hydroxyl radical. While the source of these was not known at the
time, he reasoned that respiratory enzymes were most likely
responsible. Denhan was not aware of cellular production of
superoxide and hydrogen peroxide through electron leakage from
the respiratory chain. That knowledge did not come until after the
discovery of superoxide dismutases in 1968 [50,51].

The idea that damage from ROS, as by-products of aerobic
respiration, contributes to aging continues to be debated as a
theory of aging [52,53]. Evidence in support of the theory includes
the strong correlation seen between metabolic rate or superoxide
production and maximum life-span of a species [54]. A long life-
span is correlated with a lower metabolic rate and low superoxide
production (Fig. 7). The life-span of the fruit fly, Drosophila mela-
nogaster, is extended 30% by genetically increasing levels of both
superoxide dismutase and catalase [55]. Caloric restriction has
been shown to extend life-span in every species in which it has
been tested, including rhesus monkeys [56,57]. Outcomes of
caloric restriction include a lower steady-state level of oxidative
stress and decreased oxidative damage accumulation with age.

http://www.sciencemag.org/content/273/5271/59
http://www.sciencemag.org/content/273/5271/59


M.M. Briehl / Redox Biology 5 (2015) 124–139130
A prediction of the free radical, or oxidative stress, theory of
aging is that manipulations that reduce oxidative damage will
extend life-span. As stated above, this prediction has been borne
out in studies of transgenic flies and of caloric restriction in var-
ious species. An extensive study with mouse models, however, has
resulted in many cases for which a change in the accumulation of
oxidative damage does not alter maximum life-span [53]. In these
experiments, transgenic mice were generated to express either
decreased or increased levels of CuZnSOD (encoded by Sod1),
MnSOD (encoded by Sod2), Gpx1, Gpx4 or Trx2. Additional
experiments examined combinations of gene knockouts:
(1) CuZnSOD and MnSOD (Sod1� /�/Sod2þ /�); (2) CuZnSOD and
Gpx1 (Sod1�/�/Gpx1�/�); (3) CuZnSOD and Gpx4
(Sod1� /�/Gpx4þ /�); (4) MnSOD and Gpx1 (Sod2þ /�/Gpx1þ /�);
(5) MnSOD and Gpx4 (Sod2þ /�/Gpx4þ /�), and (6) Gpx1 and Gpx4
(Gpx1þ /�/Gpx4þ /�). In each of these models, the mice showed
altered resistance to oxidative stress and a difference in the
accumulation of oxidative damage. For example, mice over-
expressing CuZnSOD were more resistant to paraquat toxicity and
overexpression of MnSOD resulted in decreased levels of protein
and oxidative damage with age. Despite these confirmations of
altered antioxidant defenses, no difference in longevity was seen
in 17 of the 18 models tested. Loss of CuZnSOD activity was the
only manipulation that affected aging; Sod1� /� mice have a 30%
reduction in mean and maximum life-span.

In the early 1900s, Rubner noted that different species expend a
similar amount of energy over their lifetimes [58]. Tissues of small
mammals such as mice use the energy allotment quickly and die
sooner, while large mammals such as elephants live long lives
expending the energy at a slow rate. This relationship forms the
Fig. 8. Differences in the susceptibility of pigeons versus rat cell membranes to oxidati
exemplified by the 7-fold greater longevity of pigeons versus rats, despite their similar
measured antioxidants defenses, reactive oxygen species and oxidative damage in seve
consistent, significant difference they observed is in a membrane peroxidation index in
From Montgomery MK, Hulbert AJ, and Buttemer WA. (2011) PLoS One. 6, e24138; http
basis of the rate of living theory of aging proposed by Pearl in 1928
[59]. The oxidative stress theory of aging provides a mechanism,
given that a high rate of metabolism speeds up the accumulation
of damage from ROS as by-products.

Studies of birds provide insight into the relationship between
ROS, the rate of aging and metabolism. Birds are an exception to
the rate of living rule. The slope of the line correlating maximum
life-span potential with body weight is similar for species of
mammals and birds, but it is shifted upwards for birds [60]. Rats
and pigeons have similar body weights, but maximum life-spans
of 5 and 35 years, respectively. Montgomery and colleagues car-
ried out an extensive comparison to gain insight into the 7-fold
difference in longevity for these two species [61]. They measured
multiple antioxidants defenses, ROS and markers of oxidative
damage in seven different tissues or isolated mitochondria. The
only consistent, significant difference is a lipid peroxidation index
showing that membranes in rat tissues are more susceptible to
oxidation than those in pigeons (Fig. 8). The variation in mem-
brane lipid composition across species may explain the longevity
of birds [62]. The findings from the study by Montgomery et al.
suggest that manipulations of antioxidant defenses in mammals
that do not alter lipid peroxidation rates will not extend life-span.

Moving from whole organisms to cells, there is evidence of
hydrogen peroxide signaling for death through the mitochondrial
apoptosis pathway. One mechanism involves the Src homology 2
(SH2) domain-containing protein called p66Shc. This protein is
splice variant of two cytoplasmic adaptor proteins, p52Shc and
p46Shc; the latter two proteins are involved in tyrosine kinase
pathway signaling for proliferation. P66 Shc has a different role in
the cell. P66Shc knockout mice have increased resistance to
ve damage. Species of birds do not conform to the rate of living theory of aging as
sizes. As a test of the oxidative stress theory of aging Montgomery and colleagues
n different tissues or isolated mitochondria from rats and pigeons [61]. The only
dicating that the cell membranes in rat tissues are more susceptible to oxidation.
://journals.plos.org/plosone/article?id¼10.1371/journal.pone.0024138.
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http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0024138


Fig. 9. Redox signaling for cell death mediated by p66Shc in mitochondria. Knockout mice that lack the p66Shc protein have increased longevity and accumulate lower levels
of markers of oxidative damage with age [63]. Cells from p66Shc knockout mice are resistant to apoptosis induced by a variety of stimuli. Studies of p66Shc have led to this
model of mitochondrial-mediated apoptosis [65]. An apoptotic trigger causes p66Shc to dissociate from a multiprotein complex in the intermembrane space. It then oxidizes
cytochrome c to generate hydrogen peroxide. Increased hydrogen peroxide levels ultimately affect the permeability of the outer mitochondrial membrane, leading to
apoptosis.
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oxidative stress, live 30% longer under laboratory conditions and
accumulate lower levels of oxidative damage with age [63,64].
Cells from p66Shc null mice are resistant to apoptosis induced by
different stimuli. Further studies have led to a model whereby
apoptotic signals cause p66Shc to dissociate from a multi-protein
complex in the intermembrane space [65] (Fig. 9). It then oxidizes
cytochrome c to generate hydrogen peroxide. Increased hydrogen
peroxide levels ultimately affect the mitochondrial permeability
transition pore, leading to apoptosis.
Fig. 10. Cardiolipin oxidation and cytochrome c release in the mitochondrial pathway
involves cytochrome c and the mitochondrial-specific phospholipid cardiolipin. Unde
interactions. In the presence of hydrogen peroxide, a tighter interaction develops. This p
the substrate. Oxidized cardiolipin has a reduced affinity for cytochrome c, which then
reorganized during apoptosis. Oxidized cardiolipin appears in the outer mitochondrial
cytochrome c and other apoptotic proteins from the mitochondrial intermembrane spa
In the intrinsic pathway to apoptosis, hydrogen peroxide can
mediate cytochrome c release through a mechanism involving the
mitochondrial-specific, anionic lipid, cardiolipin (Fig. 10). An early
hint at this mechanism was the report from Vogelstein’s labora-
tory that p53-mediated apoptosis involved oxidation of mito-
chondrial components [66]. Cytochrome c is tethered to the outer
surface of the inner mitochondrial membrane through hydrostatic
and hydrophobic interactions with cardiolipin [67,68]. As levels of
hydrogen peroxide increase and cardiolipin is redistributed during
to apoptosis. A second, complementary model for redox signaling for apoptosis
r normal conditions, cytochrome c binds cardiolipin through loose, electrostatic
artially unfolds the cytochrome c and converts it to a peroxidase with cardiolipin as
becomes soluble in the intermembrane space. Mitochondrial membrane lipids are
membrane and attracts the pro-apoptotic protein tBID, thus facilitating release of
ce.
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apoptosis, this results in partial unfolding of cytochrome c and its
conversion to a peroxidase [69,70]. Cardiolipin is the target of the
peroxidase activity [71]. Cytochrome c has a reduced affinity for
oxidized cardiolipin and is thus released into the inter-membrane
space [72,73]. Additional consequences of cardiolipin redistribu-
tion during apoptosis are the accumulation of this lipid at contact
sites between the outer and inner membranes and increased
negative charge of the outer membrane [74]. This facilitates the
recruitment of pro-apoptotic proteins and opening of channels for
the release of cytochrome c into the cytosol [75,76].
Fig. 11. Oxygen, ROS and cancer stem cells. Hypoxia and aberrant activation of
kinase signaling pathways in cancer lead to HIF-1 activation. Targets of the HIF-1
transcription factor include the NODAL, NOTCH and MYC genes that support stem
cell properties. Cancer stem cells can self-renew or differentiate. These abilities
allow cancer stem cells to populate tumors and are thought to be key for the
metastatic spread of primary cancers.
Redox biology and signaling in cancer

Aberrant regulation of proliferation, migration and invasion

Cancer is a disease marked by dysregulation of many cellular
processes. Early evidence that redox biology is perturbed in this
disease was the finding that tumor cell lines established from
different histological types of cancer show elevated constitutive
production of hydrogen peroxide [77]. The study shows that
although the maximal rate of production in the tumor cells is less
than what is seen after activation of NADPH oxidase in phagocytic
cells, the cumulative amounts released by tumor cells over 4 hours
surpasses the amount produced during an oxidative burst in
activated phagocytes. Altered levels of antioxidant defenses
[78,79] and higher levels of 8-hydroxy-2′-deoxyguanosine [80,81],
an indicator of oxidative damage to DNA, are found in cancer tis-
sues compared to adjacent, normal tissue. Mutations resulting
from oxidative damage to nuclear or mitochondrial DNA can
contribute to carcinogenesis [82–85].

As could be expected from the role of hydrogen peroxide in
signaling for cell proliferation and cell death, the redox changes
seen in cancer cells can impact these processes. Cancer pheno-
types of RasV12-transformed cells include anchorage-independent
growth, an accelerated rate of proliferation and the ability to form
tumors in immunocompromised mice [86]. These properties are
seen in cells transfected with Nox1 [46], consistent with increased
expression of Nox1 in cells carrying the RasVal12 mutation [87].
Genetic knockdown of Nox1 is sufficient to reverse the cancer cell
phenotypes [46]. The conclusion is that redox signaling down-
stream of Nox1 is critical for transformation by oncogenic RasV12.
This signaling may involve the regulation of proteins involved in
cell fate decisions, including NF-κB, AP-1 and TP53 [5].

Alterations in antioxidant defenses can allow for aberrant
redox signaling in cancer cells. This has been demonstrated for
MnSOD, the superoxide dismutase enzyme that is found in the
mitochondrial matrix. MnSOD is encoded by the SOD2 gene at
chromosome 6q25 [88]. Melanomas frequently have deletions of
the long arm of chromosome 6 [89,90]. When the full chromo-
some 6 is restored through microcell hybridization with a mela-
noma-derived cell line, properties of transformed cells are
diminished or lost [91]. These properties include morphological
features of less differentiated cells and the ability to form colonies
in soft agar and tumors in athymic mice. Transfection of melanoma
cells with SOD2 alone achieves the same outcome [92]. Analogous
findings have been made with SV40-transformed lung fibroblasts
[93]. These studies suggest that when MnSOD levels are abnor-
mally low in cancer cells, increasing this enzyme can suppress
tumor growth. In this case, an elevated level of hydrogen peroxide
may push the cells into senescence [94,95].

An increase in MnSOD expression can confer on cells the
deadliest of cancer properties: the ability to invade and metasta-
size. The majority of cancer deaths can be attributed to metastatic
disease [96]. Melendez and colleagues have investigated the role
of MnSOD in tumor cell migration and invasion through gene
transfections with SOD2 in the absence or presence of catalase
[97]. The researchers assessed the cells’ ability to migrate using a
scratch assay, in which movement from a monolayer into a cell-
free region is measured. The results show that the extent of
migration is positively correlated to the amount of MnSOD activity
in the cell population. Furthermore, cells at the leading edge of the
migrating cells show the highest MnSOD expression. The SOD2
transfectants are also more invasive, as demonstrated with a
transwell assay. This assay measures cell movement through a
matrix in response to growth factors as a chemoattractant. Similar
results are seen with fibrosarcoma cells and a bladder tumor cell
line [97]. When the cells are transfected with SOD2 and catalase,
however, they exhibit similar migratory ability and invasiveness as
control cells transfected with an empty vector. The latter finding
indicates that increased hydrogen peroxide levels in the SOD2
transfectants enhances the cells ability to migrate and invade. This
can be achieved by upregulation of collagenases that are secreted
from cells and break down tissue stroma [98,99].

It may seem paradoxical that decreased levels of MnSOD favor
proliferation of cancer cells, while an increased level allows for
cancer cell migration and invasion. Dhar and St. Clair provide a
solution to this paradox; MnSOD is regulated by different factors
that may each change during cancer progression [100]. Tran-
scription factors that regulate SOD2 include NF-κB [101,102], Sp1
[103], p53 [104,105] and FOXO3 [106]. The expression or activity of
these can be dysregulated during cancer as the result of mutation,
chromosomal rearrangement or loss, and epigenetic alterations.
NF-κB and p53 are redox-sensitive transcription factors [107].
Changes in the redox environment during cancer progression may
thus impact their regulation of SOD2. MnSOD is regulated by
cytokines [108,109] that may be present at various levels,
depending on the inflammatory cells present in the tumor
microenvironment. The mechanism of MnSOD gene repression in
early stages of cancer may involve epigenetics. Hypermethylation
of the gene promoter has been reported in breast [110] and pan-
creatic cancer [111] along with multiple myeloma [112]. In later
stages of cancer, histone hyperacetylation could allow for aber-
rantly high expression of MnSOD.

Oxygen, ROS and cancer stem cells

A relatively new research area is focused on cancer stem cells.
These are functionally defined as the subset of tumor cells that
establish new tumors when transplanted into immunocompro-
mised mice [113]. Similar to normal stem cells, they are
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undifferentiated but possess the relatively rare ability to self-
renew or to differentiate. Hypoxia-inducible factors (HIF-1α and
HIF-1β) are master regulators of stem cell properties [114]. These
transcription factors are activated by aberrant growth factor-
mediated signaling [115,116] or the hypoxic microenvironment
[117] in cancer. Proteins whose expression is regulated by HIF-1
and that confer a stem cell phenotype include NODAL, NOTCH and
MYC [118] (Fig. 11). Lower ROS levels have been reported in cancer
stem cells, which may explain their resistance to oxidative stress-
induced DNA damage [119].

Aberrant regulation of death

Evidence that dysregulation of redox signaling for cell death
contributes to cancer comes from studies of the B cell lymphoma
protein-2 (BCL-2). As the name implies, BCL-2 was discovered in B
cell lymphomas [120]. A t(14;18) translocation in these lympho-
mas places the coding region of the gene under the control of an
immumoglobulin gene promoter, thereby leading to aberrantly
high levels of the protein. BCL-2 is the first oncogene to be dis-
covered to work by inhibiting cell death, rather than promoting
growth [121]. Early studies of BCL-2-overexpressing cells showed
decreased lipid peroxidation after exposure to apoptotic triggers
[122] and higher, basal levels of glutathione [123]. Bcl-2 knockout
mice showed signs of chronic oxidative stress [124]. This led to the
idea that BCL-2 functions like an antioxidant. The picture that has
emerged from further studies is that mitochondrial ROS produc-
tion is increased in cells that overexpress BCL-2 [125,126]. The
cells adapt by increasing antioxidant defenses, making them
resistant to oxidative stress [125,127].

BCL-2 is part of a family of proteins that regulate apoptosis via
protein:protein interactions [128]. It localizes to nuclear, endo-
plasmic reticular and mitochondrial membranes [129]. The mito-
chondrion is thought to be the major site of action for BCL-2.
There, it interacts with pro-apoptotic family members (e.g., BAX,
Fig. 12. Redox-based mechanism for BCL-2’s anti-apoptotic function. BCL-2 loca-
lizes to different cellular membranes. In mitochondria, it interacts with pro-
apoptotic BCL-2 family members to inhibit apoptosis. Under normal, basal condi-
tions, BCL-2 also interacts with the COX Va subunit complex to increase electron
flow, oxygen consumption and ROS levels. This results in a pro-oxidant state that
promotes proliferation, while leading to adaptations that allow the cells to survive
under increased oxidative stress. In contrast, under conditions of even greater
oxidative stress, BCL2 inhibits the COX Vb subunit, to lower ROS production to safe
levels that will not trigger apoptosis [137].
Reproduced with permission from Krishna S., Low I.C., and Pervaiz S. (2011) Bio-
chem. J. 435, 545–551. © the Biochemical Society.
BAK) to control outer membrane permeability and the release of
cytochrome c and other mitochondrial intermembrane space
proteins [130–133]. In the cytoplasm these proteins mediate cell
destruction through activation of the caspase family of proteolytic
enzymes. Caspases are distinguished by a critical cysteine residue
in their active site, cleavage of substrates after an aspartate residue
and a large set of target proteins that function to maintain the cell
cytoskeleton, integrity of the DNA and play diverse roles in cell
regulation [134].

A series of studies by Pervaiz and colleagues provides a model
for how BCL-2 may confer resistance to oxidative stress and
apoptosis [135–137] (Fig. 12). Under normal, non-stressed condi-
tions, overexpression of BCL-2 in CEM leukemia cells, HCT116
colon carcinoma or HK-1 and C666-1 nasopharyngeal carcinoma
cells increases the activity of cytochrome c oxidase (COX). COX is
the terminal acceptor in the electron transport chain. It can
influence the rate of ATP production by mitochondrial respiration
and of ROS generation as the result of electron leakage from
respiratory complexes I or III. The increased COX activity in BCL-2
overexpressing cells is associated with elevated oxygen con-
sumption and superoxide generation [135]. The underlying
mechanism involves enhanced transfer of the nuclear-encoded
COX Va and Vb subunits to mitochondria [136]. This study shows
that BCL-2 physically interacts with COX Va and thus may act as its
chaperone. Intriguing findings were the differences seen when the
cells were subjected to oxidative stress due to hypoxia, glucose
deprivation or serumwithdrawal [135]. BCL-2-overexpressing cells
responded by decreasing COX activity, which kept ROS at a lower,
sub-lethal level. In contrast, the response seen when cells with
normal levels of BCL-2 were subjected to these stresses was
increased COX activity and ROS levels.

Elucidating the roles of BCL-2 family members in mitochondria
may uncover secrets as to why some cancer patients are cured
with current, standard-of-care chemotherapy while others suc-
cumb to the disease due to chemoresistance [138]. Pre-treatment
specimens from patients with multiple myeloma, leukemia and
ovarian cancer show differences in susceptibility to the mito-
chondrial pathway to apoptosis [139]. Sensitivity to apoptosis is
measured in vitro by incubating tumor cells with peptides from
pro-apoptotic BCL-2 family members and monitoring mitochon-
drial depolarization. A high percent of depolarization indicates
mitochondria that undergo apoptosis easily. A significant, positive
correlation is seen between apoptosis susceptibility and the
patients’ responses to the standard chemotherapeutic regimens
for these cancers. Chemotherapy is most effective in those patients
whose tumor cells are close to the threshold (i.e., primed) for
apoptosis. Although the basis for the different sensitivities of
tumor cell mitochondria to apoptosis has not been determined,
the mechanism could well have a redox component.

Aberrant regulation of metabolism

Cancer cells alter their metabolism to support growth. This
metabolic reprogramming takes a number of forms, depending on
the particular cancer and cancer subtype [140]. In general, though,
the cellular redox environment is impacted along with pro-
liferative capacity. Otto Warburg was the first to note that cancer
cells have a high avidity for glucose and produce lactic acid even in
the presence of oxygen [34]. In this initial report, Warburg pos-
tulated that cancer cells relied on glycolysis due to defective
respiration. Near the end of his career he modified his position,
acknowledging that the idea of damaged respiration in cancer cells
had led to “fruitless controversy” [32]. Current evidence indeed
indicates that mitochondria still function in cancer cells but, in
addition they rely on aerobic glycolysis to support the pentose
phosphate pathway and glutamine to sustain the TCA cycle



Fig. 13. Cancer cells are metabolic opportunists. Differentiated or quiescent cells need a higher proportion of ATP than building blocks for nucleic acids, proteins and lipids.
Therefore, they rely on the more energetically favorable oxidative phosphorylation. Cancer cells need to balance their need for ATP with the requirement to duplicate the
cellular contents before dividing and maintain NADPH levels for reductive biosynthesis and to counter oxidative stress. Tapping into multiple metabolic pathways provides a
better balance of ATP and precursors for growth. These pathways include aerobic glycolysis and glutaminolysis.
Adapted by permission from the American Association for Cancer Research: Cantor JR and Sabatini DM, cancer cell metabolism: one hallmark, many faces. Cancer Discov.,
2012, 2:881-898; http://dx.doi.org//10.1158/2159-8290.CD-12-0345.

M.M. Briehl / Redox Biology 5 (2015) 124–139134
[141,142]. The latter process is called glutaminolysis or anaplero-
sis. The oxidative arm of the pentose phosphate supplies NADPH.
Overall, the metabolic rewiring of cancer cells provides precursors
for growth (i.e., nucleotides, amino acids and lipids) along with
NADPH to counter a more oxidized redox state [143] (Fig. 13).

The metabolic changes in cancer cells are brought about
through oncogene activation and loss of tumor suppressors. The
MYC oncoprotein increases expression of the enzyme glutaminase
synthase 1 [144,145], which deaminates glutamine to produce
glutamate. This reaction is the first step in glutaminolysis and it
also supplies glutamate for the synthesis of glutathione. One
function of the tumor suppressor p53 is to repress transcription of
genes encoding glucose transporters [146]. In the cytoplasm, p53
binds to glucose-6-phosphate dehydrogenase and inactivates it
[147]. This enzyme catalyzes the rate limiting step in the oxidative
arm of the pentose phosphate. Thus, the loss of p53 can counter
the more oxidized redox environment in cancer cells through
increased glucose uptake and synthesis of NADPH.

Mitochondria and metastatic potential

Other studies have documented the contribution of mito-
chondria to metastases. The ability of cancer cells to metastasize
in vivo is correlated with formation of colonies on soft agar media
in vitro (i.e., anchorage-independent growth) [148]. Treatment of
Ras-transformed cells with mitochondrially-targeted nitroxides
that scavenge superoxide inhibits anchorage-independent growth
[149]. Mori and colleagues used cancer cell lines to develop a gene
expression signature of anchorage-independent growth; meta-
static disease in melanoma, breast and lung cancer was sig-
nificantly correlated with patients’ tumor specimens having this
signature [150]. The signature is enriched in genes whose products
are involved in the pentose phosphate pathway or are localized to
mitochondria. A critical role for mitochondria in metastasis is
further evidenced by studies of cybrids containing nuclear DNA of
one cell type and mitochondrial DNA of a second cell type [151].
Mitochondria from highly metastatic cells are able to confer this
ability onto a low metastatic potential cell type.

ROS and the hallmarks of cancer

A seminal review article by Hanahan and Weinberg was pub-
lished in the first issue of the journal Cell in the new millennium.
The authors persuasively present a case that “the vast catalog of
cancer genotypes is a manifestation of six alterations in cell phy-
siology that collectively dictate malignant growth” [152]. These
acquired capabilities are referred to as the hallmarks of cancer:
self-sufficiency in growth signals; insensitivity to anti-growth
signals; evading apoptosis; limitless replicative potential; sus-
tained angiogenesis, and tissue invasion and metastasis. While a
role for ROS or redox signaling in carcinogenesis was not discussed
in this review, sufficient evidence had accumulated for their role to
be recognized in an updated review published by the authors
[153]. An emerging hallmark added in the 2011 update is
deregulated cellular energetics. As described above, the altered
metabolism in cancer cells impacts redox homeostasis.

In addition to recognizing the functions that normal cells must
acquire to become malignant, it is important to understand the
means by which these capabilities are acquired. Hanahan and
Weinberg discuss enabling characteristics for carcinogenesis:
genomic instability and mutation, and tumor-promoting inflam-
mation [152,153]. Chronic inflammatory conditions, including
peptic ulcers [154], inflammatory bowel diseases [155] and
hepatitis [156] are associated with increased risks of cancer
developing in the affected tissue. A possible mechanism is that
inflammatory cells release ROS, which are mutagenic for the
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Fig. 14. Targeting redox signaling for cancer therapy. The efficacy of current cancer
therapies is limited by the presence of tumor cells with acquired resistance to
apoptosis or oxidative stress. A number of strategies for targeting the altered redox
biology in cancer cells are currently in development. In the current era of precision
medicine, novel redox-modulating therapies will be most efficacious when mat-
ched to the specific alterations in patients’ tumors that confer resistance to apop-
tosis and oxidative stress.
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resident cells [157]. Genomic instability ensues when cells lose the
ability to respond appropriately to DNA damage, as is seen with
loss of normal p53 function [158]. Ataxia-telangiectasia mutated
(ATM) kinase orchestrates cellular responses to DNA damage and
oxidative stress; the mechanism for sensing ROS involves dimer-
ization of 2 ATM monomers via a disulfide bond [159]. Inherited
mutations in the ATM gene preclude dimerization and lead to
genomic instability and an increased risk of cancer [160]. Thus,
loss of ATM function allows for a vicious cycle whereby the
inability of the cell to sense and respond to ROS leads to genome
instability and accelerated carcinogenesis.
Redox homeostasis: an old and emerging cancer target

Oxidative stress is one of the earliest mechanisms to be
exploited for cancer therapy. Following the discovery of radiation
around the turn of the last century, its damaging effects on tissue
was recognized and put to use for the treatment of cancer.
Radiation generates hydroxyl radicals and causes oxidative
damage in affected tissues. In the mid-part of the last century,
anthracyclines were discovered to be potent chemotherapeutic
drugs (reviewed in [161]). In cells, anthracyclines participate in
redox cycling reactions that generate ROS [162] and lead to oxi-
dative DNA damage [163]. This is thought to be the major
mechanism of cardiotoxicity [164], which is the dose-limiting side
effect of anthracycline treatment, although it is still debated as
mechanism of action in cancer cells [163,165].

As knowledge of aberrant redox homeostasis and signaling in
cancer cells grows, new approaches to redox-based chemother-
apeutics are being developed (reviewed in [166,167]). The
approaches can be broadly categorized as: (1) inhibiting anti-
oxidant defenses; (2) interfering with regulatory systems that are
used by cells to respond to oxidative stress and, (3) targeting
specific proteins that are responsible for altered redox homeostasis
or signaling. Examples in the first category include novel drugs
that inhibit SODs (e.g., ATN-224) [168–170] or deplete glutathione
(e.g., NOV-002 and imexon) [171,172]. Agents that target Nrf2 fit
into the second category [6]; aberrant Nrf2 activation appears to
be a strategy whereby cancer cells are protected from elevated
oxidative stress [173,174]. The third category includes drugs being
developed to antagonize BCL-2’s antiapoptotic function (e.g., ABT-
737) [175].
Future directions

Knowledge of redox biology provides students with insight into
mechanisms by which organisms use oxygen metabolites in the
control of life and death. The role of dysregulated redox biology in
all major human diseases, and not just cancer, makes this
knowledge an important aspect of physician training. For scientists
in training, much remains to be learned in the field of redox
biology and signaling. Some of the particularly promising research
areas to explore might include the cross-talk between kinase and
redox signaling pathways and the redox biology of stem cells. The
field is well-suited for interdisciplinary collaborations as expertise
in the chemistry of ROS needs to be integrated with knowledge of
protein targets at the molecular, cellular and systems biology level.
This is illustrated by the pursuit of novel redox-based agents for
cancer treatment. A frequently encountered idea is that agents can
be developed to create a redox environment in cancer cells that
triggers death. That is, it pushes these oxidatively-stressed cells
past their limit [176]. One challenge to this idea, however, is that
thiol redox circuits in cells may not be in equilibrium [177,178].
That is, the idea of oxidative stress as a balance of oxidants versus
antioxidants is a biological oversimplification. A second challenge
is our limited understanding of the mechanisms by which cancer
cells developed resistance to redox signaling for cell death path-
ways [179]. Solving these challenges will be major scientific
accomplishment and can help us unlock secrets for conquering
cancer (Fig. 14). In the words of Toren Finkel, “further under-
standing of these pathways promises to reveal to us many more
secrets regarding how life begins, why it ends, and all the myriad
complexities that make up the middle [180].”
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