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Abstract

Motivation: Plasmids and other mobile elements are central contributors to microbial evolution

and genome innovation. Recently, they have been found to have important roles in antibiotic resist-

ance and in affecting production of metabolites used in industrial and agricultural applications.

However, their characterization through deep sequencing remains challenging, in spite of rapid

drops in cost and throughput increases for sequencing. Here, we attempt to ameliorate this situ-

ation by introducing a new circular element assembly algorithm, leveraging assembly graphs pro-

vided by a conventional de novo assembler and alignments of paired-end reads to assemble cyclic

sequences likely to be plasmids, phages and other circular elements.

Results: We introduce Recycler, the first tool that can extract complete circular contigs from se-

quence data of isolate microbial genomes, plasmidome and metagenome sequence data. We

show that Recycler greatly increases the number of true plasmids recovered relative to other

approaches while remaining highly accurate. We demonstrate this trend via simulations of plasmi-

domes, comparisons of predictions with reference data for isolate samples, and assessments of an-

notation accuracy on metagenome data. In addition, we provide validation by DNA amplification of

77 plasmids predicted by Recycler from the different sequenced samples in which Recycler showed

mean accuracy of 89% across all data types—isolate, microbiome and plasmidome.

Availability and Implementation: Recycler is available at http://github.com/Shamir-Lab/Recycler

Contact: imizrahi@bgu.ac.il

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Plasmids are extra-chromosomal DNA segments carried by bacterial

hosts. They are usually shorter than host chromosomes, circular and

encode nonessential genes. These genes are responsible for either

plasmid-specific roles such as self-replication and transfer, or

context-specific roles that can be beneficial or harmful to the host

depending on its environment. Along with viruses and transposable

elements, plasmids are members of the group termed mobile genetic

elements (Doring and Starlinger, 1984) as they transmit genes and

their selectable functions between microbial genomes. Plasmids play

a central role in horizontal gene transfer (Halary et al., 2009), and

thus genome innovation and plasticity—fundamental forces in mi-

crobial evolution. Much interest has recently arisen for plasmid ex-

traction and characterization, in particular because of their known

roles in antibiotic resistance and in increasing metabolic outputs of

agricultural or industrial byproducts. For instance, antibacterial re-

sistance genes encoded on plasmids have long been known as a

major issue for human health in clinical practice (Neu, 1992), but

are also one of today’s standard tools in microbiology and genetics
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when used to select for specific cells (Bevan et al., 1983). In order to

derive plasmid sequences (which may be known or novel), one may

choose from the following approaches: sequence already isolated

microbes with their residing plasmids, sequence the overall micro-

bial community of genomes (termed metagenome) from some envir-

onment or, as was recently described, sequence only the overall

plasmid fraction from a given environment [termed plasmidome

(Brown Kav et al., 2012, 2013)]. The first technique obtains a mix-

ture of chromosomal and plasmid DNA occurring together in a sin-

gle strain. Since sequenced reads are devoted to only a few different

sequenced DNA elements (the genome in question or any of its mo-

bile elements), each is expected to be highly covered, and thus for

species having low repeat content a good assembly can be achieved.

For natural environments containing many elements, often

including those that are difficult to culture (Gilbert and Dupont,

2011) in a lab, metagenome assembly is attempted. This technique

allows a much broader view of all taxa present and their plasmids,

but is limited in that the characterization of each individual element

depends on its coverage in the mixed DNA sample and the fre-

quency of co-occurring repeats shared among different elements of

the sample. Resulting assembled genomes of elements that are rare

in the environment are thus often fragmented, and very high cover-

age (Howe et al., 2014) is needed for accurately assembling them.

However, assembly of metagenomes remains a highly active area of

research: current assembly outputs are lacking and do not represent

the true genetic capacity and synteny of genomes present in complex

microbial communities. Since most of the DNA in these environ-

ments is due to host genomes, this approach currently provides only

limited resolution of plasmids.

Most recently, a third technique has emerged that allows recovery

of far greater numbers of plasmids. Plasmidome sequencing (Brown

Kav et al., 2012, 2013; Jørgensen et al., 2014) allows nearly all

sequencing resources to be devoted to circular DNA. Using a proto-

col described in (Brown Kav et al., 2012), chromosomal DNA is fil-

tered out and circular DNA segments are selectively amplified. Based

on this protocol, hundreds of new plasmids were identified in the

cow rumen (Brown Kav et al., 2013) and rat cecum (Jørgensen et al.,

2014). Jørgensen et al., (2014) applied the protocol introduced in

Brown Kav et al. (2012) combined with bioinformatic validation of

circularity. This post-assembly analysis resulted in a 95% PCR valid-

ation rate out of 40 randomly selected assembled contigs. This suc-

cess raises the prospect of in silico refinement of plasmids beyond the

initial assembly. Although Jørgensen et al.’s method was shown to

have a high validation rate, its output is limited by the contiguity of

the underlying assembler’s contigs [in their case IDBA-UD (Peng

et al., 2012)], because it provides no means of combining multiple

overlapping contigs to form cycles. It is a filtering process meant to

identify probable circular sequences among sequences already output

by the assembler. To date, no tools for plasmid assembly from short

reads have been introduced to address these limitations.

In all of the above approaches plasmid assembly is hindered by

several inherent characteristics derived from their mobile nature.

These characteristics include their tendency to carry repetitive elem-

ents such as insertion sequences and to share genes with other plas-

mids and microbial genomes. In the context of de novo assembly,

repeats cause collapse of linear sequences sharing them as subse-

quences. This creates ambiguity in the sense that it becomes unclear

which extensions entering the repeat should be paired with those

exiting it, where sequences begin and end, and whether there are

unique terminal points at all as opposed to the sequence being circu-

lar. De novo assembly for the sake of identifying plasmids can be

augmented by long-read sequencing (Conlan et al., 2014; Hunt

et al., 2015) because such reads may be sufficiently long to bridge re-

peats short reads cannot. However, this approach is primarily lim-

ited to isolates or low complexity environments. This is evident in

that long reads often depend on single molecule sequencing without

amplification, thus only capturing relatively abundant DNA frag-

ments. Besides repeats, chimeric sequences also present significant

challenges to assembly, in that they create false connections between

sequences and thus may lead to mis-assemblies.

To overcome some of these challenges, Antipov et al., (2016),

introduced plasmidSPAdes, an extension of the SPAdes assembler

(Bankevich et al. (2012) that identifies likely ‘plasmid components’

in isolate whole genome sequencing experiments. This method looks

for long contigs in the assembly graph that are sufficiently different

coverage from those of the host genome. Here, we take a different

approach to improve discovery of sequenced plasmids. We similarly

analyze assembly graphs, but consider all nodes instead of paring

the graph around long contigs. In addition to coverage, we also in-

corporate paired-end read mappings and topology, only reporting

cycles when there is sufficient evidence that they are physically sep-

arate entities. We also accept as input any assembly graph, making

our method applicable to isolate as well as metagenome and plasmi-

dome samples.

Our inputs are an assembly graph G¼ (V,E), and the mapping

of paired-end reads responsible for the assembly to its nodes. The set

of nodes V are sequences having associated lengths and coverage lev-

els, and the set of arcs E is composed of directed connections among

the nodes. Arcs are the result of branch points in the underlying de

Bruijn graph: a branch node has outgoing arcs to two (or more) dif-

ferent nodes based on overlaps, and in many cases, the assembler

does not have a definite way of choosing which extension is true in

order to simplify the branch into a linear path. We aim to generate a

set of putative cycles that are likely to be plasmids, and assign a

coverage level for each one.

After defining this problem formally below, we present an algo-

rithm (and its implementation) designed to address it, called

Recycler. Recycler leverages assembly graphs output by SPAdes to

specifically enable de novo assembly of plasmids and other cyclic se-

quences likely to be physically separated from the rest of the se-

quences present. We show it greatly improves recovery of plasmids

over naive assembly and alternative methods, namely Jørgensen’s

and SPAdes’ built-in repeat resolution, introduced in (Prjibelski

et al., 2014) and performs similarly to plasmidSPAdes on isolate

sample inputs. We demonstrate Recycler’s performance by applying

it on both simulated and real data. We find that Recycler greatly in-

creases recall while maintaining high precision. This is established

via comparisons performed on simulated plasmidomes of various

sizes. We also show that Recycler can be applied for plasmid assem-

bly on real data from a bovine rumen plasmidome and metagenome,

and from two different Escherichia coli isolate strains. In the isolate

cases, Recycler recovered most known plasmids, and predicted add-

itional sequences that matched known mobile elements from differ-

ent hosts—all of which were identical or nearly identical to known

reference sequences. In all cases on real data, Recycler either

matched or exceeded the proportion of outputs matching plasmid

annotation, as described in Brown Kav et al. (2013).

1.1 Related work
We note plasmid assembly is a multi-assembly problem, as described

in the context of RNA-Seq transcriptome assembly (Pertea et al.,

2015). Formulations of such problems often aim to generate a min-

imal set of paths that maximize agreement with observed data
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(Pertea et al., 2015; Tomescu et al., 2013; Trapnell et al., 2010).

These methods usually employ network flow formulations, which

admit polynomial-time algorithms for minimizing flow cost on the

network; this flow corresponds to a convex function of the sum of

coverage differences between observed and estimated coverage lev-

els. However, these methods resort to heuristics in selecting a min-

imal set of paths to cover the entire graph, as splitting a flow into a

minimal number of path and cycle components is an NP-hard prob-

lem (Hartman et al., 2012).

Recycler does not aim to generate a set of paths explaining all

coverage levels, and thus does not depend on a global objective func-

tion encompassing all nodes or edges. This approach is avoided be-

cause of the presence of linear paths due to either plasmids not fully

covered during sequencing or bacterial host genomes housing plas-

mids, which may introduce noise into coverage levels observed and

will not be part of the solution. Avoiding a global objective impos-

ing parsimony on paths also allows Recycler to benefit from a poly-

nomial time algorithm for generating ‘good’ cycles. Thus, Recycler’s

approach is similar to StringTie (Pertea et al., 2015), in that both re-

peatedly seek locally best paths or cycles and use coverage levels esti-

mated on those to update coverage levels on the original graph, until

some stopping criterion is met. We note the set of cycles desired is

explicitly not minimal, as in cycle cover formulations (Gross et al.,

2013). For example, given a figure 8 component (Supplementary

Figure S1, panel I), Recycler may represent it as two cycles separated

by distinct coverage levels, where a minimal cover would use only

one cycle. Instead, we wish to cover as much of the graph as possible

with ‘good’ cycles.

2 Methods

2.1 Overview of recycler
The inputs to Recycler are a FASTG file representing a directed

graph with vertices corresponding to non-branching sequence con-

tigs and edges corresponding to connecting overlapping k-mers, and

a BAM file of paired-end read mappings to the graph’s nodes. The

graph can be viewed as a compacted de Bruijn graph starting from

order k of the sequence data by contracting edges (u, v) whenever u

has outdegree 1 and v has indegree 1, and the sequence contig of the

new node replacing u and v is the concatenation of their sequences.

Each node has a coverage value reflecting its abundance in the input

sequences. We search for cycles in the graph that will correspond to

plasmids. Cycle sequence length, number of vertices and coverage

uniformity are factored in the selection process. We also use paired-

end read mappings including mates on different nodes as a proxy for

which of the nodes may have emerged from the same physical DNA

fragment. This provides a means of inferring whether a candidate

cycle is a plasmid or a genomic segment including repeats that lead

to ambiguous cycles in the graph. Once a best cycle is selected, its la-

tent coverage level is determined and subtracted from those of all

participating nodes. Nodes whose resulting coverage values become

non-positive are then removed from the graph, allowing only those

with some remaining coverage the opportunity to take part in add-

itional cycles. Hence, the whole process can be viewed as greedily

‘peeling off’ cycles from the graph. Ideally, one would like the pro-

cess to end in an empty graph, in which case the input graph would

be exactly the union of the cycles found. In reality, the process is

stopped when quality criteria for new cycles in the remaining graph

are unmet.

2.2 Notations and definitions
Our input is a directed graph G ¼ ðV;EÞ, where V is a set of linear

sequences having either a branch-point or terminal k-mer at each

end and no internal branch-points. E is the set of overlaps between

nodes, where E¼ {(u,v): the (k � 1)-mer suffix of u¼ the (k � 1)-

mer prefix of v}. We call a node simple if its indegree and outdegree

are 1. A node v corresponding to sequence s of length l(s) is assigned

two positive values, len(v) and cov(v). lenðvÞ ¼ lðsÞ � kþ 1 is called

the length of the node (the subtraction is in order avoid double-

counting bases common to overlapping segments at their ends).

cov(v), its coverage, reflects the average number of times each k-mer

in s appears in the input read data. The input can be produced by a

short read assembly tool. We further assign a weight wðvÞ
¼ 1

lenðvÞcovðvÞ for each node v, resulting in low weight for high cover-

age and long nodes. Longer contigs tend to be less prone to random

fluctuations in coverage, and are thus more reliable coverage indica-

tors. For each cycle c in the graph, we assign each node a value rep-

resenting its length fraction in c: f ðc; vÞ ¼ lenðvÞP
v02c

lenðv0 Þ. The value f(c,

v) is used to define the mean and standard deviation of weighted

coverage of cycle c as lðcÞ ¼
P

v2c f ðc; vÞcovðvÞ and

STDðcÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

v2c f ðc; vÞðcovðvÞ � lðcÞÞ2
q

, respectively, and conse-

quently the coefficient of variation of c, CVðcÞ ¼ STDðcÞ
lðcÞ . CV(c) is

used to allow direct comparison of variation levels between cycles,

independently of the magnitude of coverage of each. CV(c) is indica-

tive of coverage uniformity along c, and plasmids are expected to

have uniform coverage levels that in many cases are different from

other plasmids and their hosts. Thus, cycles with low CV values are

more likely to correspond to plasmids than cycles with high CV

values.

2.3 Our approach
Intuitively, plasmids should form cycles that are distinctive from the

rest of the graph and have near uniform coverage. We also expect

plasmid cycles to include few nodes, as each additional node intro-

duced for a fixed sequence length increases fragmentation and the

tendency of nodes to be common to more than one path. With this

in mind, we search for ‘good cycles’ in the graph that potentially

correspond to plasmids. Formally, we define a good cycle as a sim-

ple cycle in the graph satisfying the following constraints:

1. Minimum path weight for some edge: 9ðu; vÞ 2 c such that cnðu;
vÞ (the path obtained by removing (u, v) from c) is a minimum

weight path (by sum of weights w(v)) from v to u.

2. Low coverage variation: CVðcÞ � s
jcj, where s is a defined

threshold and jcj is the number of nodes in.

3. Concordant read mapping: For pair r1, r2 of paired-end mates, if

r1 maps to a simple node in c then r2 must also map to some

node in c.

4. Sufficient sequence length:
P

v2c lenðvÞ � L, where L is a defined

threshold.

The first constraint is critical in order to avoid merging of two or

more plasmids that are connected through a repeated region

(Supplementary Figure S1, panel I). In addition, lower weight cycles

correspond to longer sequence length and higher coverage nodes,

and tend to have fewer nodes. Furthermore, for each edge this con-

straint uniquely determines at most one cycle that passes through

the edge, thus avoiding consideration or enumeration of an expo-

nential number of possible cycles. We note there are special cases

allowing for cycles that visit a single node more than once; such a
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case is shown in Supplementary Figure S1, panel II. The second con-

straint ensures that the coverage variation is low, thus again increas-

ing our confidence that the cycle corresponds to exactly one

plasmid. Moreover, this constraint implicitly ensures high coverage

cycles, since low coverage cycles tend to have higher CV value. The

third constraint exploits paired-end reads. Suppose we have a read

pair r1, r2 and r1 maps to a certain node in the candidate cycle c. We

expect r2 to map to the same cycle, unless r1 falls on a node that is

common to c and some other path p overlapping with it. In that case

r2 may map p to as well. Simple nodes are less likely to overlap with

several cycles and paths, and the third constraint leverages this ob-

servation. We waive this constraint in case the coverage of c is suffi-

ciently high, as in such cases the cycle ‘stands out’ from the

background coverage. See Supplementary Material for details.

The above definition of a good cycle provides a mechanism for

the identification of putative plasmids. Recycler processes each

strongly connected component separately. It repeatedly finds a good

cycle with minimum CV value, assigns it latent coverage equal to

the mean cycle coverage and subtracts that coverage from the graph,

creating a new residual coverage (Fig. 1). The weights of the vertices

in the cycle are updated based on their new coverage values, and ver-

tices whose resulting coverage values become non-positive are

removed from the graph, allowing only those with positive residual

coverage the opportunity to take part in additional cycles. After

each such change, cycles are recalculated the same way using the

updated coverage levels. This process continues as long as new good

cycles are found. To avoid examining a potentially exponential

number of cycles, we consider one minimum weight cycle through

each edge in the graph. The algorithm selects the cycle with the low-

est CV among these minimum weight cycles and ‘peels it off’ the

graph. Algorithm 1 sketches the procedure for a single component.

See the Supplementary Material for additional details.

2.4 Complexity
Algorithm 1 presented above terminates in polynomial time. In each

iteration, if any good cycles exist, one is chosen and its mean cover-

age is calculated. There is at least one node in the cycle with cover-

age smaller than the mean coverage of the cycle, which is

subsequently removed from the graph. Therefore, in each iteration

at least one node is removed, and the number of iterations is

bounded by the number of nodes. Using Johnson’s algorithm

(Johnson, 1977), the runtime of each iteration is

OðjVj2 log ðjVjÞ þ jVjjEjÞ. Running times are further reduced by

Fig. 1. Recycler work-flow. An example is shown of generating candidate cycles and peeling off cycles iteratively. For simplicity, all lengths are assumed to be

equal and not shown. Here, we consider only candidate cycles that pass through vertex x, but ordinarily such candidates would be generated for each vertex in

the component, and the cycle with lowest CV will be chosen and peeled off. (A) The assembly graph. (B) A single component is selected from the assembly graph

(framed in A) and represented with vertices for contigs and edges for connecting k-mers. (C) The reduced component after tip removal. The numbers next to verti-

ces are their observed contig coverage. Since vertex x has two incoming edges from vertices b and c, two candidate cycles are generated that pass through edges

(b, x) and (c, x), respectively. This is done by computing shortest paths from x to b ðx ; e;d;g;h; i; j ;b;CV ¼ 0:20; shown in DÞ and from x to c

ðx ; e;d ;g;h; c;CV ¼ 0:41; not shown Þ. Two successive steps of peeling cycles are shown with their respective latent coverage assignments. First, the cycle in D is

peeled off because the CV calculated from initially observed coverage is lowest for this cycle. Uncolored vertices correspond to contigs with zero coverage that

are removed
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computing the strongly connected components of and working sep-

arately on each one.

2.5 Generating simulated plasmidomes
We simulated error-free paired-end reads from plasmids using

BEAR (Johnson et al., 2014), a read simulator designed to generate

artificial metagenome data. To avoid introducing coverage drops at

sequence ends typical of linear sequences, we modified BEAR

(https://github.com/rozovr/BEAR) to allow sampling of reads bridg-

ing reference sequence ends, as is observed for circular sequences.

Plasmid reference sequences were selected from the NCBI plasmids

database and from plasmid sequences reported in (Brown Kav et al.,

2013), filtered to include 2760 sequences with a length range of 1–

20 kbp with a mean of 6337 bp. Five datasets were created, com-

posed of 100 bp mates (read pair ends), with insert sizes, varying

from 1.25 M pairs sampled on 100 reference sequences doubling

successively up to 20 M pairs sampled on 1600 sequences.

Abundance levels were assigned using BEAR’s low complexity op-

tion, which concentrates high abundance to few species using a

power function with parameters derived from (Pignatelli and Moya,

2011): the function takes the form cid, where c¼31.4 and

d ¼ �1:28, and i is iteratively assigned values from 1 to the number

of species simulated. These values are then normalized by their sum

to yield a probability distribution.

2.6 Evaluating performance
To test recovery of the ground truth sequences by each plasmid de-

tection program, we used the Nucmer alignment tool (Kurtz et al.,

2004), which is designed for efficiently comparing long nucleotide

sequences such as those of whole plasmids or chromosomes. In

order to simplify this process, we modified reference sequences to re-

move non-ACGT characters before read simulation and alignments.

To avoid fragmented alignments caused by differences in start

positions, we concatenated each reference sequence to itself before

mapping; this allowed identification of complete matches at the cen-

ter of the concatenated contigs when they were present. Output

cycles of each tested program were defined as true positives (TP) if

they had 100% identity hits covering at least 80% of one of the ref-

erence sequences. False positives (FP) were any output cycles not

meeting these criteria, and false negatives (FN) were reference se-

quences not aligned to in the output set using these criteria. Based

on these conventions, precision ¼ TP
TPþFP and recall ¼ TP

TPþFN. We used

the F1 score (Powers, 2011) to combine these measures in a manner

that weighs precision and recall equally.

2.7 Primer design and PCR validation of plasmid contigs
The plasmidome dataset was divided into two separate subsets,

including simple (single node) cycles (N¼370) and complex (multi-

node) paths within the graph (N¼50). Each of these was divided

into coverage bins, and selected representatives from each bin (High

coverage: 60–1000x, mid–high coverage: 15–60x, mid-low cover-

age: 5–15x, low coverage: 1–5x) were validated by PCR. Overall, 24

simple cycles and 39 complex cycles were chosen for PCR valid-

ation. From the metagenome dataset (N¼40), all assembled plas-

mids were of the same coverage bin (1–5X) and 10 of them were

randomly selected for validation. This was also the case for the E.

coli E2022 isolate (N¼4) for which all plasmids were validated by

PCR, aside from a recovered Phi X control sequence. Primers were

designed to produce an amplification product only if their template

is circular; this was achieved by directing the opposing primers to-

wards the edge of the linear plasmid contig. PCR reactions were car-

ried out using Advantage GC Genomic LA PCR Polymerase

(Clontech) according to the manufacturer’s instructions. The PCR

reactions were as follows: 1.5 ll Advantage buffer (10�), 0.6 ll of

each primer (5 mM), 0.15 ll Ex Advantage GC Genomic LA DNA

Polymerase, 100 ng of template DNA, 1.5 ll of dNTPs (10 mM) and

DDW was added to a final volume of 25 ll. All PCR reactions were

carried out in a Sensoquest thermocycler (Gottingen, Germany).

3 Results

We first simulated plasmidomes using known references. We used

these data sets to assess Recycler’s precision and recall (along with

those of alternative methods) by comparing predictions against the

ground truth known by the simulation design. We also tested

Recycler on real data from two E. coli isolates, and both a cow

rumen metagenome and plasmidome (Brown Kav et al., 2013). For

the bacterial isolates that have been sequenced, predicted plasmids

were compared against the reference sequences directly. Since no

references are available for metagenome and plasmidome data, we

evaluated the accuracy by PCR validation (Jørgensen et al., 2014)

and by measuring the proportion of predicted plasmids having

proper annotation as done in (Brown Kav et al., 2013). Recycler’s

inputs were assembly graphs generated by SPAdes version 3.6.2

(Bankevich et al., 2012), and alignments generated by BWA version

0.7.5 (Li and Durbin, 2009).

3.1 Simulated plasmidomes
We simulated paired-end reads from known plasmids, and created

five datasets of 100, 200, 400, 8000 and 1600 plasmids. Plasmid

abundance was distributed so that few plasmids have high abun-

dance. Dataset sizes were 1.25, 2.5, 5, 10 and 20 M pairs, respect-

ively (see Methods for details). Each such dataset was assembled

with SPAdes and subsequently its output contigs and assembly

Algorithm 1: Finding good cycles and peeling them off each

component

Data: G ¼ ðV;E; len; cov;wÞ; s;L
Result: R, the set of cycles

Compute shortest cycles passing through each edge;

for each edge (u, v) do

Compute a minimum weight path p from v to u, if one

exists;

Compute the CV of the cycle ðp; ðu; vÞÞ;
end

Return the set of cycles S;

while R changes do

Compute a set S of shortest cycles passing through each

edge

Consider each cycle c in S in increasing order of CV values

if c is good and not in R then

Add c to R
Compute the latent coverage level of c

Update the residual coverage of all cycle nodes, removing

nodes with non-positive residual coverage

else

end

end

Recycler: an algorithm for detecting plasmids from de novo assembly graphs 479

https://github.com/rozovr/BEAR
Deleted Text:  to 
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: <italic>C</italic>
Deleted Text: X
Deleted Text: <italic>C</italic>


graphs were used as inputs to the tested methods. Recycler was com-

pared with SPAdes with and without repeat resolution (RR), and

with a simplified version of Jørgensen’s method (described in the

Appendix). We used SPAdes’ outputs before the repeat resolution

stage as inputs to Recycler and to Jørgensen’s method, as we found

that contigs have greater precision before RR when compared to ref-

erence sequences (as shown in Supplementary Table S1). The map-

ping results are presented in Supplementary Table S1 and Figure 2.

As expected, recall generally decreased as the number of simu-

lated plasmids increased. This was common to all tested methods. In

general, we found that Recycler generated more predictions than

other methods, leading it to have higher recall than alternative

approaches while maintaining high (�90%) precision. The net per-

formance effect is shown in Figure 2 and Supplementary Table S1 in

the supplement: Recycler maintains the lead in all cases with 5–14%

advantage in both F1 and fraction of true positives. We also found

that the number of additional Recycler true positives over those pro-

vided by SPAdes generally increased with higher complexity; this

culminated in Recycler adding 62 (13%) true positives to SPAdes’

output on the 1600 plasmid set (523 versus 461).

To further characterize Recycler’s performance, we categorized

its predictions in terms of mean total cycle length, number of seg-

ments in the cycle (steps), cycle coverage and CV value calculated at

the stage the cycle was removed. For each category, values were sub-

divided into five ranges. In Supplementary Figure S2, we show the

precision values and the relative proportions of counts in the speci-

fied ranges. Based on this stratification, it can be seen that Recycler

shows little dependence on mean coverage or length, but does often

preclude candidate cycles that have high CV values or number of

steps. This is reflected in the sharp drop-off in the plots as the num-

ber of steps or the CV grows.

3.2 Real data
All of Recycler’s results on real data were subjected to quantification

of annotation results as described in (Brown Kav et al., 2013) and

compared against cycles present in the output produced by SPAdes.

These results are detailed below and a summary of them can be

found in Supplementary Table S2 in the Appendix.

3.2.1 Circular integrity of assembled plasmids

A total of 77 sequences were selected for PCR validation by sam-

pling from the different data types as described in the Section 2.7

above. Overall, 89% of the 77 chosen plasmids were validated by

PCR as circular DNA molecules. The predicted plasmids from the

different samples did not differ in the success rate of circular valid-

ation. As coverage has a key role in de novo assembly and Recycler’s

performance, we wished to measure whether the integrity of

assembled plasmids would be affected by varying mean k-mer cover-

age. To this end, we validated circularity of plasmids of different

coverage levels ranging from 1x to 1000x divided into bins. As can

be seen in Figure 3, there was a slightly lower success rate for the

lower coverage plasmids. However, coverage and validation rate

were not found to be significantly correlated. Additionally, the high

number of predicted plasmids in the plasmidome data set allowed us

to measure the effect of the complexity of the path in the graph on

the integrity of the plasmids. When more edges are involved in a

cycle, it is more complex, and the chance of noise in coverage levels

and errors in sequence increases. Thus, we divided this dataset into

two bins according to path length on the graph: simple: single node

(self-edge) paths, complex: two nodes or more. These two bins did

not show difference in their validation rate, further stressing

Recycler’s strength in extracting plasmids from complex paths.

3.2.2 E. coli isolate data

We ran Recycler on two E. Coli strains: JJ1886, downloaded from

http://www.ebi.ac.uk/ena/data/view/SRX321704, and E2022,

sequenced locally. Annotation for plasmids found in both strains

was provided in (Lanza et al., 2014); comparisons against Recycler

outputs with this annotation are reported in Supplementary Tables

S3 and S4. Of the five plasmids known for JJ1886, Recycler output

four complete matches (100% identity over 100% length) having

lengths 55.9, 5.6, 5.2 and 1.6 kbp. It also output three additional se-

quences which completely matched previously reported plasmids:

two are known to be present in S. Aureus, and one in S.

Chromogenes. Further tests will be needed in order to validate

whether these additional hits are truly present in the sequenced sam-

ple, and furthermore, whether they are stable residents of the tested

hosts or were present as a result of contamination. When tested on

E2022, Recycler performed similarly, recalling most of its known

plasmids and outputting a few additional cycles that were complete

or near complete matches to known plasmids and one phage. These

results are also presented in Supplementary Table S2. In summary,

all reported isolate hits represent highly accurate matches to known

mobile elements, and most known plasmids for these strains were re-

covered. In both cases, Recycler missed the longest known reference

plasmids; it remains to be seen whether this is due to Recycler’s use

of a shortest path formulation, lack of significant coverage differ-

ence between these plasmids and the host genome, or other factors.

3.2.3 Plasmidome data

A bovine rumen plasmidome sample was prepared as described in

(Brown Kav et al., 2013). This data consisted of 5.1 M paired-end

101 bp reads (trimmed to varied sizes for the sake of adapter re-

moval) with an expected insert size of 500 bp [data available upon

request]. Recycler output 420 cycles when provided this data.

According to ORF prediction performed as in (Brown Kav et al.,

2013), 314 of the 420 had significant annotation hits. 96% of those

matching annotations either matched plasmid annotations or

aligned with plasmids reported in (Jørgensen et al., 2014). Thus, a

majority are likely to be plasmids.

Fig. 2 Methods performance on simulated data. Results are shown for

SPAdes without repeat resolution (RR), SPAdes with repeat resolution, the

method of Jørgensen et al., and Recycler. The contigs of SPAdes before RR

were used as input for the three other methods. Recycler also relied on the

graph produced at this stage. F1 score calculation is described in the main

text. The x axis shows the number of simulated reference sequences in each

case

480 R.Rozov et al.

Deleted Text: a
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw651/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw651/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw651/-/DC1
Deleted Text: -
Deleted Text: .
Deleted Text: &hx0022;
Deleted Text: &hx0022;
Deleted Text: ,
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw651/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw651/-/DC1
Deleted Text: s
Deleted Text: -
Deleted Text: <italic>C</italic>
http://www.ebi.ac.uk/ena/data/view/SRX321704
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw651/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw651/-/DC1
Deleted Text: ,
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw651/-/DC1


3.2.4 Metagenome data

Metagenome data was derived from the rumen of a different cow

residing in the same stable as the cow used to derive the plasmidome

data. This data consisted of 7.5 M paired end 150 bp reads with ex-

pected insert size of 500 bp [data available upon request]. Recycler

produced 40 cycles when run on this data. According to ORF pre-

diction, 37 of the 40 had significant annotation hits. About 35% of

those matching annotations either matched plasmid annotations or

aligned with plasmids reported in Jørgensen et al., (2014). The pro-

portion of reported cycles matching known plasmid annotations

was slightly higher than for simple cycles output by SPAdes (33%).

Overall, this test reflects the trend seen elsewhere (Howe et al.,

2014) of weak annotation results emerging from metagenome as-

sembly of highly diverse environmental samples.

3.2.5 Comparison with PlasmidSPAdes

Recently, a version of SPAdes tailored for seeking plasmids in iso-

lates, called PlasmidSPAdes, was introduced (Antipov et al., 2016).

Unlike Recycler, it does not explicitly seek cycles but removes long

edges in the de Bruijn graphs and looks for contigs with coverage

significantly different from the mean coverage of the read data. The

rationale is that for isolates the coverage distribution is dominated

by the host bacterium reads, and the reads of plasmids can be de-

tected as outliers in that distribution. This assumption does not fit

plasmidome or metagenome data. PlasmidSPAdes’ output is a set of

components, each containing a set of contigs with similar mean

coverage that putatively originate from the same plasmid. We ran

PlasmidSPAdes (packaged with SPAdes 3.80) on the two E. coli

datasets described above, and compared the results with Recycler’s

(Supplementary Tables S5 and S6). For E2022, four out of the seven

components reported by PlasmidSPAdes matched Recycler’s out-

puts; the shortest of these was among the PCR validated sequences

not present in the reference set. Of the three not matching, two seem

to have chromosomal origin based on a BLAST search performed on

the longest contigs in these components, and the fact that these com-

ponents had largely tree-like structure: less than half of the compo-

nent’s total length was included in a cycle. Recycler reported one

cycle of length 2.1 kb missed by PlasmidSPAdes that was in the ref-

erence set. Neither tool succeeded in recovering the longest two plas-

mids in the reference set.

For JJ1886, three out of the nine components reported matched

Recycler’s. Of the other six, five likely have chromosomal origin as

assessed by the same criteria used for E2022, and one matched a

likely plasmid. However, four of these five aligned best with the gen-

ome of S. Aureus. Recycler reported three additional short sequences

between 1.6 and 2.4 kb, each of which had high scoring BLAST hits

to plasmids in S. Aureus or S. Chromogenes. As some of the plas-

mids reported by both tools also matched S. Aureus origin, it is pos-

sible that the JJ1886 sample contained a mixture of both cell types.

We note that such a mixture could mislead PlasmidSPAdes’ esti-

mates of coverage variation, thus allowing large chromosomal frag-

ments to survive filtration.

Overall, aside from the S. Aureus sequences observed, the two

tools performed similarly on isolate data. This is consistent with the

comparison presented in (Antipov et al., 2016). In addition,

Recycler can process metagenome and plasmidome graphs, while

PlasmidSPAdes can find non-circular plasmids. The two methods

primarily differ (when processing isolate data) in what they report

for difficult cases involving repeats that are either long or shared by

many paths. When Recycler cannot derive a unique circular se-

quence from a graph component, the component is not included in

the output. For PlasmidSPAdes, such components are reported as

groups of contigs. In either case, more information (such as long

reads) would be needed in order to properly resolve these cases.

4 Discussion

In this article, we describe Recycler, a new algorithm and the first

tool available for identification of plasmids from short read-length

deep sequencing data. We demonstrate that Recycler discovers plas-

mids that remain fragmented after de novo assembly. We have

adapted the approach of choosing among likely enumerated paths

using coverage and length properties (often applied in transcriptome

assembly (Pertea et al., 2015; Tomescu et al., 2013; Trapnell et al.,

2010) for extracting a specific but common inhabitant of metage-

nomes. We showed that many more real plasmids can be found by

only generating likely cycles on the assembly graph versus alterna-

tive methods. We validated this approach on both real and simu-

lated data.

Recycler displays high recall and precision on simulated plasmi-

domes, and we have developed a means of separating real plasmids

from cycles due to repeats in isolate data. As we have noted, cover-

age can be very useful for the latter, but the assumption that cover-

age will always differ significantly between plasmids and their host

Fig. 3. PCR based validation of Recycler’s plasmid predictions. High coverage: 60–1000x, med–high:15–60x, med–low: 5–15x, low: 1–5x
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genome does not hold universally. It is worth noting that as new

plasmids are identified and their common sequence motifs are

observed, both reference-based identification and a priori trained

prediction of plasmid features can be improved and harnessed for

supplementing identification based on coverage and length features

alone. We aim to investigate how such knowledge can be leveraged

for increased precision without sacrificing recall.

Furthermore, while Recycler’s peeling of lowest CV paths at

each step has the advantage of providing a deterministic rule to de-

cide which cycles should be peeled next, this process is heuristic.

Better accounting of the uncertainty in observed coverage levels and

in the algorithm’s dependence on the order of peeling may be ob-

tained by randomizing or repeating parts of the process multiple

times. For example, instead of always peeling one best cycle, a ran-

dom subset of all good cycles may be peeled at once. Repeating this

process multiple times and reporting only cycles that persist in a ma-

jority of runs may improve both sensitivity and precision.

Further investigation will be needed to assess how plasmids can

be extracted from environmental samples, in spite of the limitations

now hampering metagenome assembly. This is currently challeng-

ing, as diverse genomes require very high coverage for rare species

to be captured, but such high coverage data demand computational

resources beyond reach of most investigators. While new techniques

have aimed to address this problem (Cleary et al., 2015; Howe

et al., 2014), they have yet to see widespread use, and work best

when paired with multiple samples to allow for species separation

by co-abundance signatures. Along with addressing these concerns,

it remains to be seen whether a mixed approach of pre-screening en-

vironmental samples for plasmids and computationally filtering

them out may benefit metagenome graph simplification.
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