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Abstract

With the steadily increasing abundance of longitudinal neuroimaging studies with

large sample sizes and multiple repeated measures, questions arise regarding the

appropriate modeling of variance and covariance. The current study examined the

influence of standard classes of variance–covariance structures in linear mixed

effects (LME) modeling of fMRI data from patients with pediatric mild traumatic

brain injury (pmTBI; N = 181) and healthy controls (N = 162). During two visits,

participants performed a cognitive control fMRI paradigm that compared

congruent and incongruent stimuli. The hemodynamic response function was

parsed into peak and late peak phases. Data were analyzed with a 4-way

(GROUP�VISIT�CONGRUENCY�PHASE) LME using AFNI's 3dLME and compound

symmetry (CS), autoregressive process of order 1 (AR1), and unstructured

(UN) variance–covariance matrices. Voxel-wise results dramatically varied both

within the cognitive control network (UN>CS for CONGRUENCY effect) and broader

brain regions (CS>UN for GROUP:VISIT) depending on the variance–covariance

matrix that was selected. Additional testing indicated that both model fit and

estimated standard error were superior for the UN matrix, likely as a result of the

modeling of individual terms. In summary, current findings suggest that the interpre-

tation of results from complex designs is highly dependent on the selection of the

variance–covariance structure using LME modeling.
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1 | INTRODUCTION

As the field of neuroimaging progresses, there is increasing recogni-

tion of the need for prospective studies with large sample sizes (N) to

address questions about longitudinal changes in brain functioning,

which may vary across groups, time, and experimental contexts

(Madhyastha et al., 2018; Mayer et al., 2022; Thompson et al., 2020).

Several reviews have discussed the benefits and issues associated
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with the analyses of large N neuroimaging datasets (Smith

et al., 2015; Smith & Nichols, 2018; Thompson et al., 2014), and much

consideration has been given to the impact of covariance (autocorre-

lation) in single-subject functional magnetic resonance imaging (fMRI)

timeseries data (Monti, 2011). In contrast, the statistical quandaries

associated with modeling both variance and covariance in complex

imaging designs with multiple repeated measures (hereafter referred

to as Level II analyses) remain a relatively understudied topic (Chen

et al., 2013; Madhyastha et al., 2018).

Specifically, it is known that most neuropsychiatric disease states

will exhibit increased variance relative to typical control groups (Yang

et al., 2014), and it is increasingly recognized that there are differ-

ences in variance and covariance based on biological sex and other

host factors (Dennis et al., 2021; Ewing-Cobbs et al., 2016). For cross-

sectional analyses or analyses with only fixed effects, this does not

impose any problems when selecting an appropriate variance–

covariance matrix (also commonly referred to as covariance matrix as

well as correlation matrix in various statistical notations) (Chen

et al., 2013). However, for studies that incorporate multiple repeated

measures, specifying the most appropriate variance–covariance struc-

ture of the data becomes pivotal. The variance–covariance structure

of imaging data may vary due to time-dependent changes in the vari-

able of interest as a result of disease-specific neurodegeneration,

recovery from injury or secondary to typical aging (Madhyastha

et al., 2018; Weiner et al., 2010). Similarly, different variance–

covariance structures may be superimposed on repeat assessment or

practice effects due to secondary disease processes, such as the

inability to learn as a result of dementia (Jahn, 2013).

These factors require a more nuanced consideration of the

variance–covariance matrix utilized to model neuroimaging data

(Smith & Nichols, 2018; Thompson et al., 2014). There are currently

few imaging programs that allow users to select different variance–

covariance matrices for Level II analyses across common neuroimag-

ing software platforms (FSL, AFNI and SPM), that permit choices to

account for missing data (missing at random versus missing

completely at random), that model random in addition to fixed effects,

and that specify cross-nested effects (Chen et al., 2013; Madhyastha

et al., 2018). The current study therefore examined the effects of

variance–covariance matrix selection on fMRI data using both AFNI's

3dLME program and the “Linear and Nonlinear Mixed Effects Models

(nlme) package” in R (Chen et al., 2013; Pinheiro & Bates, 2023; R

Core Team, 2023). These experiments were conducted using data

from a recently published, large N (343 participants) task-based fMRI

study on pediatric mild traumatic brain injury (pmTBI) (van der Horn

et al., 2023).

2 | METHODS

The current study used an identical sample, identical preprocessing

methods, and identical Level I deconvolution analyses as a previous

publication (van der Horn et al., 2023). Briefly, 181 patients with

pmTBI (ages 8–18 years; N = 136 returning for follow-up) and

162 healthy controls (HC; N = 147 returning) were studied at two

time points (subacute (SA): �1 week, and early chronic (EC):

�4 months post-injury; VISIT = 1st repeated measures factor) with

similar intervals for HC. The distribution of sex (χ2 = 0.2, p = .66) and

age (t = �1.06, p = .29) was similar for the two groups. During a mul-

timodal fMRI-paradigm, participants attended to either auditory or

visual stimuli (modeled separately) while ignoring congruent or incon-

gruent stimuli in the opposite modality (CONGRUENCY = 2nd

repeated measures factor). Only data from the auditory condition

were examined in the current investigation. The hemodynamic

response function (HRF) for attending to auditory probes was further

decomposed into peak and late peak phases (PHASE = 3rd repeated

factor). Level II analyses were conducted with a full hierarchical 4-way

[GROUP (pmTBI vs. HC) � VISIT (SA vs. EC) � CONGRUENCY

(Congruent vs. Incongruent) � PHASE (Peak vs. Late Peak)] linear

mixed effects model, with inclusion of mean framewise displacement

(FD) as a (fixed) nuisance covariate, and estimation of subject-specific

intercept random effects. Models were fit using AFNI's 3dLME pack-

age, which uses the nlme package in R with type III sums of squares

(i.e., marginal effects) tests to obtain F-statistics for the individual

model terms. Mathematic details on modeling in 3dLME can be found

in the original publication by Chen and colleagues (Chen et al., 2013).

The following repeated measures data order was used for all ana-

lyses as in our previous publication (van der Horn et al., 2023): Visit,

Phase, then Congruency (hereafter referred to as Order 1).1 Analyses

were run on a GPU server and the number of jobs in 3dLME was set

at 20. Results were family-wise error corrected at a two-sided statisti-

cal threshold of α = 0.001, and a cluster volume ≥711 μL, which was

computed using Monte Carlo simulation (10,000 iterations) and spher-

ical autocorrelation estimates (Cox et al., 2017).

The nlme package fits linear and nonlinear mixed effects models

when dealing with hierarchical or nested data structures, where

experimental factors or overlapping conditions group data points. The

computational methods of the nlme package follow the general frame-

work of Lindstrom and Bates (Lindstrom & Bates, 1988). The model

formulation is described in (Laird & Ware, 1982). The variance–

covariance parametrizations are described in (Pinheiro & Bates, 1996).

The different correlation structures available for the correlation argu-

ment are described in other publications (Box et al., 1994; Littell

et al., 1996; Venables & Ripley, 2002). The use of variance functions

for linear and nonlinear mixed effects models has also been previously

presented in detail (Marie Davidian, 1995). Standard classes of

variance–covariance matrices can be specified in the nlme package

(Figure 1), such as compound symmetry (CS) corresponding to a con-

stant correlation, autoregressive process of order 1 (AR1), and

unstructured (UN) correlation. The estimated structure for each

variance–covariance matrix can be found in Figure 2a. Note that nlme

computes a correlation and not a variance–covariance matrix.

1The order of variables can have a large influence on the results in the R nlme package due to

manual specification of the input data. In contrast, ordering is performed automatically in

other statistical programs such as SPSS or MATLAB and therefore does not result in ordering

effects.
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However, for readability, the term variance–covariance matrix is used

throughout the manuscript.

The precompiled AFNI 3dLME program only implemented the CS

(default) and AR1 variance–covariance structures. The current study

therefore modified the 3dLME source code to specify UN. The

modified code can be found on GitHub (https://github.com/jling-NM/

Different-Covariance-Structures-in-Linear-Mixed-Effects-Modeling-

of-fMRI-Data), and Supporting Information contains detailed instruc-

tions for running the code. In addition, the developers of AFNI have

indicated that a new version of 3dLME (named 3dLME2) will be forth-

coming that will also support the implementation of an unstructured

covariance matrix. For AR1 and UN, variance–covariance structures

can be manually specified as follows:

AR1:

Correlation¼ corAR1 0:3,form¼�1jSubjectð Þ

Note that the correlation needs to be manually specified for AR1,

and the default in 3dLME is 0.3.

UN:

Correlation¼ corSymm form¼�1jSubjectð Þ

In case of a UN variance–covariance matrix, the total formula in

the nlme package would be:

lme y�GROUP�VISIT�CONGRUENCY�PHASEþmeanFD; randomð
¼ �1jSubjectð Þ,correlation¼ corSymm form¼�1jSubjectð ÞÞ

AR1 was included in the current manuscript for investigatory pur-

poses only. Specifically, AR1 is not an appropriate variance–

covariance matrix for the current dataset, given that there are multiple

repeated measures rather than a single repeated measure with more

than 2 levels and a decreasing correlation structure.

In addition to whole-brain voxel-wise analyses, the effects of

variance–covariance matrix selection were examined using a repre-

sentative voxel within the right precuneus/cingulate cortex (Talairach

coordinates x = 7, y = �44, z = 34). A full 4-way interaction model

was fit for each variance–covariance structure using a specified order

(VISIT, PHASE, then CONGRUENCY). For each main effect and inter-

action, the t-value, parameter estimate and standard error were plot-

ted. The Akaike Information Criterion (AIC) is reported for all single

voxel results as a metric of overall model fit.

Brain overlays were made using AFNI (Cox, 1996). Binary masks for

specific model terms were made using AFNI's 3dcalc; voxel F-value dumps

were performed using AFNI's 3dmaskdump (Cox, 1996). Plots were made

using the R ggplot2 package (R Core Team, 2023; Wickham, 2016).

All study procedures were conducted according to the declaration

of Helsinki. All participants provided written informed consent

(i.e., parents and children aged 18 years) or assent (children less than

18 years) in accordance with the University of New Mexico School of

Medicine guidelines.

3 | RESULTS

3.1 | Whole-brain voxel-wise results

Runtimes for the models using CS, AR1 and UN were 3, 17, and

386 h, respectively. Figure 3 shows the output of whole-brain voxel-

wise analyses that were run in 3dLME using CS, AR1, and UN

variance–covariance structures. Large differences in activation were

observed for the CONGRUENCY and GROUP:VISIT terms for the CS

and UN matrices, with AR1 showing intermediate effects. F-values for

all activated voxels were also visualized using boxplots. For the CS

matrix, F-values were relatively lower for the CONGRUENCY effect

F IGURE 1 Matrix structure for compound symmetry (CS), first
order autoregressive (AR1) and unstructured (UN) as used in the
current study. Note that correlation instead of variance–covariance
matrices are depicted, that is, ones instead of variances on the
diagonal and correlations instead of covariances on the off-diagonal.
The number of parameters correspond to the number of estimated
covariances (i.e., off diagonal correlations).
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and higher for GROUP:VISIT effect, while the opposite pattern was

observed for the UN matrix. From a cognitive neuroscience perspec-

tive, robust activation of the salience and executive control networks,

collectively also denoted as the cognitive control network, was

expected for the Incongruent vs. Congruent contrast, which

was observed for the UN but not CS variance–covariance matrix.

These results demonstrate that inferences about the longitudinal

effects of neuropsychiatric conditions on brain activation during pro-

cessing of multimodal information are highly dependent on the

selected variance–covariance matrix.

F IGURE 2 Summary statistics and model parameters for the three variance–covariance structures for a single voxel located in the right
precuneus. Panel a shows the variance–covariance structures and Akaike Information Criterion (AIC). The t-statistics, estimates (unstandardized
beta coefficients) and standard errors are plotted in Figure 2b–d, exhibiting the inverse relationship between the t-values and standard errors.
Note the piecewise linear y-axis scales in Panels c and d.
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No main effects were found for Group in any of the covariance

structures. For full results with regard to the effects of pmTBI, we

refer the reader to our previously published work on the same sample

(van der Horn et al., 2023).

3.2 | Single voxel results

Figure 2 displays variance–covariance matrices, t-values, model coeffi-

cients and standard error of the mean for the three covariance struc-

tures within a single voxel located in the right precuneus. Panel a

indicates that the AIC was over 3000 units less for the UN

(AIC = 3410) compared to the CS (AIC = 6638) variance–covariance

matrix, suggesting that the additional complexity for estimating indi-

vidual variance/covariance parameters in the UN matrix justified the

reduction in degrees-of-freedom. The magnitudes of the t-statistics,

coefficient estimates and standard errors are plotted in Figure 2b–d,

demonstrating large differences in effects for both repeated measures

and interaction terms based on the variance–covariance matrix

selected (i.e., comparing main effect of CONGRUENCY versus

GROUP:VISIT interaction terms) similar to results obtained in whole-

brain analyses. For the VISIT and GROUP:VISIT terms, the standard

errors are higher for UN, while for the CONGRUENCY and the other

interaction terms the standard errors are equal or lower for UN com-

pared to the other covariance structures. Standard error terms are

inversely related to the t statistics (t = estimated coefficient/

estimated standard error of the coefficient), and are therefore likely

driving some of the differences across variance/covariance structures

given that the standard error represents the denominator in formula

for t- and F-values. The differences in results across the various

variance–covariance structures are likely to be caused by the fact that

both CS and AR1 impose constraints on covariance estimation, while

UN does not. Furthermore, mean FD has the highest t-values and

parameter estimates for UN relative to other variance–covariance

structures, which indicates more accurate modeling of noise sources

such as head motion.

Figure 4 illustrates the importance of interpreting the contrasts

rather than the parameter estimates when (insignificant) higher-order

interactions are retained in the model for the purpose of model uni-

formity over many voxels. A contrast is a linear combination of param-

eters whose coefficients add up to zero, allowing comparison of

different conditions. In the current model all terms are binary, with

the exception of mean FD (which is continuous). Baseline levels of

these binary predictors are included in the model intercept. Thus, the

main effect of GROUP is the difference between the patient group

versus the baseline control group (contrast = pmTBI � HC). While sig-

nificance (t-statistics and p-value) are equal for the estimate and con-

trast, the contrast “averages out” the portions of the effect

potentially explained by higher-order interaction estimates (i.e., the

marginal means with type III sum of squares). The contrasts are often

larger in magnitude and more variable than the estimates. Similarly,

two-way interactions estimate the “difference of differences.” For

example, for the GROUP:VISIT interaction term, the contrast is the

difference between patient group vs. control group at Visit 2 com-

pared to that same difference at Visit 1, contrast = [pmTBI(V2) �
HC(V2)] � [pmTBI(V1) � HC(V1)].

From the contrast plots in Figure 4, it can be observed that the

standard error for the CONGRUENCY term is higher for CS than for

F IGURE 3 3dLME output showing differences in whole brain activation between CS, AR1 and UN for the CONGRUENCY and GROUP:VISIT
terms (thresholded at p = .001). Additionally, boxplots for F-values are shown at the right for both terms. For the CONGRUENCY term, F-values
were plotted based on a mask from the UN model whereas for the GROUP:VISIT interaction it was done based on the CS model.
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UN, while the opposite is true for the GROUP:VISIT term. Further-

more, the standard errors are also much lower for the 2-way interac-

tions that include the CONGRUENCY term in the UN versus CS

matrices.

Figures S1 and S2 (in Supporting Information) present differences

both between and within the various variance–covariance matrices

depending on the selected ordering of repeated measures terms.

While this effect appears to be unique to the nlme R package relative

to other tested statistical packages (i.e., SPSS version 20 and MATLAB

version R2019b) due to the ability for the user to specify factor order-

ing, it can have a significant impact on findings. While this was

expected for the AR1 variance–covariance matrix, the large differ-

ences observed in Figures S1 and S2 for UN were unexpected. In par-

ticular, for Order 1, the negative off-diagonal blocks match the

Pearson correlation, but Orders 2 and 3 do not have negative esti-

mates where Pearson does. Thus, the ordering of repeated measures

in the nlme package are another large point of consideration, and

measures should be ordered by the variable with the highest number

of repeat factors (i.e., there are four repeated factors nested within

visit, see Figure 2a) to match results from other statistical packages.

4 | DISCUSSION

Based on our findings, we propose that UN variance–covariance

matrices should be considered when analyzing large-N task-fMRI

datasets and complex models with multiple within-subjects repeated

measures. Applying a CS variance–covariance structure resulted in a

poor fit of the marginal covariance terms. The standard error esti-

mates from the UN matrix were also smaller for multiple interaction

terms and for the main effect of Congruency. In combination these

factors would dramatically alter the subsequent inferences on the

(longitudinal) effects of pmTBI on brain activation when selecting a CS

(i.e., large influences of pmTBI on neurovascular recovery from injury)

relative to a UN matrix (i.e., minimal influences of pmTBI on neurovas-

cular recovery from injury). The selection of the UN matrix also

resulted in increased activity in the cognitive control network during

the processing of incongruent stimuli, a finding that is supported by

an extensive body of cognitive neuroscience research on cognitive

control (Cole & Schneider, 2007; Menon & D'Esposito, 2022). This

finding therefore provides additional face and convergent validity for

the selection of the UN matrix in the current study.

To our knowledge, 3dLME is the only voxel-wise analysis soft-

ware that allows for the specification of multiple classes of variance–

covariance structures (Chen et al., 2013). Importantly, manual adjustment

of the source code was required to apply a UN variance–covariance

matrix (see Supporting Information). A new 3dLME2 program is also being

developed by the AFNI team to provide additional variance–covariance

structures to the imaging community (personal communication;

Dr. Gang Chen). There remains a contentious discussion in the litera-

ture about the use of fully specified models (such as our model using

UN, although without random slopes) versus more parsimonious

models (Barr et al., 2013; Matuschek et al., 2017). Applying an UN

variance–covariance structure results in the unconstrained estima-

tion of each element in the variance–covariance matrix separately,

and thus is likely to result in the best fit (i.e., lowest AIC). Briefly, the

use of fully specified models is thought to be more appropriate for

large datasets, and protects against Type I errors, while parsimoni-

ous models (such as CS) may be more suitable for smaller datasets

(and thus lower degrees of freedom) as it preserves power, and

prevents over-fitting. Another disadvantage is that more complex

models with UN variance–covariance matrix may not always fully

converge. As with any modeling choice, users must make educated

decisions about the potential benefits (i.e., in this case more accu-

rate results) and costs (e.g., computational time, convergence) of

each approach. In the current linear mixed effects software for

F IGURE 4 A plot of parameter estimates vs. contrasts in compound symmetry (CS), autoregressive order 1 (AR1) and unstructured
(UN) variance–covariance matrices. The parameter estimates are the unstandardized beta coefficients (centers) ± 1 standard error (bar). The
contrasts represent the difference in the marginal means between various factors and interactions (centers), ± one standard error (bar).
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neuroimaging data, the statistical model and variance–covariance

structure are manually specified and then fit at each individual voxel.

However, it is reasonable to assume that one variance–covariance

structure might not be suitable for every voxel or region in the

brain. Software is available that allows for model selection by

showing whole-brain AIC differences between models (Madhyastha

et al., 2018). Similarly, we consider it an important future goal to

develop software that determines the optimal variance–covariance

structure at each voxel, for example based on the AIC. Theoretically,

one would expect UN to result in the best model fit in most cases.

However, a minimal improvement of model fit may come at the

expense of power (due to loss of degrees-of-freedom). Also, a full fac-

torial model might not be desirable for every voxel, when one is only

interested in lower order interactions (e.g., two way) and/or main

effects. While it is considered best practice to reduce the model com-

plexity and only interpret the highest-order effects, computational

considerations may make the interpretation of lower-order effects

attractive when higher-order effects remain in the model, as was done

in the current study.

The largest limitation for the current study is the amount of time

required to execute the UN matrix. Specifically, the UN model

required 23 (vs. AR1) to 129 (vs. CS) times more time to complete a

single analysis relative to the simpler models. Importantly, the current

manuscript has already demonstrated the benefits of using the UN

variance–covariance matrix based on both traditional statistical met-

rics (i.e., information criterion) as well as cognitive neuroscience infer-

ences (i.e., activation of the cognitive control network), and

computational time can be further improved through the utilization of

parallel computing strategies and additional computing power. Future

software packages may offer a more flexible modeling strategy that

permits modeling on the individual voxel level. For example, AFNI

recently released the 3dLMEr package which entails additional con-

straints on the variance–covariance structure but has significant

advantages in computation time.

In summary, current results suggest that care should be exercised

when selecting the variance–covariance matrix in the modeling of

complex task-fMRI data as it may have a significant impact on the

results and the conclusions made based on the data. Until more

sophisticated software becomes available, researchers may consider

running model tests on data obtained from multiple voxels to deter-

mine the appropriate variance–covariance structure before fitting a

single model to whole-brain data.
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