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A B S T R A C T

QBEND/10 is a mouse immunoglobulin lambda-chain monoclonal antibody with strict specificity against
human hematopoietic progenitor cell antigen CD34. Our in vitro study showed that QBEND/10 impairs the tube
formation of human umbilical vein endothelial cells (HUVECs), suggesting that the antibody may be of potential
benefit in blocking tumor angiogenesis. We provided a de novo protein sequencing method through tandem
mass spectrometry to identify the amino acid sequences in the variable heavy and light chains of QBEND/10. To
reduce immunogenicity for clinical applications, QBEND/10 was further humanized using the resurfacing
approach. We demonstrate that the de novo sequenced and humanized QBEND/10 retains the biological
functions of the parental mouse counterpart, including the binding kinetics to CD34 and blockage of the tube
formation of the HUVECs.

1. Introduction

The CD34 protein belongs to the family of single-pass transmem-
brane sialomucin proteins, with an apparent molecular mass (Mr) of
approximately 115 kD [1,2]. Cells with the CD34 surface protein could
be found in the bone marrow, umbilical cord blood and peripheral
blood as hematopoietic progenitor cells and vascular endothelial cells
[3–7]. CD34+ hematopoietic cells enriched from bone marrows have
traditionally been used clinically in patients after radiation therapy or
chemotherapy [8,9]. In previous studies, it was revealed that CD34−/−

mice start to exhibit an abnormal vessel morphology when they are
triggered by disease models, such as autoimmune arthritis [10], tumor
angiogenesis [11], and oxygen-induced retinopathy [12]. Furthermore,
CD34 expressed on human umbilical vascular endothelial cells
(HUVECs) show the angiogenic tip cell phenotype [13]. Therefore,
anti-CD34 should be considered when developing antiangiogenic
therapy.

Angiogenesis is a physiological process related to the sprouting and
growth of new vessels from an existing vasculature. Angiogenesis is the
predominant pathway for neovessel growth in malignancy [14]; there-
fore, the process is called tumor angiogenesis. In 1971, Folkman first
proposed the hypothesis that tumor growth is angiogenesis dependent
[15], according to which angiogenesis presents unique opportunities
for therapeutic intervention in cancer treatment. During vascular

network expansion, sprouting angiogenesis requires a subset of highly
specialized endothelial cells, namely tip cells. The tip cells start
migrating and existing at the leading front of the growing vessels to
guide migration toward a source of angiogenic growth factors, such as
vascular endothelial growth factor (VEGF) [16–20], platelet-derived
growth factor [21], placental growth factor [19,20,22], fibroblast
growth factor-2 [18,23], interleukin-8 [24,25], transforming growth
factor-beta [26–28], and angiopoietins [29,30].

Most monoclonal antibodies (mAbs) originate from mice; therefore,
a human antimouse [31] or antichimeric [32] antibody might be
evoked when mouse antibodies are applied in human therapy. To
circumvent such an adverse immune response, mouse antibodies must
be humanized for clinical applications [33]. Antibody humanization
involves maintaining the specificity and affinity of the parental nonhu-
man antibody and designing an antibody molecule to reduce the
immunogenicity to the greatest extent possible.

QBEND/10 is a mouse mAb against CD34; it reacts with the class II
epitope of CD34 [34]. The CliniMACS CD34 reagent system (Miltenyi
Biotec, Bergisch Gladbach, Germany) is a clinically approved device for
selecting hematopoietic stem cells from donor apheresis. CliniMACS
uses mouse QBEND/10 directly conjugated to an iron oxide particle.
Notably, in our current in vitro study, mouse QBEND/10 impaired the
tube formation of HUVECs. To address the therapeutic potential of
QBEND/10, we used de novo protein sequencing and antibody
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humanization technology as well as analyzed the effects of humanized
QBEND/10 on angiogenesis in vitro by inhibiting the tube formation of
HUVECs.

2. Materials and methods

2.1. Materials

Mouse QBEND/10 was purchased from AbD Serotec. Ammonium
bicarbonate, dithiolthreitol (DTT), iodoacetamide (IAM), formic acid
(FA), thermolysin, and subtilisin were purchased from Sigma–Aldrich.
Urea and acetonitrile (ACN) were purchased from J.T Baker. Trypsin
and chymotrypsin were purchased from Promega. Endoproteinase Glu-
C (Glu-C) and peptide N-glycosidase F (PNGase F) were purchased
from New England BioLabs and Roche, respectively. Furthermore, 4–
12% and 4–20% NuPAGE Bis-Tris polyacrylamide gels were purchased
from Invitrogen. Amicon Ultra centrifugal filters (molecular weight cut-
off, 100 kDa) were purchased from Millipore.

2.2. Enzymatic digestion and deglycosylation of QBEND/10

Mouse QBEND/10 was first processed for detergent removal and
buffer exchange into 50 mM ammonium bicarbonate buffer solution by
using the centrifugal filters. QBEND/10 was subsequently denatured
using 6 M urea, reduced with 10 mM DTT at 37 °C for 1 h and
alkylated using 50 mM IAM for 30 min in the dark at room tempera-
ture (RT). The resulting protein was individually digested with trypsin,
Glu-C, thermolysin, chymotrypsin, and subtilisin at 37 °C for 18 h
(protein:enzyme=20:1). One aliquot of the trypsin digest was added to
Glu-C for 20-h digestion at 37 °C. Thereafter, PNGase F was added for
the deglycosylation reaction. The samples were subsequently diluted
and acidified to 0.1% FA for liquid chromatography (LC)–mass
spectrometry (MS) analysis.

2.3. In-gel tryptic digestion

In a parallel experiment, a mini gel (8 cm×8 cm, 4–20% NuPAGE
Bis-Tris polyacrylamide gel) was used for separation through sodium
dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), fol-
lowed by Coomassie Brilliant Blue R-250 staining. Two bands contain-
ing proteins with an apparent Mr of approximately 25 and 50 kDa were
excised from the gel, washed, in-gel reduced, alkylated, and digested
overnight with trypsin.

2.4. Liquid chromatography–tandem mass spectrometry analysis

The samples were analyzed with a Q Exactive mass spectrometer
(Thermo Scientific) coupled with an Ultimate 3000 RSLC system
(Dionex). LC was performed using the C18 column (Acclaim PepMap
RSLC; 75 µm×150 mm, 2 µm, 100 Å) with a linear gradient of 1–25%
of mobile phase B (mobile phase A: 5% ACN/0.1% FA; mobile phase B:
95% ACN/0.1% FA) for 40 min, 25–60% of mobile phase B for 3 min,
and 60–80% of mobile B for 2 min for a total separation time of
70 min. A full MS scan was obtained in the range of m/z 350–2000,
and the 10 most intense ions from the scan were subjected to
fragmentation for MS/MS spectra. Raw data were processed into peak
lists by using Proteome Discoverer 1.3 for a Mascot database search.

2.5. Database search and de novo sequencing

A customized database was prepared by collecting the sequences of
immunoglobulins (IgGs) from the National Center for Biotechnology
Information (NCBI) database. The database was searched using Mascot

version 2.4.0. Carbamidomethylation was selected as the fixed mod-
ification, and deamidation (NQ), oxidation (M), and pyroglutamate (N-
term Q) were included as variable modifications. Up to five missed
cleavages were allowed for each enzyme digestion and ± 5 ppm and ±
0.02 Da were used as the mass tolerance window for parent and
fragment ions, respectively. Furthermore, an error-tolerant search
was performed, in which all modifications and sequence variations
were considered. The MS/MS spectra with high intensities were
manually sequenced if they had not been identified using Mascot. A
customized computational algorithm was constructed to categorize the
observed peptides as a heavy or light chain and then align the peptides
into a complete sequence. The results were specified in Mascot as a new
database for protein identification and an error-tolerant search. The
process was repeated iteratively until the protein sequence with the
highest possible score was obtained. All MS/MS spectra in this study
were manually validated to assure their quality.

2.6. Molecular modeling

Molecular modeling of the variable fragment (Fv) of mouse
QBEND/10 was performed using the Prediction of Immunoglobulin
Structure (PIGS; http://www.biocomputing.it/pigs) [35,36] Web
server through single sequence submission. The structural model of
the mouse QBEND/10 Fv region was generated from the
corresponding amino acid sequence by using PIGS with default
settings. The most suitable heavy and light chain templates were
selected from the 20 templates displayed. The Protein Data Bank
(PDB) codes 2GKI_H [37] and 2QHR_L [38], exhibiting 86.67% and
94.92% sequence similarity with mouse QBEND/10 VH and VL,
respectively, were used to model the three-dimensional (3D)
structure of mouse QBEND/10. For the automated construction of
the 3D structure of the Fv region of mouse QBEND/10, a canonical
loop grafting approach was used for CDRs L1–L3 and H1–H3. The
position of the conserved amino acid side chains was maintained,
whereas the nonconserved amino acid side chains were modeled using
SCWRL 4.0 [39]. Energy minimization was performed using the Swiss-
PdbViewer application [40].

2.7. QBEND/10 humanizaiton

Mouse QBEND/10 was humanized using the resurfacing approach
[41]. The variable heavy and light (VH and VL, respectively) chains and
CDRs were numbered and identified according to the method proposed
by Kabat [42]. First, the generated Fv model of mouse QBEND/10 was
used to identify surface accessible residues by using Swiss-PdbViewer
[40], with the threshold set at 30% [43]. Second, the sequence of mouse
QBEND/10 VH and VL chains was searched using NCBI IgBLAST
against the human IgG germline database (http://www.ncbi.nlm.nih.
gov/igblast/). Human germline V sequences with the highest identity
to mouse VH and VL regions were used. The J region for the heavy and
light chains was selected from the most identical human consensus
sequence. Third, these crucial surface residues of the framework
regions were manually exchanged with those from the selected
human IgG germline sequence. These side chains were rotated
manually to evaluate stable side chain conformation and were
subsequently subjected to energy minimization using Swiss-
PdbViewer. Finally, the sequence composition for the Fv region of
the resurfaced QBEND/10 was assembled. Two resulting models,
mouse and humanized QBEND/10, were analyzed, visualized, and
superimposed with Swiss-PdbViewer [40]. On the basis of the
superimposition result, structural changes in the CDRs were
determined.
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2.8. Recombinant plasmid construction

The DNA sequences of QBEND/10 VH and VL were separately
synthesized using GenScript (GenScript USA Inc., Piscataway, NJ,
USA). The coding region of the heavy chain is composed of an N-
terminal QBEND/10 VH and a C-terminal human IgG1 constant region
(CH1, hinge, CH2, and CH3) nucleotide sequence. This synthetic gene
was prepared through overlapping polymerase chain reaction (PCR).
The PCR product flanked with EcoRV and BamHI sites was cloned into
the expression vector pSecTag2/Hygro (Thermo Fisher Scientific,
Waltham, MA, USA) at the same sites. The entire heavy chain DNA
of QBEND/10 was cloned in-frame with the N-terminal mouse Ig
kappa-chain V-J2-C signal peptide of the pSecTag2/Hygro expression
vector for secretion. The coding region of the light chain was composed
of an N-terminal QBEND/10 VL and C-terminal lambda light chain
constant region nucleotide sequence. This synthetic gene was prepared
through overlapping PCR. The PCR product was cloned into the
expression vector pcDNA3.3–TOPO TA (Thermo Fisher Scientific).
The entire VL DNA segment of QBEND/10 was also cloned in-frame
with the V-J2-C signal peptide for secretion.

2.9. Antibody expression and purification

Recombinant QBEND/10 antibodies were obtained through a
stable cotransfection of expression constructs in mouse myeloma
NS0 cells (European Collection of Animal Cell Cultures, Wiltshire,
UK) by using Effectene (QIAGEN Inc., Valencia, CA, USA) according to
the manufacturer's instructions. After selection with 400 μg/mL hygro-
mycin B (Thermo Fisher Scientific) and 800 μg/mL G418 (Thermo
Fisher Scientific) for 4 weeks, a stable clone was cultured in a shaker
flask at an initial seeding density of 5×10E5 cells/mL in the chemically
defined medium HyClone CDM4NS0 (Hyclone, GE Healthcare, South
Logan, UT, USA) containing 2% fetal bovine serum (FBS). The culture
was maintained at 130 rpm for 5 days at 37 °C. The recombinant
antibodies were purified from the supernatant by using a human-IgG
affinity column (IgSelect; GE Healthcare).

2.10. SDS-PAGE

SDS-PAGE was performed using a 4–12% NuPAGE Bis-Tris poly-
acrylamide gel with 3-morpholinopropanesulfonic acid (MOPS) as the
running buffer (Thermo Fisher Scientific). The proteins were stained
with Coomassie brilliant blue R-250.

2.11. ELISA

The protein concentrations were estimated using the procedure
reported by Bradford [44]. In brief, a Nunc™ MaxiSorp 96-well plate
(Thermo Fisher Scientific) was coated with the human CD34 protein
(Fc tag; Sino Biological Incorporation, Beijing, China) in a volume of
50 μL at a concentration of 5 µg/mL and incubated at 4 °C for 18 h.
After blocking with the StartingBlock™ blocking buffer (Thermo Fisher
Scientific) and being washing with PBS containing 0.01% Tween-20
(PBST) three times, the samples were added to the plates and
incubated for 1 h at 37 °C. After washing, the plates were incubated
with horseradish peroxidase-conjugated antihuman lambda light chain
antibody (Bethyl Laboratories, Inc., Montgomery, TX, USA) for 1 h at
RT, followed by washing with PBST. 3,3′,5,5′-Tetramethylbenzidine
was subsequently added to induce the color reaction. After the reaction
was stopped with 1 N HCl, the absorbance was read at 450 nm on a
microplate reader; all measurements were performed in duplicate.

2.12. Surface plasmon resonance

The binding kinetics of QBEND/10 antibodies to CD34 (Fc tag;
Sino Biological Incorporation) were measured using the Biacore system
(Biacore X, GE Healthcare) in the running buffer HBS-EP (10 mM
HEPES, pH 7.4; 150 mM NaCl; 3 mM EDTA; 0.005% surfactant P20).
In brief, CD34 was immobilized onto a CM5 sensor chip through amine
coupling to a level of 1200 response units, and purified antibodies of
different concentrations were injected at a flow rate of 30 μL/min. The
surface was regenerated by injecting 15 μL of 10 mM glycine–HCl, pH
2.5. Sensorgrams were obtained at each concentration and were
evaluated using the BIA Evaluation 3.2 program (GE Healthcare).
Binding data were fitted with a 2:1 (bivalent) binding model to
calculate the affinity constant KD, which was defined as the ratio of
the dissociation rate (koff)/association rate (kon).

2.13. Cell culture

HUVECs were obtained from the American Type Cell Culture
(Manassas, VA, USA). For expansion, the cells were grown in an
endothelial cell medium (ECM) supplemented with 5% FBS, 1%
endothelial cell growth supplement (ECGS), and 1% penicillin/strep-
tomycin (5% CO2 at 37 °C). ECM, ECGS, and antibiotics were obtained
from ScienCell Research Laboratory. HUVECs were used between
passage 7 and 9.

2.14. Tube formation assay

HUVECs were pretreated with VEGF165 (25 ng/mL, Sigma–
Aldrich) in the presence or absence of anti-VEGF IgG (G6-31) [45]
in starvation medium (ECM containing 1% FBS) at 37 °C in a
humidified atmosphere of 5% CO2 for 24 h. The tube formation assay
was performed using growth factor-reduced Matrigel (BD Biosciences)
added to 15-well microslides (Ibidi, Germany); the gel was allowed to
solidify at 37 °C for 1 h. Subsequently, subconfluent HUVECs were
prestained with 10 μg/mL DiIC12(3) fluorescent dye (BD Biosciences)
at 37 °C for 1 h and then harvested with trypsin–EDTA. To evaluate the
effects of mouse or humanized QBEND/10, HUVECs were resuspended
in starvation medium in the presence or absence of QBEND/10
antibodies at various concentrations and then seeded onto the
Matrigel layer at a cell density of 8×10E3 cells per well. After 18 h of
incubation, tubular network structures were visualized and photo-
graphed using an inverted fluorescence microscope. Cell-covered area
and junctions were quantified using ImageJ software.

2.15. Flow cytometry analysis

HUVECs were harvested with trypsin–EDTA. All immunofluores-
cent labeling and washing was performed in Stain Buffer (BSA) (BD
Biosciences). Cells were incubated with an irrelevant isotype control or
the mouse antihuman CD34 antibody (5 µg/mL, QBEND/10) for 1 h at
4 °C. After 3 times washing with cold Stain Buffer, FITC-conjugated
goat antimouse IgG (1:100, Jackson ImmunoResearch) were added to
the cells for 45 min in the dark at 4 °C, followed by washing. Flow
cytometry analysis was performed using a FACSCalibur system (BD
Biosciences) in combination with CellQuest software (BD Biosciences).

3. Results

3.1. De novo protein sequencing of variable fragments of mouse
QBEND/10

LC–MS/MS-based techniques have emerged as a crucial tool for
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protein identification [46–48]. Detailed information on peptide se-
quences can be obtained by assigning fragment ions provided by MS/
MS spectra. At present, Mascot is the most popular search engine, and
its probability-based scoring algorithm has been widely used. Higher
Mascot scores usually increases the confidence on peptide assignment
for de novo sequencing. To achieve greater sequence coverage, in-
solution digestion by using several enzymes and in-gel digestion with
trypsin for the separated heavy and light chains were performed. LC–
MS/MS was used to analyze all the resulting peptides, and peak lists
were generated for an iterative database search and an error-tolerant

search against customized databases. Only the peptides with high-
quality MS/MS spectra (ion score, ≥30) were listed. The theoretical
tryptic peptides for the QBEND/10 VL and VH segments are listed in
Tables 1 and 2. The base peak intensity chromatograms of the QBEND/
10 light and heavy chains digested by trypsin are shown in Fig. 1A and
B. Ln and Hn indicate the nth tryptic peptide assigned from the N-
terminal of the light and heavy chains, respectively. Each peak was
identified and assigned according to the data in Tables 1 and 2. The
identification results of the VL and VH segments from multiple enzyme
digestion are aligned and shown in Fig. 2A and B.

3.2. Molecular modeling of QBEND/10

Molecular modeling of mouse QBEND/10 was performed using
PIGS [35,36], as described in Materials and Methods. The final refined
3D structure of the Fv region was viewed using the Swiss-PdbViewer
(DeepView) application [40] (Fig. 3). Both VL and VH fragments of
mouse QBEND/10 were modeled using the most accurate matches with
the highest sequence identities of known templates from different
structures. The PDB codes of the templates for mouse QBEND/10 Fv
regions are as follows (sequence identity is indicated in parentheses):
2GKI [37] for the heavy chain (86.67%) and 2QHR [38] for the light
chain (94.92%); 2QHR for CDR-L1 (75%), CDR-L2 (85.71%), and
CDR-L3 (92.31%) and 2GKI for CDR-H1 (90%), CDR-H2 (82.35%),
and CDR-H3 (45.45%). All CDRs were modeled on the basis of
canonical conformations defined for those particular canonical struc-
ture classes.

3.3. Humanization of QBEND/10

Through NCBI IgBLAST, the human germline V region from the
IGHV1–3*01 and IGLV4–69*01 groups showed the highest identity to

Table 1
Theoretical peptides of QBEND/10 light chains obtained using trypsin digestion.

Theoretical
M.W.

Peptide no. Amino
acid no.

Sequence

1880.9843 L1 1–19 QLVLTQSSSASFSLGASAK
1144.5659 L2 20–29 LTCTLSSQHR
2003.0516 L3 30–45 TFTIEWYQQQPLKPPK
809.4105 L4 46–51 YVMELR
146.1055 L5 52–52 K
1312.5643 L6 53–65 DGSHSTGDGIPDR
969.4152 L7 66–75 FSGSSSGADR
2639.3152 L8 76–99 YLSISNIQPEDEAIYICGVG NTIK
1330.6557 L9 100–111 EQFVYVFGGGTK
840.5069 L10 112–119 VTVLGQPK
1731.8930 L11 120–135 STPTLTVFPPSSEELK
389.1910 L12 136–138 ENK
2092.1027 L13 139–158 ATLVCLISNFSPSGVTVAWK
1699.8377 L14 159–175 ANGTPITQGVDTSNPTK
446.2125 L15 176–179 EGNK
1824.8617 L16 180–194 FMASSFLHLTSDQWR
2017.8799 L17 195–212 SHNSFTCQVTHEGDTVEK
818.3844 L18 213–220 SLSPAECL

Table 2
Theoretical peptides of QBEND/10 heavy chains obtained using trypsin digestion.

Theoretical M.W. Peptide no. Amino acid no. Sequence

1993.0844 H1 1–19 QVQLEQSGPELVKPGASVK
467.1872 H2 20–23 MSCK
1757.8777 H3 24–38 ASGYTFTSYVIHWVK
2407.1808 H4 39–59 QKPGQGLEWLGYTNPYNDVTK
552.2544 H5 60–63 YNEK
293.1739 H6 64–65 FK
293.1739 H7 66–67 FK
734.3810 H8 68–74 ATLTSDK
2709.1574 H9 75–98 QSTTAYMEFSSLTSEDSAVYYCAR
2639.2366 H10 99–122 YGGLWLYAMDYWGQGTSVTVSSAK
2802.4295 H11 123–150 TTPPSVYPLAPGSAAQTNSMVTLGCLVK
6497.1325 H12 151–212 GYFPEPVTVTWNSGSLSSGVHTFPAVLQSDLYTLSSSVTVPSSTWPSETVTCNVAHPASSTK
360.2009 H13 213–215 VDK
146.1055 H14 216–216 K
483.3169 H15 217–220 IVPR
2693.3089 H16 221–245 DCGCKPCICTVPEVSSVFIFPPKPK
1099.6488 H17 246–255 DVLTITLTPK
1061.5791 H18 256–265 VTCVVVDISK
2844.2990 H19 266–289 DDPEVQFSWFVDDVEVHTAQTQPR
1156.5149 H20 290–298 EEQFNSTFR
1852.9141 H21 299–314 SVSELPIMHQDWLNGK
422.2165 H22 315–317 EFK
277.1209 H23 318–319 CR
1242.6608 H24 320–331 VNSAAFPAPIEK
447.2693 H25 332–335 TISK
247.1532 H26 336–337 TK
456.2808 H27 338–341 GRPK
1209.6757 H28 342–352 APQVYTIPPPK
605.2843 H29 353–357 EQMAK
261.1325 H30 358–359 DK
3574.6424 H31 360–389 VSLTCMITDFFPEDITVEWQWNAQPAENYK
1964.8826 H32 390–406 NTQPIMDTDGSYFVYSK
600.3595 H33 407–411 LNVQK
2847.2783 H34 412–436 SNWEAGNTFTCSVLHEGLHNHHTEK
811.4188 H35 437–444 SLSHSPGK
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mouse QBEND/10 VH (67.3%) and VL (70.1%), respectively. The
sequence alignment of the mouse and human templates is shown in
Fig. 4A and B. The J regions for the heavy (IGHJ4*01) and light
(IGLJ1*01) chains were selected from the most identical human
consensus sequences, which showed one mismatched residue each
for VH (WGQGTSVTVSS) and VL (FGGGTKVTVLGQP). The QBEND/
10 model (Fig. 3) was used to identify surface accessible residues.
Twenty-eight amino acids in the VH of QBEND/10 (Fig. 4A) were
identified as surface accessible residues. Excluding CDRs, only 4
(Gln5Val, Pro9Ala, Lys73Thr, and Gln74Ser) of the 28 amino acids

differed from the human germline sequence and were adapted to the
human version. Considering QBEND/10 VL (Fig. 4B), 5 (Ser8Pro,
Leu41Glu, Thr54dLys, Asn77Ser, and Gly100Thr) of 35 surface
accessible amino acids differed from the human germline and were
substituted with their corresponding amino acids. The residue numbers
were calculated according to the method stated by Kabat et al. [49].

3.4. Construction and expression of QBEND/10

In this study, two mammalian expression vectors, pSecTag2/Hygro

Fig. 1. BPI chromatogram of QBEND/10 light (A) and heavy (B) chains obtained using trypsin digestion. Ln and Hn denote the nth peptide counted from the N-terminal of QBEND/10
light and heavy chains, respectively. Stars indicate deamidated peptides. Pyro indicates pyroglutamate at Q, and oxi denotes oxidation at M.
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and pcDNA3.3, were used to express the QBEND/10 IgG molecule as
previously described by Chiu et al. [50]. To aid QBEND/10 secretion in
culture media, a leader sequence was added upstream of the heavy and
light chains, respectively. The amino acid sequences of QBEND/10 VH
and VL were cloned in-frame with the human IgG gamma 1 heavy
chain and lambda light chain constant regions, respectively. Chimeric
and humanized QBEND/10 antibodies were expressed as soluble
secretory proteins in mouse myeloma NS0 cells. Each culture medium
was purified using IgSelect (GE Healthcare) and analyzed though SDS-
PAGE. As shown in Fig. 5, one prominent band of approximately
150 kDa in nonreducing conditions and two clear bands of approxi-
mately 50 kDa (heavy chain) and approximately 25 kDa (light chain) in
reducing conditions were observed.

3.5. Antibody binding analysis

The binding affinities of two antibodies, chimeric and humanized
QBEND/10, with recombinant CD34 were determined using a surface
plasmon resonance biosensor-based assay, and the binding kinetics
were determined. The KD of the binding of chimeric QBEND/10 with
CD34 was 14.7 nM, whereas that of the humanized QBEND/10 with

the CD34 protein was 7.34 nM (Table 3). In both instances, the koff was
approximately 2.6×10E4 s−1, whereas the kon increased by two-fold for
the humanized QBEND/10 (from 1.78×10E4 M−1 s−1 to
3.66×10E4 M−1 s−1; Table 3). The similar KD values of the chimeric
and humanized QBEND/10 indicated that the process of humanization
did not alter the binding affinity of CD34.

3.6. Effects of various culture conditions on CD34 expression

Previous data have shown that freshly isolated HUVECs are 90–
95% CD34+, but CD34 expression is rapidly lost when cells are cultured
[13,51]. In this study, we kept HUVECs in culture (complete ECM) for
a period of 7 days without being passaged, the proportion of CD34+

cells strongly increased (39.62%) at passage 8 (Fig. 6A). Furthermore,
stimulated the 7-day cultured HUVECs with serum starvation in the
absence or presence of VEGF165 (25 ng/mL) for 24 h showed a more
increased percentage of CD34+ HUVECs, 44.75% (Fig. 6B) and 60.82%
(Fig. 6C), respectively.

Fig. 2. Multiple enzyme digestion and in-gel digestion sequence alignment for QBEND/10 light (A) and heavy (B) chain variable regions.

C.-Y. Fan et al. Biochemistry and Biophysics Reports 9 (2017) 51–60

56



3.7. Effects of humanized QBEND/10 on VEGF165-induced tube
formation of endothelial cells

The HUVEC tube formation assay is an in vitro angiogenesis assay,
which recapitulates some angiogenesis steps and has been used for
many years [52,53]. HUVECs on the Matrigel formed tube-like
structures (Fig. 7A). Cell-covered area and the number of junctions
were calculated using ImageJ, which directly revealed the ability of the
HUVECs to form capillary-like structures. As shown in Fig. 7B and C,
VEGF165 promoted tube formation, whereas the humanized QBEND/
10 (10 μg/mL) or anti-VEGF IgG (10 μg/mL) significantly inhibited
VEGF165-dependent tube formation. These results demonstrated that
the humanized QBEND/10 exhibited similar potential as anti-VEGF
IgG in inhibiting VEGF165-induced tube formation.

4. Discussion

Angiogenesis is a characteristic of cancer and contributes not only
to tumor growth but also to tumor cell invasion [54]. Targeting tumor
angiogenesis has focused on the VEGF pathway. Bevacizumab, the
recombinant humanized VEGF-A-specific mAb, was approved by the
U.S. Food and Drug Administration for treating brain, lung, kidney,
ovarian, and colon cancers. Anti-VEGF therapy showed significant
clinical benefits for treating some cancers but was not as efficacious as
expected [55]. Moreover, a recent study focused on the tumor micro-
environment as a possible source of resistance to anti-VEGF therapy
[56]. The CD34 function in the tumor microenvironment was pre-
viously reported [11]. Anti-CD34 should be considered when develop-
ing combination therapies to overcome resistance to anti-VEGF
therapy. In current study, we showed that QBEND/10 impairs the

Fig. 3. Molecular model of the QBEND/10 variable regions. The 3D structure of the mouse QBEND/10 Fv region is generated using the Web-based antibody structure prediction
program PIGS. Nine amino acids (in boldface), namely four and five residues in the VH and VL frameworks, respectively, are substituted with human germline residues. The CDR loops
are shown in red.

Fig. 4. Sequence alignment of mouse QBEND/10 with corresponding human germline sequence. The QBEND/10 heavy (A) and light (B) chain variable regions are sequence-aligned to
the most homologous human germline genes IGHV1–3*01/J4*01 and IGLV4–69*01/J1*01, respectively. The conserved surface residues are marked with empty boxes, and the
nonconserved surface residues are shown as shaded boxes. The CDRs (within brackets) are unchanged.
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tube formation of human umbilical vein endothelial cells (HUVECs).
Our finding is in accordance with the previous reports of that CD34−/−

mice under some circumstances, exhibit an abnormal vessel morphol-
ogy [10–12]. Moreover, CD34+ HUVECs have been reported to show
the antiangiogenic tip cell phenotype [31]. Therefore, CD34 could be a
potential drug target for antiangiogenic therapy.

De novo sequencing remains challenging for large proteins such as
mAbs, particularly because of its variable region, which cannot be
searched in the existing database. In this study, multiple enzyme
digestion was performed. Although trypsin provided the highest
sequence coverage, the use of other enzymes, including thermolysin
and subtilisin, enabled the identification of complementary sequences
and confirmation of overlapping sequences. High-resolution MS facil-
itates obtaining more stringent criteria for database searching, which
further increases the reliability of data interpretation.

Mouse QBEND/10 has been predominantly used in clinical experi-
ments to isolate human stem cells [57,58]. It was classified as binding
to the class II epitope of CD34 [34]. The recombinant QBEND/10 IgG
has not been reported to date. Because the hybridoma cells of QBEND/
10 were unavailable, we adopted the de novo protein sequencing
approach to determine the amino acid sequences of the VH and VL
of QBEND/10 IgG. By combining the de novo MS/MS sequencing and
homologous database search, we successfully assembled the mouse
mAb QBEND/10. In this study, the PIGS Web server was used for
predicting and generating antibody homology models. Mouse QBEND/
10 was subsequently humanized through variable domain resurfacing
to minimize its immunogenicity. Humanized QBEND/10 can maintain
the binding affinity and specificity of parental antibodies as well as
impair the tube formation of HUVECs in vitro. Therefore, our
humanization approach can provide a basis for developing a mAb for
therapeutic use.

5. Conclusions

In conclusion, we provide a method to resolve the primary structure
of the VH and VL of a mouse monoclonal antibody through de novo
protein sequencing when hybridoma cells were unavailable. In addi-
tion, our humanization approach can conduct a basis for the develop-
ment of monoclonal antibodies for therapeutic use and the humanized
antibody can retain the binding affinity similar to that of the parental
antibody.

Fig. 5. Purification of chimeric and humanized QBEND/10 antibodies. The indicated
chimeric QBEND/10 (lanes 1 and 2) and humanized QBEND/10 (lanes 3 and 4)
antibodies were stably expressed in the mouse myeloma NS0 cells and purified from
culture media by column chromatography. The samples were electrophoresed on a 4–
12% NuPAGE Bis-Tris polyacrylamide gel with the MOPS buffer under nonreducing
(lanes 1 and 3) and reducing (lanes 2 and 4) conditions. The gel was stained with
Coomassie brilliant blue R-250.

Table 3
Binding kinetics of chimeric and humanized QBEND/10 to immobilized human CD34
protein.

Antibody kon/10
4 (M−1 s−1) koff/10

−4 (s−1) KD (nM)

Chimeric QBEND/10 1.78 2.62 14.7
Humanized QBEND/10 3.66 2.68 7.34

Fig. 6. The proportion of CD34+HUVECs in different culture conditions. The proportion of CD34+ cells was determined by flow cytometry after 7-day culturing. (A) Cells incubated with
complete medium for 24 h. (B) Cells incubated with starvation medium for 24 h. (C) Cells stimulated with VEGF165 in starvation medium for 24 h.
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