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Abstract: High mobility group box-1 protein (HMGB1), a member of the high mobility group protein
superfamily, is an abundant and ubiquitously expressed nuclear protein. Intracellular HMGB1 is
released by immune and necrotic cells and secreted HMGB1 activates a range of immune cells,
contributing to the excessive release of inflammatory cytokines and promoting processes such as
cell migration and adhesion. Moreover, HMGB1 is a typical damage-associated molecular pattern
molecule that participates in various inflammatory and immune responses. In these ways, it plays
a critical role in the pathophysiology of inflammatory diseases. Herein, we review the effects
of HMGB1 on various immune cell types and describe the molecular mechanisms by which it
contributes to the development of inflammatory disorders. Finally, we address the therapeutic
potential of targeting HMGB1.

Keywords: high mobility group box-1 protein; immune cells; inflammatory disorders; damage-
associated molecular pattern

1. Introduction

Living organisms have evolved alarm systems that can sense cellular stress and
damage, facilitating the discharge of several critical endogenous factors such as damage-
associated molecular pattern molecules (DAMPs) and alarmins [1–4]. These molecules
maintain homeostasis by acting intracellularly to elicit immune and inflammatory re-
sponses [5–7]. However, they also contribute to tissue damage and organ dysfunction and
are therefore associated with the pathogenesis of various inflammatory disorders [8]. Tar-
geting these molecules may constitute a promising therapeutic approach against these dis-
eases [9–12].

High mobility group box-1 protein (HMGB1), a prototypical alarmin and DAMP
molecule, was first described in 1973 [13,14]. The protein was isolated from calf thymus
chromatin and was classified as belonging to a “high-mobility group” due to its rapid
migration in polyacrylamide gel electrophoresis [14]. In the 1990s, the DNA-binding region
of the HMGB1 protein, called the HMG box, was identified. Nuclear HMGB1 was found to
bind DNA and to serve as a chromatin-associated factor that maintains the stability and
structure of chromosomes [15–18].

Almost a decade later, the receptor for advanced glycation end products (RAGE) was
found to act as a special receptor for HMGB1, helping to explain the functions of extracel-
lular HMGB1 [19–22]. HMGB1 also binds Toll-like receptor (TLR) 4 to elicit inflammatory
responses [23,24] and it interacts with a variety of extracellular partners that undergo
endocytosis and enter the endolysosomal system [25–27].
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Itis evident that HMGB1 plays a cardinal role in regulating inflammatory responses
and in cell fate decisions [28–30]. Importantly, HMGB1 has been implicated in the pathogen-
esis of numerous inflammatory disorders including sepsis, lung conditions, autoimmune
diseases, acute liver injury, cardiac injury, encephalopathy and other inflammation-driven
conditions [8,31–35].

This review provides an update in the HMGB1 field, with focus on the pathologic
role of HMGB1 in inflammatory and immune conditions. It also highlights the evidence
supporting the potential of HMGB1 as a therapeutic target.

2. HMGB1 Characteristics
2.1. The HMGB1 Protein

The HMGB1 gene, which was sequenced in 1996, is located on chromosome 13q12.3.
It encodes a nuclear protein of 215 amino acids with a molecular weight of 25 kDa [36–38].
The HMGB1 transcriptome comprises three isoforms: sulfonyl HMGB1, disulfide HMGB1
and fully reduced HMGB1 [39]. Disulfide HMGB1 is the only isoform with proinflam-
matory cytokine-like properties. HMGB1 shows high sequence homology across species,
including fish, plants, bacteria, Chironomidae, Drosophila and yeast [40,41]. Rodent and
human HMGB1 share 99% homology, while the rat and mouse homologues have identical
amino acid sequences [40]. The DNA-binding domain of HMGB1 comprises an A-box
domain (residues 9–79) and B-box domain (residues 95–163), separated by a short linker
peptide (Figure 1). The C-terminal domain, which includes a highly acidic tail, is required to
recruit p53 to bind its target DNA and thereby modulate cell cycle and death pathways [41].
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Figure 1. Structure of the HMGB1 protein. The HMGB1 protein comprises 215 amino acid residues and contains three
regions: A-box, B-box and an acidic tail. Each region includes several functional domains: NLS, TLR4-binding domain,
heparin-binding, RAGE-binding domain and DNA-binding domain. The domains exert different biological functions, such
as anti-inflammatory activity, pro-inflammatory activity, regulation of DNA binding and stabilization of HMGB1. The A
box mediates the anti-inflammatory functions of HMGB1; the B box, cytokine-mediated functions. Three key cysteines are
also indicated (Cys106, Cys45 and Cys23). Abbreviations: HMGB1, high-mobility group box 1; NLS, nuclear localization
sites; TLR, Toll-like receptor; RAGE, receptor for advanced glycation end products.
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2.2. Regulation of HMGB1 and Its Release Into the Extracellular Space

HMGB1 is usually located in the nucleus due to its two unique nuclear localization
signals (NLS), NLS1 (residues 28–44) and NLS2 (residues 179–185) [42,43]. Deacetylation
and acetylation of NLS1 or NLS2 lead to rapid shuttling from the nucleus to the cytoplasm.
Phosphorylation of serine residues within NLS1 and NLS2 may also stimulate nucleocyto-
plasmic diffusion of HMGB1 [44,45]. Following phosphorylation of HMGB1, it binds to
karyopherin-α1 and thereby remains sequestered in the cytoplasm. Protein kinase C (PKC)
regulates the phosphorylation of HMGB1: levels of cytoplasmic HMGB1 fall when PKC is
inhibited and rise when PKC activity increases [46,47].

Methylation of HMGB1 dampens the strength of HMGB1-DNA binding, leading to
its translocation out of the nucleus. This explains the observed release of HMGB1 from
neutrophils under chronic inflammation [48–50]. Cytoplasmic translocation of HMGB1
can also be induced by cellular stress that triggers posttranslational modifications, i.e.,
oxidation, methylation, phosphorylation, or hyperacetylation [44–47]. These modifications
accelerate secretion of HMGB1 from the cell into the extracellular environment through
secretory lysosomes. Hyperacetylation of HMGB1 has been observed in cells and animals
subjected to oxidative stress [46]. On exposure to such stress, HMGB1 forms a complex that
includes a nuclear export factor and chromosome region maintenance-1 (CRM-1) protein,
resulting in the shuttling of HMGB1. Three cysteine residues in HMGB1 (Cys106, Cys45 and
Cys23 in the human protein) regulate its nucleocytoplasmic translocation under oxidative
stress [51–54]. Exposing macrophages to lipopolysaccharide (LPS) leads to intracellular
production of hydrogen peroxide, which in turn leads to the formation of an intramolecular
disulfide between Cys45 and Cys23 [55]. This results in transfer of HMGB1 from the
nucleus to the cytoplasm and subsequent secretion from macrophages.

In addition to the ability of stress and posttranslational modifications to promote
HMGB1 secretion, the protein can also passively diffuse out of leaking necrotic cells to in-
duce inflammation. In fact, HMGB1 released from necrotic cells can promote inflammation
more strongly and persistently than HMGB1 released from apoptotic cells [56–58].

3. HMGB1 Receptor Networks

At least 14 receptors have been identified to interact with extracellular HMGB1
(Figure 2), with RAGE and TLR4 perhaps the most extensively explored [59,60]. Whether
some of the other apparent HMGB1 receptors are specific for HMGB1 is unclear, because
HMGB1 can be modified post-translationally and it can interact with numerous immune-
related mediators, including interleukin (IL)-1α, IL-1β, LPS, nucleosomes, histones, RNA,
DNA and SDF-1 [61–64]. This molecular cooperation is essential for HMGB1-induced
inflammatory responses and the cooperative mechanisms are discussed later in the review.

RAGE was first described in 1995 as the amphoterin-binding receptor [20]. A member
of the immunoglobulin superfamily, RAGE was originally suggested to play a role in
neurite outgrowth. The protein contains a 43-amino acid cytoplasmic tail, a short trans-
membrane domain and an extracellular region [61,62]. Its extracellular region is required
for ligand binding, while the cytoplasmic tail is responsible for signal transduction. RAGE
binds various molecules, such as HMGB1, RNA, DNA, amyloid-β peptide and S100 family
members [26,63]. The RAGE binding domain in HMGB1 is located at residues 150-183 [61]
and binding of RAGE to HMGB1 in macrophages triggers HMGB1 endocytosis and cell
pyroptosis, leading to the production of proinflammatory cytokines [6]. This work may
explain the synergy observed when the immune system detects proinflammatory molecules
complexed with HMGB1.

Both TLR4 and RAGE are required for HMGB1 to trigger the release of mediators
from macrophages. In macrophages lacking RAGE, their activation via TLR4 leads to much
lower cytokine secretion [64]. HMGB1 can also prime pyroptosis to promote cytokine
synthesis and endosome-mediated secretion [6,65].
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Figure 2. HMGB1 functions and associated receptor families. In the nucleus, HMGB1 functions as an architectural molecule
possessing DNA-binding and -bending properties. Extracellular HMGB1, on the other hand, signals via multiple receptors
such as TLR4/MD-2, TLR2, TLR3/7/9, RAGE, CD24, singlet 10, integrin/Mac1, TIM3, IL-1R1, or CXCR4. In conjunction
with other mediators, HMGB1 induces cytokine release, cell migration, pyroptosis and internalization of HMGB1 binding
partners; it recruits cells; it reduces inflammation and tumor immunity; it increases neuroinflammation; and it enhances
autoantibody formation. Abbreviations: HMGB1, high-mobility group box 1; IL, interleukin; RAGE, receptor for advanced
glycation end products; TLR, Toll-like receptor.

A second potential binding site for RAGE was identified in HMGB1, at residues 23–50
in the A-box [66]. While this remains to be confirmed, the presence of multiple RAGE
binding sites may help explain how RAGE binding can give rise to the diverse functions
of HMGB1 in synergy with its partner mediators. Accumulating evidence suggests that
HMGB1-RAGE binding is associated with a diverse array of inflammatory disorders,
including sepsis, atherosclerosis, rheumatoid arthritis, neurological diseases and diabetic
nephropathy [8,67].

Toll-like receptors (TLRs) can recognize various danger signals, such as DAMPs and
pathogen-associated molecular patterns (PAMPs) to trigger immune responses against
pathogens [68,69]. Binding of HMGB1 to TLR2, TLR4 and TLR9 initiates nuclear factor-κB
(NF-κB) signaling as well as the release of chemokines and proinflammatory cytokines. The
interaction between HMGB1 and TLR2 can activate natural killer cells and stem cells via
induction of Smads, STATs and NF-κB signaling [70,71]. The interaction of HMGB1 with
TLR4 and its coreceptor MD-2 is essential for mediator release from macrophages. MD-2
interacts with disulfide HMGB1. In macrophages, knockdown of MD-2 reduces NF-κB
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translocation and production of tumor necrosis factor (TNF) in response to HMGB1 [72].
HMGB1-TLR4 signaling can also stimulate anticancer immunity by counteracting cell
adhesion, angiogenesis and migration [73].

In addition to RAGE and TLRs, TIM-3 can bind with HMGB1. This interaction
inhibits the recruitment of nucleic acids into dendritic cell endosomes [59,60]. Thus,
blocking TIM-3 can potentiate chemotherapy and DNA vaccination by improving the
immunogenicity of nucleic acids released from dying tumor cells [74]. The interaction of
HMGB1 with N-methyl-D-aspartate receptor (NMDAR) can activate NMDAR-induced
cell responses under cellular stress [75]. Binding of HMGB1 to CD24/Siglec-10 receptor
suppresses HMGB1-mediated NF-κB signaling and following release of pro-inflammatory
molecules [76]. Interestingly, the recently identified triggering receptor expressed on
myeloid cell-1 engages in HMGB1-dependent NF-κB activation, resulting in the release of
pro-inflammatory mediators during sepsis progression [77,78].

4. Effects of HMGB1 on Immune Cell Types and the Regulatory Mechanisms Involved

HMGB1 is produced by various immune cell types, especially neutrophils and mono-
cytes, after stimulation with IL-1, TNF-α, DNA, CpG and LPS [43,48–50,58]. HMGB1 acts
as an inflammatory molecule: it accelerates the release of proinflammatory cytokines to
elicit a range of immunological processes [28,79–83] (Figure 3). At the same time, HMGB1
can induce systemic inflammatory responses such as fever, arthritis, acute lung injury,
anorexia and weight loss [8].
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Binding of extracellular HMGB1 to TLRs and RAGE on the surface of immune cells
initiates downstream signaling cascades involving extracellular signal-regulated kinase
1/2 (ERK1/2), p38 mitogen-activated protein kinase (MAPK), phosphoinositide-3-kinase
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(PI3K)/RAC-α serine/threonine-protein kinase (Akt) and NF-κB (p56) [24,65,81,84–87].
These pathways activate immune cells and promote the release of inflammatory mediators
that induce cell migration, adhesion, proliferation and angiogenesis [6,24,54,74,88].

4.1. HMGB1 and Neutrophils

Neutrophils are the first responders of innate immunity; they produce reactive oxygen
species (ROS), cytokines, antibacterial peptides and other inflammatory molecules. In
response to infection, neutrophils generated by innate immune cells are recruited to the site
of infection and engage pathogens [89]. Once within the tissues, neutrophils phagocytose
pathogens and they produce a series of proteins that possess antimicrobial properties and
can remodel tissue. However, excessive neutrophil activation leads to degranulation and
release of ROS, resulting in host tissue damage [89,90].

The interaction between HMGB1 and RAGE stimulates the recruitment and infil-
tration of neutrophils into necrotic sites, which can exacerbate hepatic injury [32,91,92].
Similarly, HMGB1 can injure glomerular endothelial cells by amplifying neutrophil acti-
vation in patients with vasculitis involving the anti-neutrophil cytoplasmic antibody [93].
HMGB1/TLR4 signaling promotes neutrophil migration and contributes to paraquat-
induced acute lung injury [94]. Therefore, HMGB1 acts as a key amplifier of neutrophil-
driven tissue necrosis and organ injury, making it a potential therapeutic target.

The recent discovery of neutrophil extracellular traps (NETs) has expanded our view
of how neutrophils function [95]. NETs are secreted from neutrophils and aid in pathogen
clearance at the site of inflammation [96,97]. However, extensive formation of NETs
exacerbates damaging inflammatory responses and tissue injury. Accumulating evidence
indicates that HMGB1 can be released from NETs and the interaction of HMGB1 with TLR4
can accelerate NET formation [98], which may be further potentiated in the presence of
IgG against anti-neutrophil cytoplasmic antibody [93,99]. HMGB1 appears to act via TLR2,
TLR4, RAGE and NADPH oxidase to accelerate NET formation [24,59,94]. In addition, NET-
derived HMGB1 can act via RAGE-dynamin cascades to induce macrophage pyroptosis,
which aggravates inflammation [100].

Macrophages normally phagocytose apoptotic neutrophils and NETs in a process
termed NETosis and impairment in this NET clearance may lead to persistent inflamma-
tory responses and subsequent organ injury [24,101]. NETosis is markedly decreased in
patients with acute respiratory distress syndrome [101] and impaired NETosis has been
associated with worse liver damage following sepsis and neuronal impairment in the
ischemic brain [102]. HMGB1 strongly promotes neutrophil activation and NET release,
contributing to inflammatory disorders. Inhibiting HMGB1 or NET formation may miti-
gate pulmonary inflammation in acute respiratory distress syndrome [101] and help treat
inflammatory diseases such as diabetic wounds and COVID-19 [103,104].

4.2. HMGB1 and Macrophages

Monocytes are not very abundant in the peripheral circulation. They are produced
in the bone marrow and released into the peripheral circulation, where they circulate
for only about a day before settling permanently within tissues [105]. Once settled, the
cells are called tissue macrophages. Macrophages are widely distributed in lymphoid and
non-lymphoid tissues and, because of their prodigious phagocytic ability, they are critical
for presenting antigens from particulate immunogens such as bacteria [105,106].

On exposure to LPS, macrophages produced hydrogen peroxide that promoted the
formation of intramolecular disulfide between C45 and C23 [107]. This oxidative response
initiated HMGB1 release from macrophages [77]. Extracellular HMGB1 is recognized
as a danger signal that provokes proinflammatory responses and impairs efferocytosis
and phagocytosis of macrophages [101,108,109]. Administering an HMGB1 antagonist
or anti-HMGB1 antibody to cultured macrophages suppresses internalization of HMGB1
and HMGB1-LPS complexes, blocking macrophage activation and thereby inhibiting the
inflammatory response [110–115].
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Macrophages are implicated in initiating, maintaining and resolving inflammatory
processes in host defense and during sepsis [100,116]. C1q is a regulator of inflamma-
tion that interacts with DAMPs and maintains monocytes in a quiescent state in order
to promote anti-inflammatory macrophages [117]. HMGB1 together with C1q stimulate
an anti-inflammatory macrophage response, but suppress macrophage plasticity. The
HMGB1-C1q complexes modulate macrophage activities by switching between specialized
pro-resolving molecules such as biosynthetic enzymes and leukotriene [118]. Circulating
HMGB1 acts on macrophages as an inflammatory cytokine in later stages of sepsis. HMGB1
acts via Janus kinase (JAK) and activator of transcription (STAT) pathways to trigger pro-
duction of a broad range of chemokines and inflammatory molecules in macrophages [119].
The HMGB1-RAGE interaction mediates intracellular cascades involving NF-κB and other
products of activated macrophages [106].

HMGB1 has been implicated in various forms of programmed cell death. For exam-
ple, HMGB1 induces apoptosis of mouse macrophages in a dose- and time-dependent
manner [120,121]. In sepsis, widespread macrophage apoptosis causes immune dysfunc-
tion and even immune paralysis. HMGB1 stimulation of macrophages strongly activates
caspase-3 [120–122], which initiates cell toxicity and programmed cell death. HMGB1 also
initiates an endoplasmic reticulum stress response to induce the formation of macrophage-
derived foam cells as well as their apoptosis [123]. HMGB1 is also involved in another
type of programmed cell death called pyroptosis, characterized by plasma rupture, DNA
fragmentation and production of proinflammatory mediators. Following endocytosis,
NET-derived HMGB1 may trigger intra-macrophage-induced pyroptosis, which in turn
may exacerbate inflammation [65,100,124–126]. Reciprocally, alveolar macrophage pyrop-
tosis induced by NOD-like receptor family pyrin domain-containing protein 3 promotes
HMGB1 production in acute lung injury [65]. Poly (ADP-ribosylated) HMGB1 prevents
macrophages from phagocytosing apoptotic cells, preventing the normal resolution of
inflammation [92,101,108] and, in fact, this effect of HMGB1 is much weaker when the
HMGB1 is unmodified, suggesting a therapeutic strategy to diminish inflammation.

4.3. HMGB1 and Dendritic Cells

Dendritic cells (DCs) serve as professional antigen-presenting cells that capture antigen
in one location, then migrate to lymph nodes, where they present it to native T cells,
initiating the adaptive immune response [127]. In addition to presenting foreign antigens,
DCs stimulate the proliferation of T lymphocytes and regulatory T cells, which depends
on the ratio of mature to immature DCs [128]. Normally, the immature DCs express
low amounts of MHCII, CD86, CD80, CD11c, but high amounts of CD45RB. In a mouse
model of severe trauma, administration of CD11clowCD45RNhigh DCs prevented acute
inflammatory responses by inhibiting the formation of pro-inflammatory mediators [129].

HMGB1 finely tunes the maturation, differentiation and immune functions of DCs,
so it influences the shift of helper T (Th) 1 cells and Th17 polarization necessary for T
cell-mediated immunity [127–130]. HMGB1 is critical for CXCL12 activity, which attracts
myeloid-derived cells, thereby promoting recruitment and motility of leukocytes [119]. The
Hp91 sequence within the B-Box domain of HMGB1 is required for DC activation; via this
domain, HMGB1 enters DCs in a clathrin- and dynamin-dependent manner [131]. Hp91-
mediated DC activation is dependent on TLR4, MyD88 and IFNαβR and it is mediated by
NF-κB and p38 MAPK cascades [131,132].

Several studies suggest that HMGB1 acts as a diphasic immune regulator of DC
function. Our own studies revealed that HMGB1 can stimulate DC apoptosis in a time-
and dose-dependent manner [133,134]. Conversely, blockade of HMGB1 in burn tissue
was found to increase the expression of DC costimulatory molecules including MHC,
CD86 and CD80 as well as IL-2 [97]. The abundant production of HMGB1 may induce the
maturation of DCs and Th2 polarization, which would suppress T cell-mediated immunity.
For example, we found that HMGB1 can facilitate the differentiation of DC cells into
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the CD11clowCD45RNhigh subtype, leading to a reduction in T cell-activated immune
responses [133,134].

In DCs, HMGB1 upregulates PI3K, Akt and mTOR and phosphorylated proteins [135].
The HMGB1/PI3K/Akt/mTOR axis promotes adhesion, maturation, chemotactic and
antigen-presenting ability of lung DCs, implicating it in lung inflammation [135]. Similarly,
HMGB1 promotes IL-9 release to activate group 2 innate lymphoid cells and DCs, aggra-
vating asthma [128]. In asthma, HMGB1 also contributes to hyper-responsiveness and
airway inflammation via the pathway involving adenosine triphosphate (ATP)/purinergic
receptor P2X ligand-gated ion channel 7 [135].

HMGB1-dependent DCs activation induces Th17-type responses and this activation
can be blocked using a soluble form of RAGE (sRAGE) [136], which blocks interaction
between HMGB1 and endogenous RAGE. DCs pretreated with recombinant HMGB1
and sRAGE suppressed Th17-dependent cytokine release, eliminating neutrophil airway
inflammation [136,137]. Together, these studies suggest that neutralizing HMGB1 may
mitigate inflammatory responses.

HMGB1 upregulates CD86 and CD80 levels on mucosal DCs, whereas the HMGB1
inhibitor glycyrrhizin inhibits induction of DCs and activation of CD8+ cytotoxic lympho-
cytes that specifically recognize intestinal ovalbumin [131,138].

The pivotal role of HMGB1 in DC activities may make it a target against human
immunodeficiency virus (HIV) infection. HIV can reside within DCs and thereby spread
and evade host immunity [139,140]. Neutralization of HMGB1 might render HIV-infected
DCs vulnerable to natural killer cells.

4.4. HMGB1 and T Lymphocytes

T lymphocytes are the principal players in cell-mediated adaptive immunity. T lym-
phocytes are divided into two major cell types: Th cells and T cytotoxic cells [141]. Th1
cells regulate the immune response to intracellular pathogens and Th2 cells modulate the
response to many extracellular pathogens. The cell activity is remarkably dampened that
drives the response in favor of Th2 profile. A Th2-dominant immune response or excessive
apoptosis of T lymphocytes may render the host more vulnerable to infection [141].

HMGB1 potently modulates T cell immunological reactions, but the underlying molec-
ular mechanisms remain unknown. We observed that serum HMGB1 was markedly
increased in rats following thermal injury and it was able to activate T lymphocytes at rela-
tively low concentrations [142]. HMGB1 at low concentrations enhanced the proportions of
Th17 and CD4+ T cells and it increased the CD4+/CD8+ ratio, which might aggravate in-
flammatory damage. HMGB1 at high concentrations, conversely, suppressed T lymphocyte
activity, highlighting the dual effects of HMGB1 on T lymphocytes. Inhibition of HMGB1
restored normal levels of T cell proliferation and IL-2 and it shifted to a Th1 profile.

IL-2 potently stimulates T lymphocytes and regulates the balance between Th1 and
Th2 cells. HMGB1 exerts its immunosuppressive effect on T lymphocytes via p53, p38
MAPK and ERK 1/2 [143–149]. p38 MAPK and ERK1/2 may act on the transcription
factor NF-AT in HMGB1-induced immunosuppression. NF-AT can also interact with the
IL-2 promoter and modulate the transcription of the IL-2 gene [142]. Thus, HMGB1 may
operate as an activator of NF-AT expression and IL-2 secretion. At the same time, excessive
release of HMGB1 can reduce IL-2 levels, suggestive of HMGB1′s immunosuppressive
properties [142,143].

The proinflammatory B-box of HMGB1 is required for soluble CD52 to be able to sup-
press T cells. CD52 is a glycophosphatidylinositol (GPI)-anchored glycoprotein expressed
by T cells, B cells, DCs, natural killer cells, macrophages and eosinophils [143,144,150].

HMGB1 can directly evoke the differentiation of Th17 and Th2 cells, through which
the protein promotes mucus production and airway inflammation in asthmatic mice [148].
After injury, release of HMGB1 immunosuppresses T lymphocytes [151,152] and we found
that stimulation with HMGB1 can induce late apoptosis and necrosis as well as mitochon-
drial apoptosis in T cells [151]. We also found that antibody neutralization of HMGB1
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promoted the T cell-dependent immune response in septic rats, thereby ameliorating mul-
tiple organ damage [153,154]. Similarly, our studies showed that mitofusin-2 can reverse
HMGB1-induced immunosuppression of T cells [151,152].

4.5. HMGB1 and Regulatory T Cells

Regulatory T cells are a subset of CD4+ T cells that dampen the proliferation and
activity of antigen-presenting cells, T cells, natural killer cells and B cells [155,156]. These
cells attenuate the immune response by constitutively expressing intracellular cytotoxic T
lymphocyte-associated antigen-4 (CTLA-4), glucocorticoid-induced TNF receptor (GITR)
and forkhead/winged helix transcription factor p3 (Foxp3), as well as by producing the
immunosuppressive cytokines IL-10 and transforming growth factor (TGF)-β. Therefore,
regulatory T cells regulate both humoral and cell-mediated immunity [155,156].

In regulatory T cells from mouse spleen, we noted that HMGB1 markedly down-
regulated expressions of Foxp3 and CTLA-4, which was accompanied by the production
of IL-10 [157,158]. Another study showed that HMGB1 suppressed regulatory T cells via
a RAGE-driven pathway and limited the activity of CD4+CD25-CD127+ conventional T
cells. HMGB1 can induce migration and survival of regulatory T cells [156]. In rat model
of burn injury, anti-RAGE antibody led to a profound decrease in the immune functions of
regulatory T cells, while restoring effector T cell activity [157]. Therefore, following burn
injury, HMGB1 binding to RAGE may suppress regulatory T cell activity, thereby activating
effector T cells.

TLRs are sensors that recognize invading pathogens and mediate signaling cascades
that trigger and regulate immune responses. The binding of TLR4 with HMGB1 regulates
the function of regulatory T cells. We found that stimulation of regulatory T cells with
HMGB1 led to a massive elevation of cytoplasmic TLR4 but a steep decline in membrane
TLR4 [159]. These changes were reversed by an anti-TLR4 neutralizing antibody. The
interaction between HMGB1 and TLR4 may also suppress regulatory T cells via NF-κB
signaling [159].

Regulatory T cells are critical for resolving lung damage. Inhibiting HMGB1 dampens
pro-inflammatory cytokine production, increases TGF-β release and attenuates lung in-
jury [160]. An HMGB1/PTEN/β-catenin cascade modulates the development and involve-
ment of regulatory T cells in sepsis-associated lung injury. Elevated HMGB1 may drive a
Th17 response and suppress regulatory T cells during pulmonary inflammation [160–162].

5. Role of HMGB1 in Various Inflammatory Disorders

The activities of HMGB1 depend greatly on its cellular localization. Nuclear HMGB1
acts as a pro-inflammatory molecule in sterile tissue injury or during infection, which
in turn affects immune responses. Extracellular HMGB1 engages in various activities
affecting inflammation, oxidation, migration, invasion, proliferation, differentiation and
tissue regeneration. For example, HMGB1 induces cultured human monocytes to produce a
plethora of proinflammatory mediators such as macrophage inflammatory protein (MIP)-1,
IL-1, IL-6, IL-8 and TNF [29,31]. In vivo, HMGB1 can initiate systemic inflammation that
can be associated with fever, epithelial barrier dysfunction, endothelial cell activation, acute
lung injury, anemia, cognitive dysfunction, arthritis, anorexia and even death [77,78,163].
Thus, many studies suggest that HMGB1 possesses fulminant inflammatory properties
and contributes to numerous inflammatory disorders (Figure 4, Table 1).



Cells 2021, 10, 1044 10 of 26Cells 2021, 10, x FOR PEER REVIEW 10 of 26 
 

 

 

Figure 4. Roles of HMGB1 in various inflammatory disorders. The studies discussed in this review show that increased 

levels of extracellular HMGB1, whether in serum or tissue, can signal as a DAMP molecule to regulate inflammatory and 

immune responses, contributing to various inflammatory disorders, such as sepsis, SLE, RA, asthma, trauma, acute liver 

injury, cardiac injury, acute lung injury and encephalopathy. Abbreviations: HMGB1, high-mobility group box 1; Treg 

cell, regulatory T cell；DC, dendritic cell; DAMP, damage-associated molecular pattern; RA, rheumatoid arthritis; SLE, 

systemic lupus erythematosus. Abbreviations: HMGB1, high-mobility group box 1; RAGE, receptor for advanced gly-

cation end products; TLR, Toll-like receptor; IL, interleukin; Th, T helper; NF-κB, nuclear factor-κB; LPS, lipopolysaccha-

ride; SIRT1, sirtuin 1; TNF-α, tumor necrosis factor α; CLP, cecal ligation and puncture; RA, rheumatoid arthritis; SLE, 

systemic lupus erythema. 

5.1. Sepsis 

HMGB1 appears much later than other proinflammatory cytokines after onset of sep-

sis: LPS stimulation of mouse macrophages upregulated HMGB1 within 8 h, followed by 

a massive increase at 16–32 h [77,78]. 

HMGB1 can inspect and carry immunogenic nucleic acids, upregulating IL-6 and 

type 1 interferons in immune cells [164]. Binding of extracellular HMGB1 to viral nucleic 

acids leads to their internalization via dynamin-dependent endocytosis, which leads in 

turn to cytokine and interferon responses [164,165]. Silencing of HMGB1 in cells stimu-

lated with viral nucleic acids dampened the immune response substantially [164,165]. 

These studies indicate that HMGB1 serves as a viral sentinel in a nucleic acid-dependent 

manner. 

The role of HMGB1 in sepsis has been extensively explored in rodent models with 

cecal ligation and puncture (CLP). The fact that HMGB1 acts late in sepsis opens a thera-

peutic window for medical treatment [166–171]. Silencing HMGB1 in a mouse model of 

sepsis mitigated the cytokine storm of DCs and macrophages, as well as reduced lympho-

cyte apoptosis and mortality [120]. Similarly, targeting HMGB1 with a specific antibody 

promoted neutrophil activity, attenuated post-sepsis immunosuppression and conferred 

resistance to secondary bacterial infection [172]. Targeting HMGB1 has shown promise in 

preclinical studies, but it has not yet been tested in clinical trials. 

5.2. Autoimmune Diseases 

Autoimmune diseases are attributed to dysregulation of both immune and inflam-

matory responses. Recent findings suggest that HMGB1 is critical for the development of 

autoimmune pathologies [173]. 

Figure 4. Roles of HMGB1 in various inflammatory disorders. The studies discussed in this review show that increased
levels of extracellular HMGB1, whether in serum or tissue, can signal as a DAMP molecule to regulate inflammatory and
immune responses, contributing to various inflammatory disorders, such as sepsis, SLE, RA, asthma, trauma, acute liver
injury, cardiac injury, acute lung injury and encephalopathy. Abbreviations: HMGB1, high-mobility group box 1; Treg
cell, regulatory T cell; DC, dendritic cell; DAMP, damage-associated molecular pattern; RA, rheumatoid arthritis; SLE,
systemic lupus erythematosus. Abbreviations: HMGB1, high-mobility group box 1; RAGE, receptor for advanced glycation
end products; TLR, Toll-like receptor; IL, interleukin; Th, T helper; NF-κB, nuclear factor-κB; LPS, lipopolysaccharide;
SIRT1, sirtuin 1; TNF-α, tumor necrosis factor α; CLP, cecal ligation and puncture; RA, rheumatoid arthritis; SLE, systemic
lupus erythema.

5.1. Sepsis

HMGB1 appears much later than other proinflammatory cytokines after onset of
sepsis: LPS stimulation of mouse macrophages upregulated HMGB1 within 8 h, followed
by a massive increase at 16–32 h [77,78].

HMGB1 can inspect and carry immunogenic nucleic acids, upregulating IL-6 and type
1 interferons in immune cells [164]. Binding of extracellular HMGB1 to viral nucleic acids
leads to their internalization via dynamin-dependent endocytosis, which leads in turn to
cytokine and interferon responses [164,165]. Silencing of HMGB1 in cells stimulated with
viral nucleic acids dampened the immune response substantially [164,165]. These studies
indicate that HMGB1 serves as a viral sentinel in a nucleic acid-dependent manner.

The role of HMGB1 in sepsis has been extensively explored in rodent models with
cecal ligation and puncture (CLP). The fact that HMGB1 acts late in sepsis opens a thera-
peutic window for medical treatment [166–171]. Silencing HMGB1 in a mouse model of
sepsis mitigated the cytokine storm of DCs and macrophages, as well as reduced lympho-
cyte apoptosis and mortality [120]. Similarly, targeting HMGB1 with a specific antibody
promoted neutrophil activity, attenuated post-sepsis immunosuppression and conferred
resistance to secondary bacterial infection [172]. Targeting HMGB1 has shown promise in
preclinical studies, but it has not yet been tested in clinical trials.

5.2. Autoimmune Diseases

Autoimmune diseases are attributed to dysregulation of both immune and inflam-
matory responses. Recent findings suggest that HMGB1 is critical for the development of
autoimmune pathologies [173].
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Rheumatoid arthritis (RA) involves destructive synovitis at the cartilage-bone inter-
face, along with synovial tissue hypoxia [173,174]. HMGB1 is upregulated in damaged
pannus tissue from RA patients [175,176] and in a mouse model of RA [173]. In addition,
administration of HMGB1 to mice leads to destructive arthritis [177–179]. HMGB1 in
patients with RA synovitis may be produced by vascular endothelial cells, fibroblasts and
activated synovial macrophages and the form of HMGB1 in the synovial fluid is hyper-
acetylated [174]. Moreover, extracellular HMGB1 released from dying hypoxic cells can
trigger the secretion of proinflammatory cytokines such as IL-1 and TNF [171]. Blockade of
HMGB1 in animal models of RA ameliorates bone and cartilage lesions [114,115,180–184].

Systemic lupus erythematosus (SLE) is a systemic inflammatory and autoimmune
disorder characterized by the deposition of immune complexes in multiple organs [185].
High levels of serum HMGB1 have been observed in SLE patients and these levels corre-
lated with disease activity [186]. HMGB1-DNA complexes participate in the pathology
of SLE and immunization of mice with HMGB1-DNA complexes stimulated production
of anti-DNA antibodies, leading to SLE pathology [187]. HMGB1-DNA complexes also
trigger the production of type I IFN, a crucial factor in the development of SLE [187,188]. A
positive correlation was observed between HMGB1 and pro-inflammatory cytokines such
as IL-6 and TNF-α in SLE patients, indicating that HMGB1 might be a prognostic factor for
SLE [186]. Administration of an HMGB1 antagonist alleviated the disease in experimental
lupus models [189,190].

In addition, extracellular HMGB1 was shown to be a source of NET as evidence that
HMGB1 levels was high to greater certain among lupus nephritis [191]. HMGB1 provoked
self-DNA-induced macrophage activation by facilitating DNA accumulation in endosomes,
which was involved in the development of lupus nephritis [192]. Inversely, inhibition of
HMGB1 attenuated the severity of SLE, providing an attractive target for SLE treatment.

5.3. Acute Liver Injury

Acute liver injury is a common condition caused by, for example, hepatic viral infec-
tion, drug-induced liver dysfunction, or ischemia/reperfusion injury [193]. Patients with
liver failure show elevated serum concentrations of HMGB1 [194].

Acetaminophen is the most common cause of drug-induced liver injury. A hepato-
toxic intracellular acetaminophen metabolite causes hepatocyte necrotic death, release of
non-acetylated HMGB1 and leukocyte activation. Both the release of HMGB1 and the
accompanying activation of macrophages contribute to the inflammatory environment of
acetaminophen-induced hepatotoxicity [194–196]. These processes trigger a second wave of
HMGB1, which induces fulminant inflammatory reactions [197]. Acetaminophen-induced
hepatic dysfunction is associated with elevated levels of circulating HMGB1, sRAGE and
a newly identified extracellular RAGE-binding protein [196]. These molecules function
as biomarkers of systemic inflammatory reactions and severity of liver injury. In a mouse
model of acetaminophen overdose, HMGB1 antagonists mitigated the negative outcomes,
which may be a useful treatment strategy [32].

Serum HMGB1 is also recognized as an early clinical marker of hepatic ischemia/
reperfusion injury. HMGB1-associated partners such as TLR4, RAGE and CXCR4 are
abundantly expressed in various liver and immune cells, including sinusoidal endothelial
cells, stellate cells, hepatocytes, Kupffer cells and dendritic cells [193]. Reducing levels of
secreted HMGB1 effectively attenuates hepatic damage and improves survival in mice [32].

5.4. Lung Diseases

Extracellular HMGB1 has been postulated to act as a danger signal that evokes an
inflammatory storm, prevents the phagocytosis of apoptotic cells (necessary to stop inflam-
mation) and changes vascular remodeling in various lung diseases [13,198].

Asthma is a clinical syndrome characterized by three distinct components: airway
inflammation, exaggerated bronchoconstrictor responses and recurrent episodes of airway
obstruction [34,199]. HMGB1 was shown to strongly stimulate the differentiation of Th
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cells and innate lymphocytes (e.g., DCs, group 2 innate lymphoid cells (ILC2s)) and
contribute to asthma [128,135,136,148,200]. Levels of HMGB1 in the airway are elevated
in animal models and patients with asthma. In severe asthmatic patients, the elevation of
airway HMGB1 is associated with an increase in pro-inflammatory cytokines, chemokines,
matrix metalloproteinase and counts of blood neutrophils, as well as with activation
of neutrophils [201]. HMGB1 activated ILC2s and DCs in a mouse model of asthma,
exacerbating the disease [202,203].

Targeting HMGB1 may a useful treatment for asthma. HMGB1 antagonists repressed
leukocyte infiltration, levels of collagen, cell counts and pro-inflammatory cytokines
in animal models, which attenuated airway remodeling and airway hyperresponsive-
ness [204–206].

Acute lung injury (ALI) is characterized by sudden-onset, severe impairment of pul-
monary gas exchange and sustained lung inflammation and it is most frequently caused by
infections, sepsis, trauma, or inhalation of toxic substances [207]. The role of HMGB1 in ALI
has been explored in animal models. In analogy to endotoxin-induced ALI, intratracheal
administration of HMGB1 stimulated infiltration by interstitial/intra-alveolar neutrophils
and led to increased alveolar capillary permeability and lung edema in mice [26,94,208–210].
During pulmonary infection, HMGB1 is released into the airways by immune cells as well
as by damaged cells, where it promotes activation of various immune cells via pattern
recognition receptor (PRR) signaling. HMGB1 synergizes with macrophages, neutrophils
and pneumocytes to accelerate the production of numerous pro-inflammatory mediators
and exacerbate the inflammatory response [65,94,105,127,160]. HMGB1 also compromises
endothelial junctions and alveolar capillary permeability, leading to dysfunction of the
alveolar endothelial/epithelial barrier [207,211]. HMGB1 levels even correlate positively
with pneumonia severity in patients [212].

Intratracheal administration of anti-HMGB1 antibodies alleviate lung inflammation,
reduce bacterial burden and improve mortality in mouse models of ALI [213–215]. Ethyl
pyruvate, 2-O,3-O desulfated heparin and curcumin suppress the release of HMGB1 ame-
liorating inflammation-induced lung injury [96,114,115,216].

5.5. Cardiac Injury

HMGB1 performs numerous functions during cardiac injury, cardiac remodeling
and regeneration [217,218]. It contributes to cardiac inflammatory injury by inducing
cardiomyocyte senescence, apoptosis, necroptosis and necrosis [35].

HMGB1 is released by immune cells or stressed cardiomyocytes and it recruits Ly6C+
monocytes to the damaged cardiac tissue, thereby reprogramming the monocytes into pro-
inflammatory M1 macrophages [217]. M1 macrophages activate expansion of CD4+ T cells,
which drive the pathogenesis of myocarditis [218]. Likewise, HMGB1 can activate Th17
cell expansion, subsequent production of IL-17 and recruitment of infiltrating neutrophils,
thereby resulting in cardiac injury. Additionally, HMGB1 acts as an autophagy sensor [217].
ROS-induced HMGB1 release from the nucleus activates autophagic flux, which is deleteri-
ous for myocytes [218]. HMGB1 also prevents macrophages from phagocytosing apoptotic
cells to resolve inflammation [66,101,108,122].

At the same time, HMGB1 may drive lymphocyte apoptosis, lymphocyte homing, in-
flammatory resolution and heart remodeling [122,149]. Cardiac stress or injury upregulates
a novel family of innate lymphoid cells (ILCs), which limit inflammation. All-thiol or disul-
phide HMGB1 can expand group 3 innate lymphoid cells (ILC3), promoting IL-22 release
and attenuating experimental autoimmune myocarditis [8]. In mice, silencing of HMGB1
mitigates experimental autoimmune myocarditis [10]. Similarly, Zhou et al. observed that
the cardioprotective effects of HMGB1 prior to ischemia-reperfusion could be regulated
by enhancement of vascular endothelial growth factor expression and PI3K/Akt signal-
ing [219]. Overall, the molecular mechanisms underlying the beneficial and detrimental
effects of HMGB1 on cardiac injury remain to be elucidated.
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5.6. Encephalopathy

Encephalopathy is a severe condition caused by sepsis, metabolic diseases and liver
dysfunction. HMGB1 can trigger inflammatory cascades in the central nerve system (CNS)
and cause astrocyte-mediated cerebral swelling [220].

Up to 25% of septic patients display cognitive decline and animal models of sep-
sis show significant chronic impairments in memory and learning, which are associated
with anatomical changes in the hippocampus [221]. Administration of HMGB1 to sep-
tic mice impairs their learning and memory [221] and HMGB1 has been reported to
mediate neuroinflammation by inducing apoptosis and local inflammation as well as
by compromising blood–brain barrier integrity [222]. HMGB1 may directly potentiate
hippocampal inflammatory responses and activate microglia. Suppression of HMGB1
accelerated recovery of neurological function by shifting microglia to the anti-inflammatory
M2 phenotype and away from the pro-inflammatory M1 phenotype [111,113]. HMGB1 in
macrophages/microglia may be a promising target for treating brain injury. For example,
the HMGB1 inhibitor Icariin can prevent LPS-mediated neuroinflammation [223]. Of inter-
est, HMGB1 played detrimental and beneficial role in inflammation and recovery following
stroke. During the acute phase, HMGB1 could trigger influx of damaging inflammatory
cells and necrosis. However, HMGB1 exhibited beneficial effects in recovery of neurovascu-
lar unit during the delayed phase [224]. Therefore, it was proposed that HMGB1-mediated
inflammation could be biphasic actions, depending on varied cellular contexts.

5.7. Other Inflammatory Conditions

Severe trauma is characterized by extreme cellular stress and excess release of alarmins,
especially HMGB1. Indeed, experimental and clinical studies have implicated HMGB1 in
systemic inflammation and multiple organ dysfunction as a result of severe trauma [11,225].
In trauma patients, there is an initial plasma HMGB1 peak, exponential decay, then a second
HMGB1 wave, peaking at 3–6 h after the trauma [226]. In that study, hyperacetylated and
active disulfide HMGB1 isoform appeared in the second wave but not the first one. Neutral-
ization of HMGB1 reduces inflammatory responses and favors survival of animals exposed
to trauma, so the biphasic release implies a relatively long therapeutic window [11,226].

HMGB1 plays a critical role in bacterial translocation in the gut and in systemic
inflammation during severe acute pancreatitis (SAP). Serum HMGB1 levels are elevated in
patients with SAP [227]. In these patients, upregulation of circulating HMGB1 correlates
with activation of autophagy and necrosis but with a decrease in plasma sRAGE [112].
During the early phase of acute pancreatitis, HMGB1 may stimulate pancreatic pain by
targeting CXCL12/CXCR4 and triggering RAGE signaling [112].

HMGB1 has been implicated in tumorigenesis, progression, metastasis and chemother-
apy resistance of various cancers [228–230]. HMGB1 could elicit proinflammatory cascades
and promote formation and metastasis of tumor, which is crucial for sustenance of tumor
inflammatory microenvironment [228]. In addition, HMGB1 was critical for the activation
and intratumoral aggregation of tumor-infiltrating T cells to release lymphotoxin α1β2
and attract macrophages into the lesion, thereby accelerating tumor progression [229].
Moreover, HMGB1 was observed to incite apoptosis in macrophage-derived dendritic
cells, subsequently dampening anti-tumor immunity [230]. More recently, Haruna et al.
reported that docetaxel could engage in anti-tumor immunity via HMGB1 release, implying
a beneficial role of HMGB1 in anti-cancer treatment [231]. However, the exact mechanism
of the effect needs to be investigated in future study.
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Table 1. Summary of studies concerning the significance of HMGB1 in various inflammatory diseases.

Diseases Year Authors Observations or Conclusions Ref.

Sepsis

1999 Wang etal. HMGB1 acts as a late meditator of endotoxin lethality in mice. [77]

2010 Lamkanfi et al. HMGB1 release critical for endotoxin occurs downstream of inflammasome
assembly and caspase 1 activation. [78]

2015 Hwang et al. Theacetylation-dependent interaction between HMGB1 and SIRT1 is critical
for LPS-induced lethality in an experimental model of sepsis. [164]

2011 Youn et al. HMGB1 has two LPS-binding peptide regions that can be utilized to design
anti-sepsis or LPS-neutralizing therapeutics in a mouse model. [165]

2004 Yang et al. Specific inhibition of HMGB1 protects against the development of organ
injury and increases survival in septic mice. [166]

2016 Valdes-Ferrer et al. HMGB1 mediates anemia of inflammation by interfering with erythropoiesis
in murine sepsis survivals. [167]

2013 Valdes-Ferrer et al. HMGB1 mediates splenomegaly and expansion of splenic
CD11b+ly-6C(high) inflammatory monocytes in murine sepsis survivors. [168]

2017 Stevens et al. Anti-HMGB1 antibodies alter inflammation in murine sepsis model and
reduce sepsis mortality without potentiating immunosuppression. [169]

2017 Gregoire et al. HMGB1 induces neutrophil dysfunction in septic mice and in patients who
survive septic shock. [170]

2016 Gil et al. Naringin reduces the release of TNF-α and HMGB1 from LPS-stimulated
macrophages and improves survival in a CLP-induced sepsis mice. [171]

2006 Suda et al. Anti-HMGB1 antibodies improve survival of rats with sepsis. [172]

Arthritis

2003 Taniguchi et al. HMGB1 is strongly expressed in synovial fluid of RA patients inducing the
release of proinflammatory cytokine from synovial fluid macrophages. [173]

2007 Goldstein et al. Cholinergic anti-inflammatory pathway activity and HMGB1 serum levels in
patients with RA. [175]

2010 Ostberg et al. HMGB1 is involved in the pathogenesis of this spontaneous polyarthritis
and intervention with an HMGB1 antagonist can mediate beneficial effects. [177]

2011 Schierbeck et al.
Monoclonal anti-HMGB1 antibody significantly ameliorates the clinical

courses and partially prevents joint destruction in collagen type II-induced
arthritis and spontaneous arthritis model.

[178]

2003 Pullerits et al. HMGB1 triggers joint inflammation by activating macrophages and
inducing production of IL-1 via NF-κB activation. [179]

2008 Hamada et al. HMGB1 is a coupling factor for hypoxia and inflammation in arthritis. [180]

2016 Lundback et al. HMGB1 is synovial fluid from idiopathic arthritis patients actively released
through both acetylation-dependent and nondependent manners. [181]

2003 Kokkola et al. Successful treatment of collagen-induced arthritis in mice and rats by
targeting extracellular HMG1 activity. [182]

2006 Wouwer et al. The lectin-like domain of thrombomodulin interferes with complement
activation and protects against arthritis in mouse model. [183]

2008 Zetterstrom et al.
Gold sodium thiomalate inhibits the extracellular release of HMGB1 from

activated macrophages and causes the nuclear retention of this protein,
suggesting the anti-rheumatic effects of gold sodium thiomalate in RA.

[184]

SLE

2012 Ma et al. Elevated plasma level of HMGB1 is associated with disease activity and
combined alterations with IFN-α and TNF-α in SLE. [186]

2011 Abdulahad et al.

Levels of HMGB1 in the sera of SLE patients, in particular in those with
active renal disease, are increased. Serum HMGB1 levels are related to SLE

disease activity index scores and proteinuria, as well as to levels of
anti-HMGB1 antibodies.

[189]

2014 Zhang et al. HMGB1 inhibition attenuates lupus-like disease in BXSB mice. [190]

2019 Whittall-Garcia et al. In SLE patients, NETs are a source of extracellular HMGB1, which correlates
with clinical and histopathological features of active nephritis. [191]

2015 Li et al.
Extracellular HMGB1 facilitates self-DNA induced macrophage activation

via promoting DNA accumulation in endosomes and contributes to the
pathogenesis of lupus nephritis.

[192]
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Table 1. Cont.

Diseases Year Authors Observations or Conclusions Ref.

Liver
injury

2010 Evankovich et al.
High mobility group box 1 release from hepatocytes during
ischemia and reperfusion injury is mediated by decreased

histonedeacetylase activity.
[193]

2016 Lundback et al.

Anti-HMGB1 polyclonal antibody significantly attenuates serum
elevations of alanine aminotransferase and abrogates markers of

inflammation and improves survival in a model of
acetaminophen-acute liver injury.

[197]

2011 Dragomir et al. HMGB1 released by acetaminophen-injured hepatocytes leads to
macrophage activation. [196]

Asthma

2017 Di Candia et al. HMGB1 is upregulated in the airways in asthma and potentiates
airway smooth muscle contraction via TLR4. [201]

2015 Cuppari et al. Sputum HMGB1 is increased in asthmatic children and correlates
with asthma severity and inversely with lung function indices. [203]

2017 Zhang et al. Vitamin D reduces inflammatory response in asthmatic mice via
HMGB1/TLR4/NF-κB pathway. [205]

Acute
lung

injury

2015 Sodhi et al Intestinal epithelial TLR4 activation leads to HMGB1 release from
gut and the development of lung injury. [208]

2005 Kim et al. Hemorrhage results in increased HMGB1 expression in the lung
primarily via neutrophil sources. [210]

2013 Patel et al. HMGB1 mediates hyperoxia-induced impairment of Pseudomonas
aeruginosa clearance and inflammatory lung injury in mice. [212]

2014 Entezari et al. Inhibition of extracellular HMGB1 attenuates hyperoxia-induced
inflammatory acute lung injury. [214]

2004 Ueno et al.
HMGB1 is increased in plasma and lung epitheliallining fluid of

patients with acute lung injury and mice instilled with
lipopolysaccharide.

[215]

Cardiac
injury

2009 Kohno et al.

Elevated serum HMGB1 of is associated with adverse clinical
outcomes in patients with myocardial infarction. HMGB1 blockade

intramyocardial infarction model aggravated left ventricular
remodeling possibly via impairment of the infarct-healing process.

[217]

2008 Kitahara et al. HMGB1 enhances angiogenesis, restores cardiac function and
improves survival after myocardial infarction in mice. [218]

Encepha-
lopathy

2014 Zou et al.

Ethanol alters histone deacetylases that regulate HMGB1 release
and that danger signal HMGB1 as endogenous ligand for TLR4

mediates ethanol-induced brain neuroimmune signaling via
activation of microglial TLR4.

[220]

2012 Chavan et al. Elevated HMGB1 mediates cognitive decline in sepsis survivors
in mice. [221]

2019 Liu et al.
Icariin and icaritin ameliorate hippocampus neuroinflammation via

inhibiting HMGB1-related pro-inflammatory signals in
lipopolysaccharide-induced inflammation model in mice.

[223]

Trauma

2007 Levy et al. HMGB1 levels are transiently elevated just 1 h after injury in both
wild-type and TLR4 mutant mice. [225]

2012 Shimazaki et al.
Anti-HMGB1 antibody reduces inflammatory reactions and

improve survival via blocking extracellular HMGB1 in a rat model
of crush injury.

[226]

6. Conclusions and Perspectives

HMGB1 is a critical endogenous nucleoprotein with multiple biological functions.
The properties of HMGB1 depend on its subcellular location, interaction partners and
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post-translational modifications (oxidation, phosphorylation and acetylation). Normally,
HMGB1 acts as an architectural factor that modulates nucleosomes, DNA and gene tran-
scription by binding DNA in the nucleus. Under stress conditions, HMGB1 can shuttle
to the cytoplasm, where it is actively or passively released from cells. HMGB1 is actively
released by various types of immune cells, such as neutrophils, macrophages and DCs and
it is also secreted during cell injury and death. Once outside the cell, the protein participates
in a broad range of biological behaviors, such as autophagy, apoptosis and pyroptosis.

HMGB1 has metabolic, immune, chemokine and cytokine activities. HMGB1 induces
and maintains potent inflammatory and immune responses by influencing various immune
cells involved in the pathology of inflammatory conditions. HMGB1 can recruit and activate
neutrophils, promote neutrophil infiltration and promote NET formation. It modulates
maturation, differentiation, activation and apoptosis of DCs. It induces apoptosis and
pyroptosis in macrophages while impairing their ability to phagocytose apoptotic cells.
HMGB1 promotes the migration and survival of regulatory T cells, while suppressing
their activity. HMGB1 can modulate the immune functions of T lymphocytes in a dose-
dependent fashion.

Accumulating evidence indicates that HMGB1 represents a potential biomarker and
an appealing target for innovative therapeutic approaches in numerous inflammatory
disorders, such as sepsis, lung diseases, autoimmune diseases, acute liver injury, car-
diac injury, encephalopathy and other inflammatory conditions. Targeting HMGB1 with
pharmacological inhibitors and monoclonal antibodies has shown promise for repressing
HMGB1-mediated inflammatory responses in preclinical studies. Blocking HMGB1 can
mitigate the cytokine storm and thereby alleviate tissue injury and reduce mortality in
various animal models of multiple inflammatory disorders.

Targeting HMGB1 has yet to be translated to the clinic. We need further exploration
into how HMGB1 drives the pathogenesis of several inflammatory conditions. Consid-
ering the dose-dependent effects of HMGB1 in certain contexts, standardized, accurate
measurement of HMGB1 levels is key to explore therapeutic strategies based on HMGB1 an-
tagonists. Most preclinical studies have focused on the significance of extracellular HMGB1,
so more work is needed on the functions of intracellular HMGB1 and its targetability for
the treatment of inflammatory diseases.
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