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Obesity rates in women of childbearing age is now at 29%, according to recent CDC
reports. It is known that obesity is associated with oxidative stress and inflammation,
including disruptions in cellular function and cytokine levels. In pregnant women who
are obese, associated placental dysfunction can lead to small for gestational age
(SGA) infants. More frequently, however, maternal obesity is associated with large
for gestational age (LGA) newborns, who also have higher incidence of metabolic
disease and asthma due to elevated levels of inflammation. In addition, anthropogenic
environmental exposures to “endocrine disrupting” and “forever” chemicals affect
obesity, as well as maternal physiology, the placenta, and fetal development. Placental
function is intimately associated with the control of inflammation during pregnancy.
There is a large amount of literature examining the relationship of placental immunology,
both cellular and humoral, with pregnancy and neonatal outcomes. Cells such
as placental macrophages and NK cells have been implicated in spontaneous
miscarriage, preeclampsia, preterm birth, perinatal neuroinflammation, and other post-
natal conditions. Differing levels of placental cytokines and molecular inflammatory
mediators also have known associations with preeclampsia and developmental
outcomes. In this review, we will specifically examine the literature regarding maternal,
placental, and fetal immunology and how it is altered by maternal obesity and
environmental chemicals. We will additionally describe the relationship between
placental immune function and clinical outcomes, including neonatal conditions,
autoimmune disease, allergies, immunodeficiency, metabolic and endocrine conditions,
neurodevelopment, and psychiatric disorders.

Keywords: maternal obesity, placenta, inflammation, oxidative stress, trophoblasts, Th cells, macrophages

INTRODUCTION

Obesity Prevalence and Significance
Obesity is a medical crisis with increasing rates both in the United States (1–5) and worldwide
(5–7). Based on CDC and WHO definitions, normal weight ranges from a BMI of 18.5 to 24.9,
and overweight is defined as BMI ≥ 25. Obesity is defined as BMI ≥ 30, and severe obesity is
defined in different sources as≥35 or 40. In the United States general population, adult obesity rates
have increased from 30.5 to 42.4% from the year 2000 to 2018 (2), with global rates also increasing
significantly, from 7% in 1980 to 12.5% in 2015, with similar trends upward despite a large range

Frontiers in Pediatrics | www.frontiersin.org 1 April 2022 | Volume 10 | Article 859885

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/journals/pediatrics#editorial-board
https://www.frontiersin.org/journals/pediatrics#editorial-board
https://doi.org/10.3389/fped.2022.859885
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fped.2022.859885
http://crossmark.crossref.org/dialog/?doi=10.3389/fped.2022.859885&domain=pdf&date_stamp=2022-04-28
https://www.frontiersin.org/articles/10.3389/fped.2022.859885/full
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pediatrics#articles


fped-10-859885 April 28, 2022 Time: 11:45 # 2

Monaco-Brown and Lawrence Maternal Obesity and Placental Immunology

of prevalence based on regions, demographics, and
socioeconomic differences (5). Obesity-related conditions
account for as much as 20% of healthcare spending in
the United States totaling $190 billion annually (8), with
proportionately high amounts spent world-wide (9).

Obesity rates in women of childbearing age is 31.8%, with half
of that group in the severe obesity range (10). Obesity-related
conditions in women include diabetes, hypertension, PCOS, as
well as many other conditions which create significant risks to
fertility and conception (11), and to pregnancy and maternal
health before, during, and after delivery. These conditions also
have been shown to have significant effects to offspring health,
both in the perinatal period (12) and in later childhood and
adulthood. The effect of maternal obesity on the adult phenotype
of offspring is a common example of Barker’s hypothesis of fetal
origins of adult disease (13).

Obesity does not affect all races or socioeconomic groups
similarly. Obesity rates in women differ widely based on race,
with Non-Hispanic Black women at a prevalence of 56.1%
vs. Hispanic women at 48.4%, Non-Hispanic White women
at 38.8%, and Non-Hispanic Asian women at 13.6%. Higher
education level decreases risk for obesity, as does former or
current smoking history. In addition, obesity rates increase in
women in less urbanized areas (14). These different factors may
affect the development and perpetuation of obesity in different
ways including access to nutritious food, access to activity, and
various cultural and regional practices. Many of these associated
demographic factors are also relevant to other sources of
maternal stress, such as infections, environmental toxicants, and
psychosocial stressors. Additionally, there are transgenerational
influences that may be influencing obesity rates that coincide
with the changes in diets, increasing exposures to environmental
pollutants, and the concomitant effects of climate change.

Because obesity is so prevalent in women of childbearing
age and has so many concerning effects on the mother and her
offspring, and because this epidemic is differentially affecting
women in marginalized populations, it is critical that we
understand the mechanisms of these effects in order to be
able to target preventative and therapeutic strategies that may
improve outcomes for all communities. As obesity can affect
maternal-placental-fetal health and the developmental origins
of offspring immunity (15, 16), which can influence lifetime
health, the converse concept of the offspring’s immune system
increasing obesity incidence is also suggested (17). It’s important
to note that with increasing obesity there has been more incidence
of immunopathologies such as asthma, allergies, autism and
some autoimmune diseases as well as enhanced susceptibility to
infections (18) and cancers (19).

Maternal Stressors in Pregnancy
There is increasing evidence that multiple forms of
environmental stress during the prenatal period can induce
a lifetime of adverse health effects. Regarding the fetus and
offspring, the exogenous and endogenous effects on the mother
include diet, which can be influential as discussed in papers about
the developmental origins of adult diseases. In fact, the influences
of malnutrition or a fat rich diet may be transgenerational (20).

A rich diet can lead to maternal obesity, which directs paths to
metabolic dysfunction and inflammation, and maternal adiposity
also increases fat deposition in the placenta and fetus, which
affect the developing types of fetal immune cells (21). It is
generally believed that these early developmental stresses affect
the offspring due to epigenetic and metabolic changes (22).

Maternal and Fetal Cells at Interface and
Beyond
The placenta plays a vital role in fetal development. The placenta
is unique in that its cell and molecular composition of maternal
and fetal tissues influence the maternal delivery of nutrients as
well as hormones, cytokines, antibodies, and cells to the fetus,
helps to protect mother and fetus during this semi-allogenic
relationship (23), and is rejected to enable parturition. In addition
to the molecular effects on the fetus, fetal microchimerisms
(FMCs) are established during and after pregnancy with
beneficial (24) or adverse (25) health consequences for mothers
and offspring. These positive and negative effects involve
maternal immunity. Conversely, maternal microchimerisms
(MMC) may detrimentally affect some offspring. Two rare
detrimental outcomes are neonatal lupus (26) and type 1 diabetes
(27), which are autoimmune diseases resulting in part from
maternal cells in offspring.

Maternal immunity plays a critical role in pregnancy and
the development of healthy offspring. Immune cells aid (i)
implantation of the trophoblasts into the uterine decidua and
the peripheral maternal system, (ii) placental development, (iii)
angiogenesis (28–30) to establish needed delivery of nutrients and
maternal factors, and (iv) parturition as outlined in Figure 1.
While maintaining host defense against pathogens, maternal
immune cells assist or initiate implantation, placentation, and
parturition at the appropriate time, and in the intervening
period, maternal immunity can help or hinder fetal development
(31). Maternal immunity can help by preventing fetal access
of pathogens and transferring protective antibodies to the fetus
and hinder by delivery of proinflammatory cytokines, antibodies
to fetal antigens, and inappropriate levels of steroids. There
are additional aspects of the maternal systemic environment
affecting fetal development that are mentioned throughout
this review involving neuroendocrine and immune network
interactions. For example, maternal obesity can affect the number
of maternal macrophages in the placenta and enhance numbers of
innate immune cells promoting inflammation, oxidative stress,
and mitochondrial and metabolic dysfunction (32–35). Obesity
is adipose tissue overload in organs, including the placenta
(36), and it influences metabolic complications associated with
mitochondrial dysfunction (37). Cardiac dysfunction related to
obesity (38) may be especially problematic during pregnancy
with the extra vascular remodeling needed for the fetus and
increased circulating maternal blood volume. Inadequate or
inappropriate delivery of nutrients, cells and cellular products
to the fetus could lead to preterm birth and/or underweight
births. Placental dysfunction contributes to spontaneous preterm
births (SPTBs) and is related to placenta metabolism affected by
mitochondria dysfunction and inflammation, which was reported
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to display sex disparity with more transcriptomic differences
with male SPTB placentas (39). The placentas of male fetuses
have been reported to have a profile more inflammatory than
the placentas of females, which have more control of immunity
and regulation of endocrine involvement and placental growth
(40, 41).

Environmental Stresses
Maternal stress may be induced by an infection, environmental
pollutants, or physical or psychologic disturbances. Each stressor
alone or combined with another may have profound influence
on maternal-placental-fetal immunology and the developing
fetus, which could affect offspring health for a lifespan (42,
43). Maternal depression and obesity combine to affect fetal
development and the offspring’s mental and physical health (44).
An emotional stress or pollutant exposure during pregnancy is a
risk factor for offspring with increased potential development of
later cardiovascular disease, cancer, or autoimmune disease (45–
48). Perinatal maternal stresses also can impact the offspring’s
neurodevelopment (49–52).

Maternal obesity is associated with maternal, placental and
fetal metabolic dysfunction with enhanced inflammation (21,
53). “Metaflammation” was the term coined by Gregor and
Hotamisligil (54) for the chronic, low-grade inflammatory state
associated with obesity, which differs from acute inflammatory
responses induced by pathogen associated molecular patterns
(PAMPs) or damage associated molecular patterns (DAMPs).
Metaflammation is triggered by metabolites and nutrients and
may lead to systemic insulin resistance due to inflammatory
mechanisms associated with obesity (54, 55). Early inflammation
affects the developing immunophenotypes of fetal immune cells,
which likely relate to obesity effects on epigenetics and the
microbiome (56, 57).

Endogenous Stresses
Macrophages in adipose tissue can polarize and affect
bioenergetics with obesity (58). With more adiposity, there
is more inflammation in tissues due to more fat creating
oxidative stress-induced cell damage and release of DAMPs to
stimulate pattern recognition receptors (PPRs) such as toll-like
receptors (TLRs), which induce proinflammatory cytokines
and chemoattractants (chemokines) influencing influx of
macrophages, which includes into the placenta. Trophoblasts
attract endometrial stomal cells (59) and placentas attract many
different immune cells (60). The influence of maternal obesity
on fetal inflammation has been reported to be mainly due to
regulatory effects on the placenta (61), which may be due to
a low circulating level of adiponectin (62). Stress prior to or
during pregnancy affects placental development due to posited
dysregulated neuroendocrine immune interactions, which cause
long-term alterations to the immune and nervous systems
of offspring. Psychological stress affects the development of
the placenta, which includes placental gene expression and
oxidative stress (63); oxidative stress leads to placental pathology
and detriments to fetal development (64, 65). Normally, the
placenta helps skew the maternal and fetal environment toward
a CD4+ helper T cell type-2 (Th2) and anti-inflammatory

profile (66); however, as mentioned earlier, obesity and other
stresses create a more CD4+ helper T cell type-1 (Th1)
and inflammatory gestational environment. Additionally, in
normotensive pregnancies, the placenta helps to control the level
of stress hormones trafficking to fetus (67); the placenta attempts
to control the multiple forms of maternal stress on the fetus (68).

Preeclampsia may begin as early as placentation which is
when fetal trophoblasts and maternal uterine cells are aided
by uterine immune cells to achieve efficient implantation
for proper vascularization (69, 70). Inadequate vascularization
will affect placental and fetal growth and is associated with
preeclampsia. Stress in the placenta was observed with placental
expression of soluble fms-like tyrosine kinase-1 (sFlt-1) and
triglycerides in maternal serum (71) and is often accompanied
with maternal hypertension and proteinuria, which is induced
by sFlt-1 (sVEGFR1); sFlt-1 is an anti-angiogenic protein,
because it interferes with vascular endothelial growth factor
(VEGF), which triggers angiogenesis. VEGF also has been
suggested to recruit macrophages (Mϕs) and aid shift toward
type-2 Mϕs (Mϕ2), which enhances immune tolerance and
tissue remodeling (72). The endothelial dysfunction in the
placenta increases the likelihood of preeclampsia along with an
immunophenotype skewing more toward Th1 cells producing
proinflammatory cytokines (73). However, clinical signs of
preeclampsia usually don’t become apparent until the beginning
of the 2nd trimester. Early signs of preeclampsia may come from
metabolomics (74). Since preeclampsia has higher prevalence
with maternal obesity, metabolites predictive of oxidative stress
might be informative. One such metabolite is acylcarnitine,
a product of fetal fatty acid oxidation disorders (75). An
accumulation of acylcarnitine may be indicative of mitochondrial
dysfunction or peroxisome to mitochondria processing (76).
Mitochondria are posited to be the intermediary between
obesity and preeclampsia since higher levels of fatty acids
can lead to more reactive oxygen species (ROS) generated by
mitochondria in tissues including the placenta (77). Oxidative
phosphorylation by mitochondria leads to production of
ATP and ROS needed for maternal-placental-fetal cellular
functions. Early in pregnancy ROS triggers expression of
VEGF and glucose transporters to promote angiogenesis (78);
however, too much ROS leads to mitochondrial dysfunction
causing placental inflammation and epigenetic changes to
fetus that can affect offspring health for life (79, 80).
In a rat model of ROS-mediated oxidative stress caused
by hyperandrogenism and insulin resistance, fetal loss was
associated with dysregulation of the placental mitochondria–
ROS–SOD1/Nrf2 axis (81).

Prenatal maternal stress, which includes maternal obesity,
affects fetal growth by regulating production of metabolites
as mentioned earlier and by influencing delivery of maternal
products such as glucocorticoids and nutrients. Glucocorticoids
are essential for fetal development and their level is under
maternal hypothalamic-pituitary-adrenal (HPA) axis control.
Starting in the 2nd gestational trimester, the placenta secretes
corticotrophin-releasing hormone to promote cortisol release
(82). Obese pregnant women have low cortisol levels throughout
pregnancy (83). Obese pregnant women also have a blunted
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FIGURE 1 | Maternal-placental-fetal immune systems. During implantation and placentation embryonic stem cells and mature maternal immune cells interact to
establish maternal immune tolerance to semi-allogenic trophoblasts which invade maternal uterus along with fetal hematopoietic stem cells (HSC) developing from
the paraaortic splanchnopleure (aortal) tissue (188). At 4 weeks post-conception, there are myeloid-derived microglia cells in the developing brain, which influence
development of neuronal connections. Fetal thymus starts accumulating myeloid cells to support increasing presence of precursor lymphoid T (pT) cells (189) for
later development of CD4 and CD8 single positive and γδ TCR+ thymocytes, and CD4+CD25+ T regulatory cells (189). Proportions of macrophages and neutrophils
(171) as well as B cells shift from liver to marrow between 5 and 16 weeks.

HPA axis, and it has been suggested that maternal obesity
increases 11β-hydroxysteroid dehydrogenase-2 (11β-HSD-2)
activity, which metabolizes cortisol to inactive metabolites so that
glucocorticoid receptor (GR) is not signaled (84). Conversely,
maternal depression may lower placental expression of 11β-
HSD-2 allowing too much access of glucocorticoid to the fetus.
Both over and under delivery of glucocorticoids to the fetus
can be detrimental. Glucocorticoids directly affect the fetus
and placental production of neurosteroids and neurohormones,
which includes regulation of the HPA axis (85–87). Stress
also affects nutrient delivery to the fetus (88), and O-linked-
N-acetylglucosamine transferase (OGT), a placental nutrient
sensor, is involved with placental epigenetics. OGT affects
long-term neurodevelopmental programming, which includes
programming of the HPA axis (89, 90). Together, these stress-
related modulations enhance long-term detrimental effects on
offspring, which includes increased prevalence of metabolic
and cardiovascular disorders, and neurodevelopmental sequelae.
However, exactly how stress mediates these detrimental outcomes
is unclear and stress from obesity may involve different pathways
than that from other forms of stress. Placental expression
of 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) is
responsible for preventing high maternal glucocorticoid levels
from affecting the placenta and fetus (91). The expression
of 11β-HSD2 increases through term in the human placenta
(92). Analysis of human mothers with mental health problems
have been reported to have lower 11β-HSD2 expression (93),
which could propagate mental health issues in offspring, and
neurodevelopment is modulated by placental stress effects (94).

Interestingly, the steroidogenic pathway for glucocorticoids
is shared with progesterone, and an imbalance between
progesterone and glucocorticoid has been suggested to cause
placental insufficiency, inflammation, and maternal immunity
unfriendly toward the fetus (95). Although cortisol is the HPA
product often associated with detrimental fetal effects from
maternal stress, many other factors have been implicated such
as catecholamines, cytokines, serotonin/tryptophan, ROS and
maternal microbiota (96).

Maternal-Placental-Fetal Immune Cells
During Pregnancy
The mother’s innate and adaptive immune cells play a key
role in all phases of the pregnancy, and as mentioned earlier,
maternal immunity needs to respond appropriately for embryo
implantation, placentation allowing semi-allogenic cells into
maternal tissue with activation of immunotolerance to the
paternal antigens while maintenance of immunity to other
foreign antigens, and finally disruption of the cohabitation for
parturition. Hormone and cytokine/chemokine levels vary at
different stages of the pregnancy; they initially aid immune
disruption of the epithelial uterine barrier for decidualization,
they help to maintain local unresponsiveness to the fetal
antigens until at parturition, and finally they again convert
to inflammatory processes to aid placental release (97–99).
Maternal decidual innate immune cells assist early invasion of
the uterus by fetal trophoblasts, and Mϕ-derived angiogenic
factors promote development of vascularization establishing
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utero-placental circulation. This alone indicates the dynamics of
the immune cells because the invasion requires destruction of
the epithelial barrier allowing penetration of the semi-allogenic
blastocyst through this barrier and entrance into the uterine
musculature/tissue (100). To break through the epithelial barrier
would require activities of innate natural killer (NK) cells
and Mϕs promoting inflammation and breakage of epithelial
tight junctions with assistance from many other maternal
cells such as dendritic cells (DCs), mast cells releasing matrix
metalloproteinases (MMPs) and T cells (101), but this would
have to be accomplished with no damage to the embryo so
entrance relates to the activities of the trophoblasts cooperating
with maternal immune cells. However, any weakness in the
uterine wall barrier could also allow entry of bacteria, so immune
defenses would be needed by mature type-1 Mϕs (Mϕ1) and DC
(DC1) and Th1 cells; therefore, there needs to be plasticity of
Mϕs, DCs, and lymphoid subsets (102, 103). For implantation
and placentation, unlike DC1 and Mϕ1, there is an abundance
of immature DC cells expressing CD209 (DC-SIGN+) cells
(104) and Mϕ2 producing immunosuppressive tumor growth
factor-beta (TGF-β), IL-10, and indoleamine 2,3-dioxygenase
(IDO) (105). DC-SIGN+ cells are required for expansion of
CD4+Helios−Foxp3+ adaptive Treg (iTreg) cells and together
help to maintain tolerance to placental and fetal antigens until
near time for birth, and earlier loss of DC-SIGN+ and iTreg
cells will aid preeclampsia (106). Mϕ1 and DC1 preferentially
activate Th1 cells and Mϕ2 and DC2 activate Th2 cells; Th1
response creates more oxidative stress and the Th2 response
attempts to mitigate the stress (107, 108). The Mϕ1 and Mϕ2
balance is affected by oxidative stress on Mϕs and/or Th cells
(Figure 2). The oxidative stress might be lessened with better
diet including an increase in vitamins (78, 109–114). Melatonin
(78, 115–119) also may mitigate ROS effects and as well as
affect sleep. Balance of Mϕ1 and Mϕ2 is important for a normal
pregnancy, but the ratio may vary at different stages (28, 120,
121). When preeclampsia develops Mϕ1 predominate (122–
124). The Mϕ1 and an environment with their products such
as IL-1β, TNFα, MMPs, and nitric oxide (NO) are effective in
terminating a normal pregnancy but can initiate preterm labor
(125). Some trophoblasts may undergo some damage during
implantation, but the maternal immune system should remain
unresponsive or tolerant to the implanted developing blastocyst
and should aid angiogenesis, which would be similar to wound
healing as assisted by Mϕ2 and decidual natural killer cells
(dNK), which are more growth promoting and angiogenic than
cytotoxic (100). In the 1st trimester, the predominant dNK are
dNK1 (∼55%), which may aid immunotolerance to extravillous
trophoblasts (EVTs) and dNK2 (∼15%), which produce more
interferon-gamma (IFNγ) and may aid implantation (126).
The EVTs, dNK subsets, and decidual macrophages (dMϕ)
seem to work as a team in remodeling the spiral artery.
So there also is need for establishment of tolerance to
the paternal antigens and wound healing for development
of the vascular placenta. The growth promoting dNK are
reported to be CD49a+PBX homeobox 1 (PBX1)+ Eomes+
(127) and produce pleiotrophin, osteoglycin, and osteopontin
(128). Absence or mutated PBX1 (PBX1G21S) affects fetal

growth and increases prevalence of spontaneous abortion (127).
Three uterine Mϕ subsets have been immunophenotypically
defined CCR2−CD11cLO (CD11clow, ∼80%), CCR2−CD11cHI

(CD11chigh, ∼5%), and CCR2+CD11cHI (CD11chigh, 10–15%)
in the 1st trimester (129). The dMϕ subset(s) may be a
unique linkage unlike that of the bone marrow stem cell
derived Mϕ1 and Mϕ2 subsets (130). Like Mϕs, DCs, which
are more efficient in presenting antigen for activation of T
cells, are in decidua tissue, but at a lower number than Mϕs.
DCs also show plasticity of phenotype and function (131)
including maintenance of immune tolerance (132), which has
been suggested to be important for immune control during
pregnancy (133). Pregnancy complications may develop when
there is a decline in dMϕ expressing CD163, CD206, and CD209,
which secrete the immunosuppressive factors IL-10, TGF-β, and
IDO. This is accompanied by a concomitant increase of dMϕ

expressing CD80, CD86, and MHCII, which along with Th1
release TNFα, IFNγ and IL-1β (130). Like obesity, insufficient or
inappropriate decidual recruitment and involvement of immune
populations may result from endocrine disrupting chemical
(EDC) such as bisphenol A (134). EDC affect estrogen and
progesterone levels as well as MMPs and the activation of
MMPs involves mast cell activation, which can be modified by
EDC (134).

Like dNK, dMϕ, and dDCs, there are uterine, placental,
and fetal innate immune cells and unconventional T cells that
influence development. In the 1st trimester, there are myeloid
cells in many developing tissues such as microglia in the brain
(135). During the 2nd trimester there are innate-like T cells in
various tissues, which play a protective and homeostatic role
(136). The innate-like mucosal-associated invariant T (MAIT)
cells increase near term at the placenta; they may be recruited
by placental chemotactic factors, and they can be anti-microbial
or homeostatic (137). In the 3rd trimester with a decreased
proportion of dNK, there is an increased presence of T cells (138);
conventional T cells and unconventional T cell proportions,
including CD4+ and CD8+ T cells fluctuate throughout
pregnancy (139, 140). The innate lymphocytes include NK
cells, intra-epithelial lymphocytes (IEL), lymphoid tissue-inducer
(LTi), and the innate lymphoid cell subsets (ILC1, 2, and 3),
which mimic the Th1, Th2, and Th17 subsets regarding some of
their cytokine products, but they develop and respond faster since
they bypass the need for antigen-specific stimulation (141). The
ILC population is suggested to increase with implantation (142).
Like dNK and dMϕ subset fluctuations, as pregnancy progresses,
there also is plasticity among the ILC subsets (143, 144), which
seems to coincide with the local milieu of hormones, cytokine,
chemokines, and growth regulatory factors. The unconventional
T cells, which include invariant natural killer T (iNKT) cells,
MAIT cells, and γδT cells, are enriched in barrier tissues, such
as the uterus, and organs that drain these sites, such as the
liver (136). In a mouse model, it was reported that intestinal
microbes influence early development of thymic lymphocytes
(145). Obesity affects intestinal microbiota, which can affect
systemic inflammation and insulin resistance (146). Thus, obesity
through changes to intestinal microbes may also affect the
immune responses to the maternal-placental-fetal relationships.
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FIGURE 2 | Redox imbalance promoted by obesity, pregnancy and stress. Maternal immunity is skewed more toward Th2 immunity (anti-inflammation) regarding
presence of semi-allogenic fetus developing within uterine tissue. Balance is influenced by pregnancy, obesity, and exposome, which may have additive, synergistic,
antagonistic or potentiating affects. Redox status is influenced by glutathione (GSH) availability. Psychological stress modifies immunity through sympathetic nerve
release of norepinephrine (NE) triggering beta-adrenergic receptors (β-AR) on Mϕs (190) and release of polymorphonuclear cells (PMN) from bone marrow (191).
Toll-like receptors (TLRs) are triggered by PAMPs and DAMPs.

The mast cell, a myeloid hematopoietic cell, has been
associated with some pregnancy problems such as mast cell
activation syndrome (MACS) (147). Mast cells have a diversity of
functions; they can aid immune activation or immunotolerance,
can produce cytokines, chemokines, neurotransmitters and
neuropeptides, and can be antigen-presenting cells (APC)
expressing MHC class II (58, 148, 149). Interestingly, like some
macrophage subsets and other immune cells (150, 151), mast cells
exist in adipose tissue and have been reported to cause chronic
inflammation with obesity (152, 153). Mast cells also exist in
fetuses and can influence early development of allergies with
maternal IgE (154). Although mast cells can have detrimental
effects on pregnancy and their activities are affected by EDC,
they also play important roles such as myometrium contraction
aiding birth; as for the other immune subsets affecting pregnancy,
too few or too many mast cells can detrimentally affect
pregnancy (134).

Since subpopulations of innate and adaptive immune
cells continue to be revealed and characterized regarding
immunophenotype, derivation, numbers, plasticity, and
function, the safest suggestion about immune cell involvement
during pregnancy with or without maternal obesity is
that fluctuations in decidual, placental, and fetal immune
subpopulations exist throughout the gestational period and that
the proportions and numbers influence a normal vs. aberrant
pregnancy. Additionally, since maternal obesity and stress from
exogenous and endogenous factors can alter the balance of the

immune subpopulations and affect expression of maternal-
placental-fetal proteins, the mother’s condition and exposures
can complicate and interfere with delivery of healthy offspring.

Obesity, Offspring Immunity and Health
As obesity can influence inflammation and immune cell
subpopulations, it also can affect offspring health for their
lifetime. The potential increase in preeclampsia, gestational
diabetes, hypertension, and delivery complications are all
related to the oxidative stress of inflammation which imprints
epigenetic changes on the developing fetus. As described earlier,
metaflammation affects supply of metabolites and nutrients to the
developing fetus, and it affects intrauterine programming due to
maternal-placental-fetal responses to the prenatal environment,
which includes increased adiposity and resulting inflammation
and altered ratios of innate and adaptive immune cell subsets.
Placental mRNA expressions of proinflammatory factors IL-
1β, IL-8, monocyte chemoattractant protein (MCP)-1 and CXC
chemokine receptor 2 (CXCR2) have been reported to be greater
with maternal obesity than with non-obese women (155).

Prematurity
Although inflammation is associated with an increase in
immune cells creating an inflammatory/oxidative environment,
premature oxidative stress will cause preterm birth, either
via preterm labor or medically induced delivery to address
conditions such as preeclampsia, fetal macrosomia, or poor
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FIGURE 3 | Environmental stressors modify system biology. Environmental stresses modify system biology with alterations of the neuroendocrine immune network
and the gut brain axis to disrupt development. Interorgan structural and/or functional connections are needed to maintain necessary homeostasis for development
and throughout life. Environmental stressors include diet, endocrine disrupting chemicals (EDCs) and other inorganic and organic chemicals, emotions, microbes,
and obesity.

fetal perfusion with intrauterine growth restriction, which are
all increased with maternal obesity. Babies born preterm are
subsequently known to be at risk for intestinal disorders,
increased infection rates, respiratory disease, retinopathy, and a
variety of neurodevelopmental and neurobehavioral conditions
(156–158).

Sexual differences are observed in preterm infant outcomes,
with morbidities in males generally poorer that in females
(159). Interestingly, outside of prematurity, males display more
inflammation with metabolic syndrome (160), which may
be why male offspring tend to have greater prevalence of
cardiovascular and neurodevelopmental disorders (161, 162).
Sexually dimorphic placental responses to stresses and need for
more analyses was reviewed (163). Perhaps male susceptibility to
stress and inflammation partially contributes to poorer outcome
in preterm males as well. The morbidities in offspring related to
maternal obesity are not merely a consequence of the effects of
prematurity, however. There are immunologic, metabolic, and
neurologic/psychiatric sequelae that are independently associated
with maternal obesity.

Offspring Immune Function
Maternal obesity and obesogenic diets have been associated
with abnormal immune function in offspring, including
decreased response to infection, atopic disease, and asthma

(56, 164, 165). The modifications include epigenetic and
physiological programming (22, 166) that can lead to conditions
such cardiovascular disease, asthma, and allergies as the
neonatal immune system undergoes further exposure to
environmental modulators (microbes, chemicals, and physical
and psychological stressors) (21, 167, 168). In a study reviewing
immunologic markers such as IgM in neonatal blood spots
collected in newborn screening, this group has previously shown
an association with maternal obesity and increased IgM as well
as other inflammatory markers which are consistent with later
immune dysregulation (169). In a mouse model, maternal high
fat diet has been associated with increased incidence of Crohn’s
disease-like ileitis in genetically susceptible offspring (170).
Additionally, marrow adipose tissue (MAT) is endocrinologically
active and contributes to bone growth and maintenance as
well as hematopoiesis. Increased proportions of MAT in the
marrow compartment can negatively affect hematopoiesis (171).
Theoretically, the increased fetal adiposity that occurs as a result
of maternal obesity may affect multiple hematopoietic cell lines,
including leukocytic precursors.

Offspring Metabolism and Obesity
Maternal obesity also increases the offspring’s risk for obesity
(168). Intrauterine stress has been linked over the past two
decades to the development of obesity and metabolic dysfunction
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in offspring, both in animal and human studies (172–174).
Prenatally and post-natally, obesity and other stressors can affect
multiple organ systems with mutual disruption of metabolism
and mitochondrial functions (Figure 3). The Maternal And
Developmental Risks from Environmental and Social Stressors
(MADRES) Pregnancy Cohort addressed the disproportionate
increase in health issue of predominately low-income Hispanic
women in urban Los Angeles (175); this report concluded that
obesity and increased exposure to “obesogenic” environmental
chemicals as well as higher psychosocial stress levels and less
access to proper diet and health care affected both mother and
offspring health. In a recent systematic review, Strain et al. (176)
described multiple associations of maternal obesity and related
exposures such as maternal high fat diet and maternal diabetes
to metabolic consequences in offspring, including obesity, non-
alcoholic fatty liver disease, and type 2 diabetes. Increasing
rates of type 2 diabetes are in part attributed to intrauterine
environmental exposures, such as increased inflammation and
oxidative stress leading to epigenetic and other endocrine-
disrupting factors (22, 151, 167). Metformin, commonly used in
the treatment of type-2 diabetes, has been proposed as a treatment
to lessen the obesity mediated oxidative stress effects on the
placenta (119).

Offspring Neurodevelopment
The fetal growth restriction due to detrimental placental
epigenetic programming can influence inflammation including
in the developing brain. Post-natally these effects can increase
prevalence of cognitive impairment, autism, epilepsy, or
cerebral palsy. Improved understanding of placental epigenetics
and biomarkers will facilitate early predictions for likely
neurodevelopment outcomes (177, 178). Some reported placental
modulations such as histone modifications, DNA methylation,
and hydroxymethylation, and microRNA expression might
associate with metabolite levels altered with metabolic
syndrome. Bangma et al. in an extensive review utilizing
the ELGAN cohort and other sources, connected maternal
obesity and other stressors, such as socioeconomic stress, via
inflammatory mechanisms and placental reprogramming, to
poorer neurocognitive outcomes in preterm infants (157).

Maternal obesity has also been associated with increased risk
for hypoxic-ischemic encephalopathy, which is significantly
dictated by placental function and sufficiency (179, 180).
Maternal obesity has also been associated with increased risk
in offspring for multiple developmental disorders such as ADHD
and autism spectrum disorder, and with psychiatric disorders
such as schizophrenia and depression (181). Mechanisms
include cytokine interference in neuronal development and
migration (182, 183), epigenetic effects (184, 185), and fatty acid
immunomodulators (174, 186, 187).

CONCLUSION

In an expanding obesity pandemic, it is crucial to understand the
mechanisms leading to poor outcomes for women of childbearing
age, their pregnancies and the health of their offspring. We
have shown that maternal obesity, an endogenous stressor,
and exogenous environmental stressors contribute to abnormal
oxidative and inflammatory placental changes, which then affect
the fetus via a variety of mechanisms. Understanding these
mechanisms can offer us insight into prevention, prophylaxis and
treatment of this generational set of conditions. It is imperative
that the medical community addresses the teratogenicity of
maternal obesity and associated stresses to improve global health.
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