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A statistical measure for the skewness of X
chromosome inactivation for quantitative
traits and its application to the MCTFR data
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Abstract

Background: X chromosome inactivation (XCI) is that one of two chromosomes in mammalian females is silenced
during early development of embryos. There has been a statistical measure for the degree of the skewness of XCI
for qualitative traits. However, no method is available for such task at quantitative trait loci.

Results: In this article, we extend the existing statistical measure for the skewness of XCI for qualitative traits, and
the likelihood ratio, Fieller’s and delta methods for constructing the corresponding confidence intervals, and make
them accommodate quantitative traits. The proposed measure is a ratio of two linear regression coefficients when
association exists. Noting that XCI may cause variance heterogeneity of the traits across different genotypes in
females, we obtain the point estimate and confidence intervals of the measure by incorporating such information.
The hypothesis testing of the proposed methods is also investigated. We conduct extensive simulation studies to
assess the performance of the proposed methods. Simulation results demonstrate that the median of the point
estimates of the measure is very close to the pre-specified true value. The likelihood ratio and Fieller’s methods
control the size well, and have the similar test power and accurate coverage probability, which perform better than
the delta method. So far, we are not aware of any association study for the X-chromosomal loci in the Minnesota
Center for Twin and Family Research data. So, we apply our proposed methods to these data for their practical use
and find that only the rs792959 locus, which is simultaneously associated with the illicit drug composite score and
behavioral disinhibition composite score, may undergo XCI skewing. However, this needs to be confirmed by
molecular genetics.

Conclusions: We recommend the Fieller’s method in practical use because it is a non-iterative procedure and has
the similar performance to the likelihood ratio method.

Keywords: X chromosome inactivation, Skewness, Quantitative trait, Variance heterogeneity, Minnesota Center for
Twin and Family Research data

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: zhoujiyuan5460@hotmail.com
†Bao-Hui Li and Wen-Yi Yu contributed equally to this work.
1Department of Biostatistics, State Key Laboratory of Organ Failure Research,
Ministry of Education, and Guangdong Provincial Key Laboratory of Tropical
Disease Research, School of Public Health, Southern Medical University, No.
1023, South Shatai Road, Baiyun District, Guangzhou 510515, Guangdong,
China
2Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure
and Health, Guangzhou 510006, China

BMC Genomic DataLi et al. BMC Genomic Data           (2021) 22:24 
https://doi.org/10.1186/s12863-021-00978-z

http://crossmark.crossref.org/dialog/?doi=10.1186/s12863-021-00978-z&domain=pdf
http://orcid.org/0000-0003-0866-4402
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:zhoujiyuan5460@hotmail.com


Background
In genome-wide association study (GWAS), many
human diseases have been found to be associated with
X-chromosomal genes, such as autoimmune diseases
[1, 2], asthma [3], Duchenne muscular dystrophy [4, 5],
adrenoleukodystrophy [6], Wiskott-Aldrich syndrome
[7] and some cancers [8–12]. However, development of
methods for identifying association with genetic vari-
ants on X chromosome still lags behind that on auto-
somes due to the unique inheritance pattern of X
chromosome [13]. The number of X chromosomes is
different between males and females in mammals.
There are two copies of X chromosome in mammalian
females, one of which is paternal and the other is ma-
ternal, while mammalian males have only one maternal
X chromosome. To compensate for this X chromosome
dosage difference between sexes, one of two chromo-
somes in females is silenced during the early develop-
ment of embryos, which is called X chromosome
inactivation (XCI) [14–18]. Random XCI (XCI-R) is a
process that either the paternal or the maternal allele at
an X-chromosomal locus is randomly chosen to be si-
lenced in all cells, which is common in most females
[19]. However, skewed XCI (XCI-S) is also observed in
a proportion of females, which is a non-random process
and is defined as the observation of inactivation of the
same allele in more than 75% cells [9, 20–23]. In
addition, not all of the X-linked genes undergo XCI
and the pseudo-autosomal region on both sex chromo-
somes does not require dosage compensation. In
humans, over 15% X-linked genes have been shown to
escape from XCI (XCI-E) [24, 25].
In population genetics, there has been an increasing

interest in the incorporation of the information on XCI
into association analysis for qualitative traits [26–30]
and quantitative traits [31–34], which may greatly im-
prove the test power. For qualitative traits, Clayton [26]
first took account of XCI in detecting the association
between X-chromosomal markers and diseases by
regarding males as homozygous females. However, the
Clayton’s method only considers the XCI-R pattern and
does not incorporate the XCI-S and XCI-E patterns. So,
Wang et al. [27] developed a resampling-based approach
for case-control data simultaneously combining the in-
formation on three XCI patterns (XCI-R, XCI-S and
XCI-E) by coding three genotypes in females as 0, γ and
2, where γ is an unknown parameter, takes possible
values between 0 and 2, and can be used to measure the
degree of the skewness of XCI. For X-linked quantitative
trait loci (QTL), Zhang et al. [31] proposed a family-
based association test, where the quantitative trait under
study is required to follow a normal distribution. Al-
though the involved variances of the trait value for males
and females are assumed to be different, those for three

genotypes in females are fixed to be the same. However,
according to Ma et al. [32], XCI may lead to variance
heterogeneity of the traits across different genotypes in
females and the variance of the trait in heterozygous
females is generally higher than that in homozygous
females. So, based on only unrelated females, Ma et al.
[32] suggested a test for X-linked association via inflated
variance in heterozygous females, a weighted test for X-
linked association which considers different variances,
and the combined test of these two tests using the
Stouffer’s Z-score method. Gao et al. [33] further
developed the XWAS software toolset to facilitate
GWAS on X chromosome, which includes the three
test statistics proposed by Ma et al. [32]. Deng et al.
[34] put forward a sex-specific Levene’s test, and a
generalized Levene’s test based on a two-stage regres-
sion model accounting for sex-specific mean and vari-
ance effects, to test for association. The original
Levene’s test is robust to certain types of non-normal
distribution, particularly when data are non-normal
but symmetric [34], while the generalized Levene’s
test may not. It should be noted that the above
methods for QTL only incorporate the XCI-R and
XCI-E patterns and do not consider the XCI-S
pattern. On the other hand, Wang et al. [35] has re-
cently proposed a statistical measure available for the
degree of XCI skewing for case-control data and de-
veloped three methods (likelihood ratio (LR), Fieller’s
and delta) to construct the corresponding confidence
intervals (CIs). However, they are only applicable to
qualitative traits and are not suitable for quantitative
traits.
Therefore, in this article, we first extend the existing

statistical measure for the degree of XCI skewing (i.e.,
γ) for qualitative traits [35] and make it accommodate
quantitative traits. It is shown that the proposed γ is a
ratio of two linear regression coefficients in the
presence of association between the traits under study
and the genotypes. We estimate the linear regression
coefficients by incorporating the information on the
variance heterogeneity across different genotypes in
females and then obtain the point estimate of γ. Then,
we extend the existing LR, Fieller’s and delta methods
for constructing the CIs of γ and make them suitable
for quantitative traits. The simulation studies under
various simulation settings are conducted to assess the
performance of the proposed methods. We also apply
the proposed methods to the Minnesota Center for
Twin and Family Research (MCTFR) data for their
practical use. Note that so far, we are not aware of any
association study for the X-chromosomal markers in
the MCTFR data, although there have been some
previous association studies which only focused on
autosomal markers [36–43].
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Results
Sizes and powers
The empirical type I error rates of the corresponding
tests for the proposed LR, Fieller’s and delta methods
based on the sample size n = 1,000 and 2,000 are re-
spectively given in Tables 1 and 2, where the additive ef-
fect size a = 0.1 and 0.3, the allele frequency p = 0.1 and
0.3, and the inbreeding coefficient ρ = 0. Under all the
situations considered, the sizes of the proposed LR and
Fieller’s methods stay close to the pre-specified nominal
level of 5%, irrespective of the values of n, a and p,
which verifies their validity. However, the delta method
has the inflated or conservative type I error rates in most
scenarios. Additional file 1: Tables S1 and S2 show the
sizes for the proposed LR, Fieller’s and delta methods
with ρ = 0.05 based on the sample size n = 1,000 and 2,
000, respectively, which are similar to those in Tables 1
and 2. This demonstrates that the Hardy-Weinberg dis-
equilibrium almost has no effect on the sizes.
Note that the delta method does not control the sizes

well. So, we only simulate the powers of the LR and
Fieller’s methods. Figures 1, 2 and 3 display the estimated
powers for the LR and Fieller’s methods against γ (γ ≠ γ0)
with a = 0.1 and 0.3, p = 0.1 and 0.3, n = 1,000, and ρ = 0

when γ0 = 0, 1 and 2, respectively. Figures 4, 5 and 6 plot
the corresponding estimated powers with a = 0.1 and 0.3,
p = 0.1 and 0.3, n = 2,000, and ρ = 0 when γ0 = 0, 1 and 2,
respectively. The other power results are shown in
Additional file 1: Figures S1-S14. It can be seen from these
figures that the power of the LR method is almost the same
as that of the Fieller’s method. The powers of the LR and
Fieller’s methods gradually but asymmetrically become lar-
ger with ∣γ − γ0∣ increasing. When other parameters are
unchanged, the powers with p = 0.3 are bigger than those
with p = 0.1 (e.g., Fig. 1b vs. Fig. 1a, Fig. 1d vs. Fig. 1c).
However, note that in σ21 ¼ θð1−θÞa2 þ 1:1, θ(1 − θ)a2 at-
tains its maximum 0.25a2 when θ = 0.5 (i.e., γ = 1). The
corresponding values of σ21 for a = 0.1 and 0.3 are 1.1025
and 1.1225, respectively, which are not so different from
each other. Furthermore, when γ = 0 or 2, θ(1− θ)a2 = 0,
which is not related to the value of a. So, the powers with
a = 0.1 and those with a = 0.3 are close to each other (e.g.,
Fig. 1a vs. Fig. 1c, Fig. 1b vs. Fig. 1d). When the sample size
n is changed from 1,000 to 2,000, the LR and Fieller’s
methods are more powerful (e.g., Fig. 4 vs. Fig. 1). Finally,
we find that the Hardy-Weinberg disequilibrium has little
influence on the power results, e.g., by comparing Fig. 1
(ρ = 0) with Additional file 1: Figure S3 (ρ = 0.05).

Table 1 Estimated sizes (in %) for testing H0 : γ = γ0 for the LR,
Fieller’s and delta methods with a = 0.1 and 0.3, p = 0.1 and 0.3,
n = 1,000 and ρ = 0 based on 10,000 replicates and 5%
significance level

a p γ0 LR Fieller Delta

0.1 0.1 0 4.96 4.87 0.24

0.1 0.1 0.5 5.11 5.00 6.24

0.1 0.1 1 4.89 4.80 10.27

0.1 0.1 1.5 5.30 5.23 11.13

0.1 0.1 2 4.96 4.98 11.16

0.1 0.3 0 4.92 4.90 2.86

0.1 0.3 0.5 5.29 5.24 3.13

0.1 0.3 1 4.71 4.74 3.77

0.1 0.3 1.5 5.19 5.02 5.15

0.1 0.3 2 5.02 4.90 5.47

0.3 0.1 0 5.10 5.07 0.26

0.3 0.1 0.5 5.05 5.05 5.73

0.3 0.1 1 5.04 5.00 10.33

0.3 0.1 1.5 5.09 5.07 11.51

0.3 0.1 2 5.13 5.19 11.34

0.3 0.3 0 4.94 4.85 2.79

0.3 0.3 0.5 4.91 4.92 2.90

0.3 0.3 1 5.24 5.23 4.46

0.3 0.3 1.5 5.07 5.05 5.05

0.3 0.3 2 4.82 4.89 5.12

Table 2 Estimated sizes (in %) for testing H0 : γ = γ0 for the LR,
Fieller’s and delta methods with a = 0.1 and 0.3, p = 0.1 and 0.3,
n = 2,000 and ρ = 0 based on 10,000 replicates and 5%
significance level

a p γ0 LR Fieller Delta

0.1 0.1 0 5.22 5.10 0.64

0.1 0.1 0.5 5.06 4.99 6.43

0.1 0.1 1 4.93 4.97 8.63

0.1 0.1 1.5 5.05 5.03 9.28

0.1 0.1 2 4.93 4.92 9.50

0.1 0.3 0 4.85 4.95 2.88

0.1 0.3 0.5 5.17 5.14 4.35

0.1 0.3 1 4.82 4.80 4.14

0.1 0.3 1.5 5.34 5.30 4.50

0.1 0.3 2 5.10 5.12 4.69

0.3 0.1 0 5.30 5.21 0.57

0.3 0.1 0.5 5.21 5.31 6.27

0.3 0.1 1 5.11 5.05 8.44

0.3 0.1 1.5 4.97 4.91 8.84

0.3 0.1 2 4.83 4.83 9.20

0.3 0.3 0 5.15 5.18 2.97

0.3 0.3 0.5 4.84 4.89 3.79

0.3 0.3 1 5.02 5.01 4.34

0.3 0.3 1.5 5.24 5.22 4.52

0.3 0.3 2 5.20 5.21 4.81
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Median of point estimate and statistical properties of
confidence intervals
Tables 3 and 4 show the estimated median of the point
estimates of γ, CP, ML, MR, ML/(ML +MR), DP and EP
of the two-sided 95% CIs of γ for the LR, Fieller’s and
delta methods against γ, with a = 0.1 and 0.3, p = 0.1 and
0.3, and ρ = 0 based on 10,000 replicates for n = 1,000
and 2,000, respectively. From these two tables, we find
that in all the cases considered, the median of γ̂ main-
tains very close to the true value of γ. As for the CI, the
LR and Fieller’s methods have similar performance in
the CP and the CPs of both methods are controlled
around 95%, regardless of the values of a, p, γ and n.
However, the CP of the delta method is underestimated
or overestimated in most of the considered situations.
The values of the ML/(ML +MR) for the LR and Fieller’s
methods generally stay close to 0.5, except for the cases
of p = 0.1 and n = 1,000, and the situations of γ = 0 and
2, while the ML/(ML +MR) of the delta method always
gets far way from 0.5. This indicates that the LR and
Fieller’s methods achieve more balance between ML and
MR than the delta method. The LR and Fieller’s
methods have comparable performance in the DP and

EP. The values of the DP of both methods are zero or
close to zero, except for p = 0.1 and γ = 0, which is indi-
cative of few discontinuous CIs to occur. However, the
EP results of the LR and Fieller’s methods show that
there still exist a few CIs which are empty sets or re-
duced to be a point. On the other hand, the DP and EP
of the delta method are zero for all the simulation set-
tings. This is because the CI based on the delta method
is always bounded and is a continuous interval. The ML/
(ML +MR), DP and EP of the LR and Fieller’s methods
appear not to be greatly affected by the values of a (0.1
or 0.3), while the LR and Fieller’s methods perform
worse in the ML/(ML +MR) and the DP when p = 0.1,
compared to those with p = 0.3. When the sample size
increases from 1,000 (Table 3) to 2,000 (Table 4), the LR
and Fieller’s methods have more balance of two tail er-
rors and the values of the DP for p = 0.1 and γ = 0 are
less. When γ= 0.5, 1 and 1.5, the values of the EP of both
methods with p = 0.3 are less than those with p = 0.1,
and the LR and Fieller’s methods with n = 2,000 have
smaller EP values than n = 1,000. However, when γ= 0
and 2, the corresponding values of the EP with p = 0.3
are a little larger than those with p = 0.1 and the values

Fig. 1 Estimated powers for the LR and Fieller’s methods against γ. The simulation is based on 10,000 replicates and 5% significance level with
n = 1,000, ρ = 0 and γ0 = 0. a a = 0.1, p = 0.1; b a = 0.1, p = 0.3; c a = 0.3, p = 0.1; d a = 0.3, p = 0.3
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of the EP with n = 2,000 are a little bigger than those
with n = 1,000. This may be because γ= 0 and 2 are the
endpoints of the interval [0, 2], which are the extreme
cases. The corresponding results of the median of γ̂ , CP,
ML, MR, ML/(ML +MR), DP and EP of the 95% CIs of
γ for the LR, Fieller’s and delta methods with ρ = 0.05
for n = 1,000 and 2,000 are given in Additional file 1: Ta-
bles S3 and S4, respectively. By comparing Table 3 with
Additional file 1: Table S3 (or comparing Table 4 with
Additional file 1: Table S4), we can see that the results
in both tables are similar to each other, which means
that the Hardy-Weinberg disequilibrium has no great ef-
fect on the point estimation and the interval estimation
of γ.

Application to MCTFR data
We applied the proposed LR, Fieller’s and delta methods
to the data from the MCTFR GWAS of Behavioral Dis-
inhibition for their practical use, and considered the fol-
lowing five quantitative traits: the nicotine composite
score, alcohol consumption composite score, alcohol de-
pendence composite score (DEP), illicit drug composite
score (DRG) and behavioral disinhibition composite

score (BD). The MCTFR data are made available for
download from the database of Genotypes and Pheno-
types (accession number: phs000620.v1.p1). In the
MCTFR data, there are 2183 families (7377 subjects con-
sisting of 3546 males and 3831 females), including 182
families with 1 member (182 subjects), 290 families with
2 members (580 subjects), 294 families with 3 members
(882 subjects), 1352 families with 4 members (5408 sub-
jects), and 65 families with 5 members (325 subjects).
Among them, nuclear families are composed of the par-
ents and two offspring who are monozygotic twins, full
biological non-twin siblings, adopted siblings and mixed
siblings with 1 biological offspring and 1 adopted off-
spring. Figure 7 shows more details of the family struc-
ture in the MCTFR data. Twelve thousand three
hundred fifty-four single nucleotide polymorphisms
(SNPs) on the X chromosome were genotyped. Note
that our proposed methods are applicable in the pres-
ence of association between the SNPs and the quantita-
tive traits of interest. So, we first conducted the
association analysis for each locus and each trait. When
only analyzing a single trait for all the 12,354 SNPs, the
significance level was set to be α′ = 0.05/12,354 = 4.047 ×

Fig. 2 Estimated powers for the LR and Fieller’s methods against γ. The simulation is based on 10,000 replicates and 5% significance level with
n = 1,000, ρ = 0 and γ0 = 1. a a = 0.1, p = 0.1; b a = 0.1, p = 0.3; c a = 0.3, p = 0.1; d a = 0.3, p = 0.3
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10−6 based on Bonferroni correction. When simultan-
eously analyzing multiple traits, Deng et al. [34] and
McGue et al. [41] fixed the significance level at 1 × 10−3

for their association analysis. Therefore, in this applica-
tion, we also used this significance level for the associ-
ation study when simultaneously considering multiple
traits. Then, we calculated the point estimate and the
corresponding CIs of the skewness of XCI at the 95%
confidence level for all the SNPs which are associated
with a single trait at the 4.047 × 10−6 level or are simul-
taneously associated with two or more traits at the 1 ×
10−3 level. However, we found that all these traits, and
the transformed traits (e.g., log(y + 1)) do not satisfy the
normality assumption. As such, we used the existing
Levene’s test [34] to detect the association between the
SNPs and the traits, which is robust to certain types of
non-normal distribution.
The following quality control rules are used to filter

the data. First, note that the proposed three methods for
the interval estimation of γ only utilize unrelated
females. On the other hand, although the adopted off-
spring in the nuclear families are biologically independ-
ent of their adopted parents, they might come from a

subpopulation which is different from that of their par-
ents. So, we deleted all the males in the data and all the
offspring in the nuclear families, including the biological
offspring and the adopted offspring. Second, genotyped
female individuals with missing genotype rate over 10%
were excluded. Third, the SNPs with missing genotype
rate over 10% were deleted. Finally, we applied the
PLINK software to carry out the HWE tests for SNPs
[44] and the significance level is set to be 1 × 10−4 [45].
The SNPs with the minor allele frequency (MAF) less
than 5% or those out of HWE were also excluded. As
such, a total of 1955 unrelated females and 11,355 SNPs
were included in this application.
The Levene’s test identified one SNP (rs17261621)

which is only associated with the DRG trait at the
4.047 × 10−6 level, two SNPs (rs792959 and rs17261621)
which are associated with both the DRG and BD traits
and three SNPs (rs4825722, rs4825726 and rs2196260)
which are associated with both the DEP and BD traits at
the 1 × 10−3 level. The corresponding P values of the
Levene’s test and the HWE test together with the pos-
ition, the MAF, the point estimates and the CIs of γ
based on the LR, Fieller’s and delta methods for these

Fig. 3 Estimated powers for the LR and Fieller’s methods against γ. The simulation is based on 10,000 replicates and 5% significance level with
n = 1,000, ρ = 0 and γ0 = 2. a a = 0.1, p = 0.1; b a = 0.1, p = 0.3; c a = 0.3, p = 0.1; d a = 0.3, p = 0.3
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five SNPs are given in Table 5. For the DRG trait and
the rs792959 locus, the point estimate of γ, and the 95%
CIs of the LR, Fieller’s and delta methods are 2, (1.0294,
2], (1.0293, 2] and [0, 2], respectively. For the BD trait
and the rs792959 locus, the point estimate of γ, and the
corresponding 95% CIs are 2, (1.0306, 2], (1.0304, 2] and
[0, 2], respectively. The CIs of the LR and Fieller’s
methods for the DRG and BD traits are very similar and
do not contain 1. Thus, γ̂ being 2 indicates that at
rs792959, 100% (2/2) of cells in heterozygous females
have allele G active, and 0% of cells express allele A,
which demonstrates the XCI-S towards allele G. How-
ever, the CIs of the delta method at rs792959 contain 1
(i.e., XCI-R). The conclusions drawn from the LR and
Fieller’s methods here are similar to those drawn from
our simulation study. However, the truncated point esti-
mate γ̂ is 2, which is the right endpoint of the interval
[0, 2]. This may be because the proposed LR and Fieller’s
methods require that the traits under study follow a nor-
mal distribution, while the DRG and BD traits are not
normally distributed. Further, all the CIs for the other
four SNPs contain 1, indicating random XCI. Particu-
larly, for the BD trait and the rs4825722 locus, the CIs

of the LR, Fieller’s and delta methods are [0, 2], which
provides no information on the XCI pattern.

Discussion
In this article, we extended the existing statistical meas-
ure for the degree of XCI skewing (i.e., γ) and the exist-
ing LR, Fieller’s and delta methods for constructing the
CIs of γ for qualitative traits [35], and made them suit-
able for quantitative traits. The proposed γ is a ratio of
two linear regression coefficients in the presence of asso-
ciation between the traits under study and the geno-
types. According to Ma et al. [32], XCI may cause
variance heterogeneity of the traits across different geno-
types in females. As such, we estimated the linear regres-
sion coefficients by incorporating the information on the
variance heterogeneity and then obtained the point esti-
mate of γ. The Fieller’s and delta methods for calculating
the CIs are simple and non-iterative procedures, while
the LR method is an iterative one which needs more
computing time. On the other hand, the hypothesis test-
ing of the LR, Fieller’s and delta methods was also inves-
tigated. We conducted extensive simulation studies (two
different values of additive effect, two groups of allele

Fig. 4 Estimated powers for the LR and Fieller’s methods against γ. The simulation is based on 10,000 replicates and 5% significance level with
n = 2,000, ρ = 0 and γ0 = 0. a a = 0.1, p = 0.1; b a = 0.1, p = 0.3; c a = 0.3, p = 0.1; d a = 0.3, p = 0.3
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frequencies, five different values of γ, two different sam-
ple sizes, and two different values of inbreeding coeffi-
cient) to assess the validity of the proposed methods.
Simulation results demonstrate that the median of the
point estimates of γ is very close to the pre-specified
true value of γ. The LR and Fieller’s methods have simi-
lar performance in the CP, ML/(ML +MR), DP and EP.
The CPs of both methods are controlled around 95% for
all the simulated scenarios, and the values of the ML/
(ML +MR) for both methods generally maintain close to
0.5, except for the cases of p = 0.1 and n = 1,000, and the
situations of γ = 0 and 2. Besides, both methods perform
better than the delta method in the CP and ML/(ML +
MR). On the other hand, the LR and Fieller’s methods
control the size well and almost have the same test pow-
ers. However, the type I error rate of the delta method is
inflated or conservative under most simulation settings.
This may be because the distribution of the point esti-
mate γ̂ is asymmetric after being cut off by 0 and 2, and

then
γ̂−γ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffidVarðγ̂Þq � Nð0; 1Þ is not so strictly correct. An-

other possible reason why the delta method performs so
poorly is that the first order Taylor expansion of γ̂ does
not suffice. To investigate the performance of the delta
method with higher order Taylor expansion, we used the
second order Taylor expansion of γ̂ to calculate the
asymptotic variance of γ̂ , which can be implemented in
the “propagate” package in R software [46]. However,
most of the estimated type I error rates for the delta
method are still inflated or conservative, even though
they appear to be controlled better than those in Tables
1 and 2 (data not shown for brevity). Therefore, in prac-
tical use, we recommend the Fieller’s method because it
is a non-iterative procedure and has the similar perform-
ance to the LR method.
So far, we are not aware of any association study for

the X-chromosomal SNPs in the MCTFR data. In fact,
we also found that all the five traits in the MCTFR data
are not normally distributed. On the other hand, when
simultaneously analyzing multiple traits for the X-
chromosomal SNPs, Deng et al. [34] fixed the signifi-
cance level at 1 × 10−3 for their association analysis. So,
in our real data application, we used the existing

Fig. 5 Estimated powers for the LR and Fieller’s methods against γ. The simulation is based on 10,000 replicates and 5% significance level with
n = 2,000, ρ = 0 and γ0 = 1. a a = 0.1, p = 0.1; b a = 0.1, p = 0.3; c a = 0.3, p = 0.1; d a = 0.3, p = 0.3
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Levene’s test [34] to test for the association between the
X-chromosomal SNPs and the five traits at the signifi-
cance level of 1 × 10−3, which does not require the nor-
mality assumption for the traits. However, when only
analyzing a single trait for all the 12,354 SNPs, the sig-
nificance level is set to be α′ = 0.05/12,354 = 4.047 × 10−6

based on Bonferroni correction. One SNP (rs17261621)
is shown to be only associated with the DRG trait at the
4.047 × 10−6 level, two SNPs (rs792959 and rs17261621)
are identified to be associated with both the DRG and
BD traits, and three SNPs (rs4825722, rs4825726 and
rs2196260) are found to be associated with both the
DEP and BD traits at the 1 × 10−3 level. In addition, we
applied the proposed LR, Fieller’s and delta methods to
these five SNPs and calculated the CIs of the skewness
of XCI at the 95% confidence level. The CIs based on
the LR and Fieller’s methods show that only rs792959
undergoes XCI-S. However, these conclusions need to
be further confirmed by molecular genetics. On the
other hand, the proposed LR and Fieller’s methods re-
quire that the traits under study follow a normal distri-
bution, while the DEP, DRG and BD traits are not
normally distributed. Since we have no suitable data of

this kind available, it is of future interest to apply the
three proposed methods to datasets with traits following
normal distributions and to further confirm their prac-
tical use.
Besides, the proposed methods have the following

issues to discuss. First, to make the point estimate
and the CIs of γ more interpretable, we simply use
the interval [0, 2] to truncate the original point esti-
mate and the original CIs, which may cause potential
loss of information, and may also lead to the trun-
cated CIs being empty sets when the original CIs lie
outside [0, 2]. Fortunately, from our simulation study,
the proportion of the CIs being empty sets or being
reduced to be a point among all the simulation repli-
cations is all less than 2.7%. On the other hand, to
incorporate the interval constraint of [0, 2] into statis-
tical inference, we will develop a future Bayesian
method to estimate the skewness of XCI by consider-
ing such constraint as prior information. Second, the
proposed methods require the association between
the traits and the SNPs being present. As such, in
genome-wide association study, we could regard the
screening of the associated SNPs as a preliminary step

Fig. 6 Estimated powers for the LR and Fieller’s methods against γ. The simulation is based on 10,000 replicates and 5% significance level with
n = 2,000, ρ = 0 and γ0 = 2. a a = 0.1, p = 0.1; b a = 0.1, p = 0.3; c a = 0.3, p = 0.1; d a = 0.3, p = 0.3
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before estimating the skewness of XCI. If such asso-
ciation is not statistically significant, the LR and
Fieller’s methods may result in the discontinuous
CIs, which is difficult to interpret. Third, the nor-
mality assumption of the traits under study is
needed in the proposed methods. In future, we will
extend them to accommodate the traits not normally
distributed. Finally, the proposed methods are only

applicable to unrelated female subjects. Thus, we will
extend the proposed methods and make them suit-
able for data with family or pedigree structure in fu-
ture studies.

Conclusions
We recommend the Fieller’s method in practical use be-
cause it is a non-iterative procedure and almost has the

Fig. 7 Structure of Minnesota Center for Twin and Family Research data

Table 5 Application of the LR, Fieller’s and delta methods to the MCTFR data for the SNPs associated with at least two traits at the
1 × 10−3 significance level

Allele P value 95% CI

SNP Position Minor Major MAF HWE test Levene’s test Traits γ̂ LR Fieller Delta

rs792959 67,891,800 G A 0.210 0.891 7.315 × 10−4 DRG 2 (1.0294, 2] (1.0293, 2] [0, 2]

rs792959 67,891,800 G A 0.210 0.891 7.945 × 10−5 BD 2 (1.0306, 2] (1.0304, 2] [0, 2]

rs4825722 119,728,451 A G 0.164 0.458 6.695 × 10−4 DEP 1.0048 (0.2423, 2] (0.2423, 2] [0, 2]

rs4825722 119,728,451 A G 0.164 0.458 8.157 × 10−5 BD 0.8540 [0, 2] [0, 2] [0, 2]

rs4825726 119,760,628 A G 0.219 0.074 1.856 × 10−4 DEP 0.8474 (0.1382, 2] (0.1381, 2] [0, 1.8975)

rs4825726 119,760,628 A G 0.219 0.074 1.411 × 10−5 BD 1.2677 (0.2400, 2] (0.2397, 2] [0, 2]

rs17261621 119,761,122 A C 0.123 0.599 2.879 × 10−6 DRG 0.2851 [0, 1.2309) [0, 1.2315) [0, 0.6682)

rs17261621 119,761,122 A C 0.123 0.599 2.310 × 10−5 BD 0.4834 (0.0028, 2] (0.0025, 2] [0, 1.1449)

rs2196260 119,761,909 G A 0.215 0.070 5.501 × 10−5 DEP 0.7413 (0.0839, 2] (0.0836, 2] [0,1.6696)

rs2196260 119,761,909 G A 0.215 0.070 2.486 × 10−5 BD 1.3667 (0.2527, 2] (0.2523, 2] [0, 2]
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same performance as the LR method. On the other
hand, only rs792959, which is identified to be associ-
ated with both the DRG and BD traits, may undergo
XCI-S, which needs to be confirmed by molecular
genetics.

Methods
Notations and point estimate of γ
Consider an X-linked diallelic QTL. Let D and d rep-
resent the mutant allele and the normal allele at the
QTL with the frequencies being p and q (p + q = 1),
respectively. Note that XCI is unrelated to males and
we only consider females here. Then, there are three
possible genotypes dd, Dd and DD at the QTL in
females. The corresponding frequencies are g0 = q2 +
ρpq, g1 = 2(1 − ρ)pq and g2 = p2 + ρpq, respectively,
where ρ is the inbreeding coefficient. ρ = 0 means that
Hardy-Weinberg equilibrium (HWE) holds in the fe-
male population, while ρ ≠ 0 denotes Hardy-Weinberg
disequilibrium. Suppose that Y and G are the value of
the quantitative trait under study and the genotype of
a female subject, respectively. Notice that XCI may
lead to variance heterogeneity of Y across different
genotypes [32]. So, we assume that Y jG¼dd � Nðμ0; σ2

0

Þ , Y jG¼Dd � Nðμ1; σ21Þ and Y jG¼DD � Nðμ2; σ2
2Þ: Fur-

ther, let X1 = I{G =Dd or DD} and X2 = I{G =DD}. As such,
X1 denotes that this female carries at least one mu-
tant allele D and X2 indicates that she is a homozy-
gote DD. Then, to construct the statistical measure of
the skewness of XCI, we consider the following linear
regression model

E Yð jX1;X2;ZÞ ¼ β0 þ β1X1 þ β2X2 þ bTZ; ð1Þ

where Z is a vector of covariates which need to be
adjusted, β0 is the intercept, β1 and β2 respectively are
the regression coefficients of X1 and X2, and b is a vec-
tor of the regression coefficients for Z. From Eq. (1),
we have μ0 = β0 + bTZ, μ1 = β0 + β1 + bTZ and μ2 = β0 +
β1 + β2 + bTZ. Under XCI-R, μ1 should lie midway be-
tween μ0 and μ2, which is β0 þ β1þβ2

2 þ bTZ . Hence, for
heterozygous females, any statistically significant devi-
ation from such value can be regarded as an evidence

of XCI-S. This is equivalent to that μ1−μ0
μ2−μ0

¼ β1
β1þβ2

is far

away from 0.5. Therefore, we define the following
parameter γ to measure the skewness of XCI

γ ¼ 2β1
β1 þ β2

; γ∈ 0; 2½ �; ð2Þ

with β1 + β2 ≠ 0. And θ = γ/2, on the average, is
indicative of the proportion of cells in a Dd female
keeping the mutant allele D active. Thus, γ = 1 de-
notes XCI-R. 1 < γ ≤ 2 means the XCI-S towards D

and 0 ≤ γ < 1 represents the XCI-S against D. For
example, when γ = 1.5, then θ = 75%, which means
that 75% cells have mutant allele D active and the
other 25% cells express the normal allele d.
Let β = (β1 + β2)/2, then γ = β1/β. In this regard, we

obtain β1 = γβ and β2 = (2 − γ)β, where β ≠ 0. Let X = γX1 +
(2 − γ)X2, then Eq. (1) becomes

E Yð jX1;X2;ZÞ ¼ β0 þ γβX1 þ 2−γð ÞβX2 þ bTZ¼β0 þ βX þ bTZ:

ð3Þ

Here, the genotypic value X equals 0, γ and 2 for geno-
types dd, Dd and DD, respectively, which implies that
the definition of γ coincides with the coding strategy of
Wang et al. [27] for XCI. On the other hand, from
Eq. (2), we observe that γ can be well defined when
the association between Y and the allele of interest is
present (i.e., β ≠ 0).
Assume that we collect a sample of n independent

females. Let n0, n1 and n2 be the number of females
with genotypes dd, Dd and DD, respectively. So, n0 +
n1 + n2 = n. Let yij, xij1, xij2 and zij denote the values
of Y, X1, X2 and Z of female j (j = 1, 2,⋯, ni), where
i = 0, 1, 2 respectively correspond to genotypes dd,
Dd and DD. According to Eq. (1), the log-likelihood
function of the sample is

l1 β0; β1; β2; σ0; σ1; σ2; b
� � ¼ −

X2

i¼0
ni logσ i−

Xn0

j¼1

y0 j−β0−b
Tz0 j

� �2
2σ2

0

−
Xn1

j¼1

y1 j−β0−β1−b
Tz1 j

� �2
2σ2

1

−
Xn2

j¼1

y2 j−β0−β1−β2−b
Tz2 j

� �2
2σ2

2
−n log

ffiffiffiffiffiffi
2π

p� �
:

Then, by maximizing the above equation, the maximum

likelihood estimates β̂0; β̂1; β̂2; σ̂0; σ̂1; σ̂2 and b̂ of β0, β1, β2,
σ0, σ1, σ2 and b can be derived. As such, according to Eq. (2),

the point estimate of γ can be given as
2β̂1

β̂1þβ̂2

. Notice that γ is

bounded in [0, 2]. Then, the final point estimate of γ is cut
off by 0 and 2, and denoted by γ̂.

Confidence interval of γ
Here, we extend the three methods proposed by
Wang et al. [35] to construct the CI of γ to quanti-
tative traits as follows. To obtain the CI of γ based
on the LR method, we first develop a likelihood ratio
test for testing the null hypothesis H0 : γ = γ0 below,
where γ0 ∈ [0, 2] is a pre-specified constant, e.g., γ0 =
1 (XCI-R). From Eq. (3), the log-likelihood function
of the sample under H0 is
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l0 β0; β; σ0; σ1; σ2; b
� � ¼ −

X2

i¼0
ni logσ i−

Xn0

j¼1

y0 j−β0−b
Tz0 j

� �2
2σ2

0

−
Xn1

j¼1

y1 j−β0−γ0β−b
Tz1 j

� �2
2σ2

1

−
Xn2

j¼1

y2 j−β0−2β−b
Tz2 j

� �2
2σ2

2
−n log

ffiffiffiffiffiffi
2π

p� �
:

By maximizing the above equation, the maximum likeli-

hood estimates ~β0; ~β; ~σ0; ~σ1; ~σ2 and ~b of β0, β, σ0, σ1, σ2 and
b under H0 can be obtained. So, the likelihood ratio test is

λ γ0
� � ¼ 2 l1 β̂0; β̂1; β̂2; σ̂0; σ̂1; σ̂2; b̂

� �
−l0 ~β0; ~β; ~σ0; ~σ1; ~σ2; ~b
� �� �

;

which asymptotically follows the chi-square distribution
with the degree of freedom being one (i.e., χ21).
Then, the 100(1 − α)% CI of γ based on λ(γ0) is fγ0 : P

ðλðγ0Þ < χ21−α;1Þg and the confidence limits satisfy

f γ0
� � ¼ λ γ0

� �
−χ21−α;1 ¼ 0: ð4Þ

That is, the 100(1 − α)% CI of γ is the interval satisfying
f(γ0) < 0. Note that γ should be bounded in [0, 2]. As such,
the bisection method is applied to find all the roots of Eq.
(4) within [0, 2] by using the “rootSolve” package in R soft-
ware [46]. This indicates that the LR method is an iterative
procedure. If Eq. (4) has no root in [0, 2] and f(γ0) < 0, the
CI is taken to be [0, 2]. On the contrary, when Eq. (4) has
no root in [0, 2], but f(γ0) > 0, the resulting CI is an empty
set. When Eq. (4) has only one root γLR in [0, 2] and
f(γ0) ≥ 0, the CI is reduced to be a point. When Eq. (4) has
only one root γLR in [0, 2] and f(0)f(2) < 0, there are two
different situations. If f(0) > 0 and f(2) < 0, then f(γ0) < 0
will be satisfied within (γLR, 2] and the CI is taken as (γLR,
2]; otherwise, the CI is set to be [0, γLR). When Eq. (4) has
two unequal roots γLRL and γLRU in [0, 2] with γLRL < γLRU ,
f(γ0) < 0, γ0∈ðγLRL ; γLRU Þ means that the CI is ðγLRL ; γLRU Þ .
Otherwise, the CI is ½0; γLRL Þ∪ðγLRU ; 2�, the union of two dis-
joint intervals, which is a discontinuous CI.
Since γ̂ is a ratio estimate, borrowing the idea of Wang

et al. [35], we find that the standard error of γ̂ can be
approximated by using the delta method. Specifically,
take a first order Taylor expansion of γ around the point

(β1, β) and evaluate it at ðβ̂1; β̂Þ , which yields γ̂ ≈ β1
β

þðβ̂1−β1Þ 1β−ðβ̂−βÞ
β1
β2
, where β̂ ¼ β̂1þβ̂2

2 . Then,

Var γ̂ð Þ ¼ 1

β2
Var β̂1
� �

þ β21
β4

Var β̂
� �

−
2β1
β3

Cov β̂1; β̂
� �

; ð5Þ

where Varðβ̂Þ ¼ Varðβ̂1 þ β̂2
2

Þ ¼ 1
4
½Varðβ̂1Þ þ Varðβ̂2Þ þ 2

Covðβ̂1; β̂2Þ� and Covðβ̂1; β̂Þ ¼ Covðβ̂1;
β̂1 þ β̂2

2
Þ ¼ 1

2
Varð

β̂1Þ þ
1
2
Covðβ̂1; β̂2Þ . Here, Varðβ̂1Þ , Varðβ̂2Þ and Covðβ̂1;

β̂2Þ are the elements of the variance-covariance matrix of

β̂1 and β̂2 , which can be computed by using the “glm”
function in R software [46]. Respctively replacing β1 and β

by β̂1 and β̂ in Eq. (5), we get the estimate of the variance

of γ̂ as dVarðγ̂Þ ¼ 1

β̂
2 Varðβ̂1Þ þ

β̂
2
1

β̂
4 Varðβ̂Þ−

2β̂1

β̂
3 Covðβ̂1; β̂Þ .

From the fact that
γ̂−γ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffidVarðγ̂Þq � Nð0; 1Þ asymptotically, the

100(1 − α)% CI of γ based on the delta method is ðγ̂−zα=2ffiffiffiffiffiffiffiffiffiffiffiffidVarðγ̂q
Þ; γ̂ þ zα=2

ffiffiffiffiffiffiffiffiffiffiffiffidVarðγ̂q
ÞÞ∩½0; 2� , where zα/2 is the

upper α/2 quantile of the standard normal distribution.
Now, we consider the CI of γ based on the Fieller’s

method, just like Wang et al. [35]. Under H0 : γ = γ0, we
have β1 − γ0β = 0. Then, we can construct the following
Wald test for testing H0 : γ = γ0

β̂1−γ0β̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var β̂1
� �

þ γ20Var β̂
� �

−2γ0Cov β̂1; β̂
� �r � N 0; 1ð Þ:

The confidence limits of the 100(1− α)% CI based on the

Fieller’s method satisfy β̂1−γ0β̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðβ̂1Þþγ20Varðβ̂Þ−2γ0Covðβ̂1; β̂Þ

q ¼ zα=2 ,

which is equivalent to the quadratic equation Aγ20 þ Bγ0
þC ¼ 0 with respect to γ0. Here, A ¼ β̂

2
−z2α=2Varðβ̂Þ , B

¼ 2z2α=2Covðβ̂1; β̂Þ−2β̂1β̂ and C ¼ β̂1
2
−z2α=2Varðβ̂1Þ . As-

sume that Δ = B2 − 4AC. From Fieller’s theorem, A > 0 im-

plies Δ > 0. Further, A > 0 and jβ̂=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðβ̂Þ

q
j > zα=2 are

equivalent to each other, which mean that the association
is present at the significance level of α. In addition, when
Δ = 0 or A = 0, the CI is reduced to a point. As such, the
100(1 − α)% CI based on the Fieller’s method is

−B−
ffiffiffiffi
Δ

p

2A
;
−Bþ ffiffiffiffi

Δ
p

2A

 !
∩ 0; 2½ �; if Δ > 0 and A > 0

−∞;
−Bþ ffiffiffiffi

Δ
p

2A

 !
∪

−B−
ffiffiffiffi
Δ

p

2A
;þ∞

 ! !
∩ 0; 2½ �; if Δ > 0 and A < 0

0; 2½ �; if Δ < 0 and A < 0

8>>>>>><
>>>>>>:

It should be noted that if Δ > 0, the above CI may be
an empty set. When Δ > 0 and A < 0, the corresponding
CI may be the union of two disjoint intervals, which is
the discontinuous CI.

Simulation settings
For simplicity, we do not include any covariate in the
model. The frequency p of allele D at the locus on X
chromosome is fixed at 0.1 and 0.3. The inbreeding
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coefficient ρ is taken as 0 and 0.05 to respectively simu-
late the situation of HWE and that of Hardy-Weinberg
disequilibrium. Let β0 = 0.1 and β = 0.3. Further, β1 = γβ
and β2 = (2 − γ)β are calculated from β = 0.3 and γ, where
γ takes values of 0, 0.5, 1, 1.5 and 2. γ0 is also assigned
to be 0, 0.5, 1, 1.5 and 2 with γ = γ0 to simulate the type
I error rates of the proposed methods and γ ≠ γ0 for
simulating the their test powers. As mentioned in Ma
et al. [32], the variance σ2

1 of the trait value for heterozy-
gous females is generally larger than σ2

0 and σ22 for
homozygous females due to XCI. So, we set σ20 ¼ σ22 ¼ 1,
and σ21 ¼ θð1−θÞa2 þ 1:1, where a is the additive effect of
the QTL, θ = γ/2 is the inactivation ratio as mentioned be-
fore, and the variance caused by other factors is fixed to
be 1.1. Here, a is set to be 0.1 and 0.3. The sample size n
is selected to be 1,000 and 2,000. The genotype of each fe-
male is simulated according to the allele frequency p and
the inbreeding coefficient ρ. Then, the trait value Y of this
female given her genotype is generated by Y jG¼dd � Nðβ0
; σ20Þ , Y jG¼Dd � Nðβ0 þ β1; σ

2
1Þ or Y jG¼DD � Nðβ0 þ β1

þβ2; σ
2
2Þ . For each simulation setting, the simulations are

conducted based on K = 10,000 replications and the sig-
nificance level α is fixed at 5%. The simulation study is im-
plemented in R software (version 3.2.5) [46].
Notice that the distribution of the point estimate γ̂

may be asymmetric. So, we list the median of γ̂ ’s over K
replications to describe the central tendency of this
skewed distribution. We assess the statistical properties
of the CIs of γ by the following indexes. The coverage
probability (CP) is the proportion that the CIs contain
the true value γ among K replications, irrespective of the
CI being continuous or discontinuous. DP and EP are
the proportion of the discontinuous CIs and that of the
CIs being an empty set or being reduced to be a point
among K replications, respectively. Simulation study is
also carried out to investigate the probabilities of the CI
missing the true value γ on the left (ML) and on the
right (MR), and the value of the ratio ML/(ML +MR),
which is close to 0.5 when the balance between ML and

MR is achieved. Here, ML ¼ #½ðγ<γLÞ∩ðγL ≤ γ̂≤γUÞ�
K and MR

¼ #½ðγ>γU Þ∩ðγL ≤ γ̂≤γUÞ�
K , where # is the counting measure

and (γL, γU) ’s are the continuous CIs. We only consider
the continuous CIs when computing the ML and MR,
because we cannot distinguish between the left side and
the right side of the discontinuous CIs.
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