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Aneuploidy is widely identified as a remarkable feature of malignancy genomes. Increasing
evidences suggested aneuploidy was involved in the progression and metastasis of
prostate cancer (PCa). Nevertheless, no comprehensive analysis was conducted in
PCa about the effects of aneuploidy on different omics and, especially, about the
driver genes of aneuploidy. Here, we validated the association of aneuploidy with the
progression and prognosis of PCa and performed a systematic analysis in mutation profile,
methylation profile, and gene expression profile, which detailed the molecular process
aneuploidy implicated. By multi-omics analysis, we managed to identify 11 potential
aneuploidy driver genes (GSTM2, HAAO, C2orf88, CYP27A1, FAXDC2, HFE, C8orf88,
GSTP1, EFS, HIF3A, and WFDC2), all of which were related to the development and
metastasis of PCa. Meanwhile, we also found aneuploidy and its driver genes were
correlated with the immune microenvironment of PCa. Our findings could shed light on the
tumorigenesis of PCa and provide a better understanding of the development and
metastasis of PCa; additionally, the driver genes could be promising and actionable
therapeutic targets pointing to aneuploidy.
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INTRODUCTION

Prostate cancer (PCa), the second common male cancer worldwide, led to more than 1.2 million
morbidities and 350,000mortalities in 2018 (Bray et al., 2018; Ferlay et al., 2019). PCa is characterized by
the dependent androgen-signaling axis (Dai et al., 2017), driving its progression and proliferation
(Mohler, 2008), which introduces the therapies pointing to suppress androgens (Mills, 2014; Watson et
al., 2015) and makes antiandrogen therapy [androgen deprivation therapy (ADT)] the main treatment
for PCa (Litwin and Tan, 2017). Although PCa is an indolent disease and ADT, abiraterone,
enzalutamide (abiraterone and enzalutamide both act on the androgen axis), and chemotherapeutic
agent docetaxel have made great advances in treating PCa, the inevitability of eventual castration-
resistant prostate cancer (CRPC)makes it remain challenging to treat PCa (Litwin and Tan, 2017; Sartor
et al., 2018; Hou et al., 2021; Teyssonneau et al., 2021; Wang et al., 2021; Ziaran, 2021).

Aneuploidy, implying the alteration of the copy number of whole chromosome arms or
chromosomes, has been revealed to be a general and remarkable feature of malignancy genomes
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(Taylor et al., 2018; Zack et al., 2013). Weaver and Cleveland
(2006) showed that more than 90% of solid malignancy and more
than 80% of hematopoietic carcinoma bore aneuploidy in their
genomes. Increasing pieces of evidence suggest that aneuploidy
exists more common in tumor genomes than focal copy number
alteration (CNA) (Beroukhim et al., 2010) and is implicated in
numerous pathways related to genesis, development,
proliferation, and metastasis of carcinoma (Taylor et al., 2018;
Weaver and Cleveland, 2006; Shukla et al., 2020; Upender et al.,
2004). In addition, carcinoma subtypes often present tumor-
specific patterns of aneuploidy, and distinctive aneuploidies
have been suggested to introduce different drug responses
(Shukla et al., 2020; Ried et al., 2012). Moreover, some studies
already suggested that aneuploidy induced the aggressive and
lethal subtypes of PCa (Ryan and Bose, 2019; Stopsack et al., 2019;
Miller et al., 2020; Braun et al., 2013)–(Braun et al., 2013; Ryan
and Bose, 2019; Stopsack et al., 2019; Miller et al., 2020).

The overwhelming prevalence of aneuploidy has led to the
efforts in the identification of the drivers of aneuploidy, which can
help to regard aneuploidy as a potential therapeutic target (Ben-
David and Amon, 2020). Several instances suggested that
aneuploidy could be induced by some known tumor-associated
genes, such as CCND1 (Casimiro and Pestell, 2012), RB1 (van
Deursen, 2007), FOXM1, E2F1 (Pfister et al., 2018), andMAD2L1
(Schvartzman et al., 2011), which were mainly implicated in cell
cycle pathways for its strong associations with aneuploidy
(Hernando et al., 2004; Sotillo et al., 2007). The anomalous
expression levels of these aneuploidy driver genes, which may
originate from alternative genetic or epigenetic mechanisms
including but not limited to point mutations and DNA
methylations, contribute to the aneuploidy of malignant
carcinoma genome.

Here, we aimed to comprehensively dissect the molecular
pathways landscape of aneuploidy and identify potential
drivers of aneuploidy in PCa. By providing a perspective to
functional pathways across mutation profile, methylation
profile, and expression profile, we systematically estimated the
molecular processes of aneuploidy in PCa. By combining multi-
omics analysis, we tried to identify the potential driver genes of
aneuploidy. Because of the connection between aneuploidy and
the immune microenvironment (Cristescu et al., 2018; Taylor
et al., 2018; Wei et al., 2018), we explored the association of
aneuploidy and driver genes with immune infiltration. Finally, we
validated these driver genes in Gene Expression Omnibus (GEO)
and the Human Protein Atlas and investigated the correlation
between driver genes and the special characteristics of PCa in the
cBioPortal and GEO database. Our findings could shed light on
the effects of aneuploidy on the development and progression of
PCa and provide promising therapeutic targets for PCa.

MATERIALS AND METHODS

The Cancer Genome Atlas Prostate Cancer
Patient Cohort
The copy number variation (CNV) segmented data of PCa
generated by Affymetrix SNP 6.0 platform and DNA copy

workflow, the single-nucleotide variation (SNV) data
stemming from MuTect2 workflow, the DNA methylation beta
value from the platform of Illumina HumanMethylation450, and
the raw counts of RNA-sequencing data were downloaded from
The Cancer Genome Atlas (TCGA) by TCGAbiolinks (Colaprico
et al., 2016) package. Survival-related traits, including both
progression-free interval (PFI) and disease-free survival (DFS),
and other detailed clinical characteristics of PCa were also
derived. PFI and DFS were defined as the interval from
diagnosis or from patients’ disease-free status after their first
diagnosis and therapy, respectively, to the first emergence of a
new tumor event (Liu et al., 2018). We used the following criteria
to filter samples: firstly, PCa samples must own all data, including
CNV, SNV, methylation, and gene expression values; secondly,
we only keep PCa samples with overall survival following a time
of more than 30 days. Eventually, a total of 459 PCa and 67
normal control samples from TCGA were enrolled in our study.
Genes were annotated by the Ensembl database (version 103)
(Howe et al., 2021). With regard to DNA methylation profile,
CpG probes from SNP, multiple-hit, and allosome were filtered
(Zhou et al., 2017). Gene-level methylation values were then
defined as the mean methylation values of all CpG probes around
transcription start site (interval of not more than 1,000 bp)
(Vanderkraats et al., 2013; Teschendorff and Relton, 2018) as
previous studies did (West et al., 2013; Jiao et al., 2014). Raw
counts of RNA-sequencing were normalized by DESeq2 (Love
et al., 2014).

Genotype-Tissue Expression, Gene
Expression Omnibus, and cBioPortal Data
Cohort
The raw counts of RNA-sequencing data of 245 normal prostate
samples were obtained from GTEx. SU2C dataset (Abida et al.,
2019) was downloaded from cBioPortal, including androgen
receptor (AR) score and neuroendocrine prostate cancer
(NEPC) score (Hieronymus et al., 2006; Beltran et al., 2016;
Abida et al., 2019) from 208 PCa samples. GSE21034 (platform:
GPL10264; n � 179), GSE80609 (platform: GPL11154; n � 45),
GSE35988 (platform: GPL6480, n � 88), and GSE111177
(platform: GPL16791; n � 48) datasets were derived from
GEO database. Genes in GSE21034 and GSE80609 were
annotated by org.Hs.eg.db package (version 3.12.0). GSE35988,
with no annotation package in Bioconductor, was annotated by
the GEO platform file. GSE111177 was annotated by the Ensembl
database (version 103) (Howe et al., 2021).

Chromosome-Arm-Level Events and
Aneuploidy Score
The ABSOLUTE algorithm was applied to determine the purity,
ploidy, and absolute copy number. Chromosome-arm-level copy
number was determined by weighted median modal copy
number (weighted by segment length) across all segmented
copy numbers in each chromosome arm, as described in a
previous study (Cohen-Sharir et al., 2021). CNA was defined
as amplified, neutral, or deleted by comparing the absolute copy
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number (segment-level or arm-level) with ploidy (rounded to
integer number), and segmented copy number spanning the
centromere was just split and assigned into respective
chromosome arm (Taylor et al., 2018; Cohen-Sharir et al.,
2021). Aneuploidy score (AS) was determined by the total
altered arms (amplified or deleted) for each PCa sample.

Other Utilized Scores
Purity standing for the percentage of tumor component was
directly derived from the ABSOLUTE algorithm mentioned
earlier, and stroma fraction representing the total non-tumor
cellular component was estimated by subtracting purity from
unity (Taylor et al., 2018; Thorsson et al., 2018). Leukocyte
fraction was derived from the study of Thorsson et al. (2018),
which defined leukocyte fraction using methylation data. Non-
leukocyte stroma fraction was acquired by subtracting leukocyte
fraction from stroma fraction (Taylor et al., 2018). TMB was
defined as the total number of mutation errors, including base
substitutions, insertions, and deletions per megabyte bases (Chan
et al., 2019). In our study, the length of exons (38 million) was
regarded as the captured gene size. The somatic copy-number
alteration (SCNA) score was defined as the total recurrent gene-
level CNA determined by GISTIC2.0 (Mermel et al., 2011)
(derived directly from TCGA).

Importance of Aneuploidy to Prostate
Cancer
Spearman correlation analysis was utilized to analyze the
association of AS with SCNA score or TMB. Univariable Cox
analysis and Kaplan–Meier analysis were used to determine the
prognostic implications of aneuploidy in PCa. Spearman
correlation coefficients, Wilcoxon rank-sum test, and
Kruskal–Wallis rank-sum test were utilized to explore the
relationships between aneuploidy and clinical characteristics
(age, T stage, N stage, M stage, and Gleason score). R package
ggplot2 (Wickham, 2016) was used to depict the results.

Gene Set Enrichment Analysis
As described previously (Taylor et al., 2018), gene set enrichment
analysis (GSEA) (Subramanian et al., 2005) was used to
determine the hallmark gene pathways in which aneuploidy
was most implicated in the MSigDB database (Liberzon et al.,
2015) with reference to mutation profile, methylation profile, and
gene expression profile. Briefly, genes were ranked decreasingly
based on the coefficients of AS from logistic regression (mutation
profile) or linear regression (methylation or gene expression
profile); ranked genes were forwarded into the GSEA
algorithm. By adding purity, leukocyte fraction, or non-
leukocyte stroma fraction into the model, we could adjust
respective effects on mutation, methylation, or gene expression
profiles.

The model equations are as follows (dependent term ∼
independent term):

For mutation profile: logit transformation of gene mutation
profile ∼ beta1 * adjusted variable + beta2 * AS.

For methylation or expression profile: genes methylation or
expression value ∼ beta1 * adjusted variable + beta2 * AS.

The beta value (beta1 or beta2) represents the coefficients of
corresponding variables. The adjusted variable represents purity,
leukocyte fraction, or non-leukocyte stroma fraction (one or
more).

Bioconductor package clusterProfile (Yu et al., 2012) was
applied to conduct the GSEA algorithm. Adjusted p-value <
0.05 was regarded as the cutoff. Heatmap was used to
delineate GSEA results by ComplexHeatmap (Gu et al., 2016)
package.

Identification of the Aneuploidy Drivers
With regard to mutation profile, gene mutations associated
with aneuploidy were identified based on logistic regression;
adjusted p-value < 0.01 was regarded as the cutoff. For the
aspects of methylation and gene expression profile, we
conducted both linear regression and Spearman correlation
analysis, and only genes meeting this criterion that adjusted
p-value < 0.01 in linear regression and absolute correlation
coefficients > 0.3 and adjusted p-value < 0.01 in Spearman
correlation analysis were defined as aneuploidy-related genes.
The recurrent mutations of PCa were derived from the
OncodriveCLUST (Tamborero et al., 2013) algorithm, and
the differential methylation genes and differential
expression genes were identified by limma (Smyth et al.,
2005; Ritchie et al., 2015) and DESeq2 (Love et al., 2014),
respectively. As the abnormal expression levels of aneuploidy
driver genes may stem from the alternative genetic or
epigenetic mechanisms, we could identify potential
aneuploidy driver genes by intersecting the gene expression
profile produced by aneuploidy-related anomalous mutation
profile or gene methylation profile with PCa-specific gene
expression. As no recurrent gene mutation was found to
associate with aneuploidy and the anomalous expression
profile caused by methylation profile is just themselves as
the methylation of a gene promoter just regulates the
expression of the corresponding gene in reverse directions,
we only need to intersect gene methylation profile with PCa-
specific gene expression profile, which finally led to the
identification of 11 driver genes. Subsequently, GSEA was
also applied to determine the associations of driver genes
with hallmark gene pathways. A chord diagram by circlize
(Gu et al., 2014) package was used to depict the enrichment
results.

Association Between Aneuploidy and
Immune Characteristics
Immune subtypes information of PCa and genes coding
immunomodulators and chemokines were collected from the
study of Thorsson et al. (2018) and the study of Charoentong
et al. (2017), respectively. A total of four immune subtypes,
including C1 (wound healing), C2 (IFN-gamma dominant),
C3 (inflammatory), and C4 (lymphocyte depleted) were found.
Kruskal–Wallis rank-sum test was used to grope the associations
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between immune subtypes and AS or driver genes. Spearman
correlation coefficient was further calculated to explore the
connections between AS and immunomodulators or
chemokine. CIBERSORT (Newman et al., 2015; Chen et al.,
2018) algorithm was used to enumerate the infiltration levels
of 22 sorts of immune cells based on transcript per million values

estimated from fragments per kilobase of exon per million
mapped fragments values downloaded from TCGA database
(Li and Dewey, 2011). Spearman correlation analysis was
further conducted to explore the associations of aneuploidy
and its driver genes with the infiltration levels of 22 types of
immune cells.

FIGURE 1 | Schematic diagram of this study. Briefly, data including CNV data, SNV data, methylation beta values, and RNA-sequencing data of PCa were
downloaded from TCGA. ABSOLUTEwas used to estimate AS. GSEAwas applied to illustrate molecular process of aneuploidy inmutation, methylation, and expression
profile. Next, we tried to identify aneuploidy drivers; as abnormal expression levels of aneuploidy driver genes may stem from alternative genetic or epigenetic
mechanisms and genes mainly exert their influence by gene expression, we could identify potential aneuploidy driver genes by intersecting aneuploidy-related
mutation profile or genemethylation profile with PCa-specific gene expression. Finally, Considering the close association between aneuploidy and cell cycle pathway, we
applied GSEA to validate underlying connection of aneuploidy with driver genes. Further exploration and validation of driver genes were conducted in cBioPortal, GEO,
and Human Protein Atlas database.

Frontiers in Cell and Developmental Biology | www.frontiersin.org January 2022 | Volume 9 | Article 7234664

Peng et al. Landscape of Aneuploidy in PCa

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


Determination of the Biological Function of
Driver Genes
Gene Ontology with reference to biological process sub-ontologies
and Kyoto Encyclopedia of Genes and Genomes were utilized to
excavate the underlying molecular function of driver genes in PCa.
We also used the Spearman correlation analysis, Wilcoxon rank-
sum test, and Kruskal–Wallis rank-sum test to explore the
relationships between driver genes and clinical characteristics,
including age, T stage, N stage, M stage, and Gleason score.

Validation of the Importance of Driver
Genes to Prostate Cancer
Univariable Cox analysis with reference to PFI or DFSwas applied to
uncover the prognostic implications of driver genes. GSE21034 was
used to confirm the differential expression of driver genes.Moreover,
the protein levels of driver genes in PCa and normal prostate were
explored in the Human Protein Atlas (Uhlén et al., 2015; Thul and
Lindskog, 2018). AR score and NEPC score, the important
characteristics of PCa (Hieronymus et al., 2006; Beltran et al.,
2016), were further analyzed in the SU2C dataset. We also
explored the expression values of driver genes across the varied
stage of PCa using the GSE80609 and GSE35988 datasets.
Furthermore, the GSE111177 dataset was used to determine the
associations of driver genes with ADT.

Statistical Analysis
All statistical tests were based on a significant p-value < 0.05
except for special instructions. The method of Benjamini and
Hochberg (1995) was used to adjust the p-value when the analysis
was involved in multiple comparison problems. We used the R
program (version 4.0.5) (ore Team (2020). R: A, 2020) for most of
our analysis.

RESULTS

The schematic diagram for this study is depicted in Figure 1.

Characteristics of Aneuploidy in Prostate
Cancer
After comparing the absolute copy number with sample ploidy
evaluated by ABSOLUTE, we produced the segmented CNA
profile (Figure 2A). Chromosome-arm-level CNAs were
further estimated for each chromosome-arm by comparing the
weighted copy number with sample ploidy, which showed that
the CNAs of chr8p, chr21p, and chr16q accounting for 58.2, 41.8,
and 33.1% of PCa, respectively, were the most common
aneuploidy (Figure 2B). It seems that chr8p and chr16q often
bear deleted copy numbers, but chr8q amplified a copy number.
By summing up the CNA in chromosome-arm levels, we

FIGURE 2 | Characteristics of aneuploidy. (A)We produced segmented CNA profile by comparing absolute copy numbers with sample ploidy. Outermost ring is
autosome ideogram; next is density plot of amplified (Amp) and deleted (Del) CNA whose y-axis represents density of regions with CNA. Two innermost rings represent
rainfall plot whose y-axis stands for log10 (minimal distance of region). Radius of ring represents y-axis. (B)Waterfall plot of chromosome-arm-level CNA was estimated
by comparing weighted copy number with sample ploidy across each chromosome arm.
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FIGURE 3 | Association of aneuploidy with clinical characteristics (A, B). As revealed in previous study, both SCNA score and TMB were special genomic
characteristics and important to carcinoma; we utilized Spearman correlation analysis to uncover relationships between aneuploidy and (A) SCNA score or (B) log10
(TMB). (C)Univariable Cox analysis was applied to confirm prognostic implications of aneuploidy; (D)Kaplan–Meier analysis was also used based onmedian value of AS;
(E) Spearman correlation coefficients (for age), Wilcoxon rank-sum test (for T stage, N stage, and M stage), and Kruskal–Wallis rank-sum test (for Gleason score)
were utilized to explore relationships between aneuploidy and clinical characteristics.

TABLE 1 | Association of aneuploidy with clinical characteristics in PCa.

AS

level Overall Lower Higher p

n 459 234 225
Age [mean (SD)] 60.84 (6.84) 60.50 (7.22) 61.19 (6.42) 0.277
T Stage (%) T1 2 (0.4) 2 (0.9) 0 (0.0) <0.001

T2 178 (38.9) 124 (53.2) 54 (24.1)
T3 268 (58.6) 104 (44.6) 164 (73.2)
T4 9 (2.0) 3 (1.3) 6 (2.7)

N Stage (%) N0 318 (81.7) 166 (89.2) 152 (74.9) <0.001
N1 71 (18.3) 20 (10.8) 51 (25.1)

M Stage (%) M0 421 (99.5) 211 (100.0) 210 (99.1) 0.481
M1 2 (0.5) 0 (0.0) 2 (0.9)

Gleason Score (%) 6 44 (9.6) 35 (15.0) 9 (4.0) <0.001
7 232 (50.5) 137 (58.5) 95 (42.2)
8 58 (12.6) 31 (13.2) 27 (12.0)
9 121 (26.4) 31 (13.2) 90 (40.0)
10 4 (0.9) 0 (0.0) 4 (1.8)

Primary Score (%) 2 1 (0.2) 1 (0.4) 0 (0.0) <0.001
3 189 (41.2) 127 (54.3) 62 (27.6)
4 231 (50.3) 99 (42.3) 132 (58.7)
5 38 (8.3) 7 (3.0) 31 (13.8)

Secondary Score (%) 3 142 (30.9) 85 (36.3) 57 (25.3) <0.001
4 213 (46.4) 118 (50.4) 95 (42.2)
5 104 (22.7) 31 (13.2) 73 (32.4)

Group of lower and higher was based on median value of AS. Categorical variables were tested by Fisher’s exact test and continuous variables were tested by analysis of variance.
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estimated AS for each PCa sample, which indicated a total of
86.7% samples that experienced aneuploidy (398 samples in 459
PCas) and AS ranged from 0 to 40 (median AS: 3).

Importance of Aneuploidy to Prostate
Cancer
We firstly explored the association by Spearman correlation
analysis between AS and some important scores of PCa such
as TMB and SCNA score, which indicated that aneuploidy was
positively correlated with both (Figures 3A,B). Univariable Cox
analysis suggested that aneuploidy was a hazard factor in PCa
with reference to PFI [hazard ratio (HR): 1.03 (95%CI 1.01–1.05),
p-value: 3.38e-04] or DFS [HR: 1.04 (95% CI 1.01–1.07), p-value:
9.29e-03] (Figure 3C). Kaplan–Meier analysis gave similar results
to aneuploidy with reference to PFI [HR: 2.20 (95% CI 1.37–3.51),
p-value: 7.72e-04] (Figure 3D). Moreover, we also explored the

relationships between clinical characteristics of PCa and AS,
which suggested that aneuploidy was associated with tumor
progression (Figure 3E; Table 1).

Landscape of the Functional Pathway
Aneuploidy Involved
As aneuploidy was of vital importance to the prognosis and
development of PCa, we further analyzed the functional pathway
of aneuploidy. From the perspective of the mutation profile in
PCa (Supplementary Figures S1, S2), GSEA suggested that
aneuploidy was most associated with
EPITHELIAL_MESENCHYMAL_TRANSITION (toward the
enrichment of mutations among lower-AS samples), even after
adjusting to leukocyte fraction or non-leukocyte fraction
(Figure 4). With regard to the DNA methylation profile,
aneuploidy presented statistical significance in several hallmark

FIGURE 4 | Determination of hallmark function pathway of aneuploidy. Color corresponds to enrichment results of GSEA. Gray means no statistical significance
(adjusted p-value < 0.05). Genes were ranked decreasingly based on coefficients of AS from logistic regression (mutation profile) or linear regression (methylation or gene
expression profile); these ordered genes were further entered into GSEA algorithm. By adding purity, leukocyte fraction, or non-leukocyte stroma fraction into model-
independent terms, we could adjust their effects. Model-independent terms describe predictor variables included in logistic or linear regression models.
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gene sets, including APICAL_JUNCTION, all pathways of
development, UV_RESPONSE_DN, HYPOXIA,
KRAS_SIGNALING_UP, and ESTROGEN_RESPONSE_LATE
regardless of the adjustment of purity, leukocyte fraction, or non-
leukocyte fraction (toward the enrichment of gene methylation
among higher-AS) (Figure 4). From the aspect of the gene
expression profile, we observed strong correlations of
aneuploidy with proliferation-related pathways (positive
association with E2F_TARGETS, G2M_CHECKPOINT,
MITOTIC_SPINDLE, and MYC_TARGETS_V1 and a

negative correlation with P53_PATHWAY) irrespective of the
adjustment of other components (Figure 4). In addition, GSEAs
that presented aneuploidy were implicated in varied types of
function pathways, including cellular component, development,
DNA damage, immune, metabolic, pathway, and signaling
subcategory (Figure 4).

Identification of Driver Genes of Aneuploidy
As the anomaly of driver genes may stem from gene mutation
or DNA methylation, we managed to determine driver genes

FIGURE 5 | Identification of aneuploidy driver genes. (A) Determination of recurrent gene mutations related to aneuploidy. Top panel represents recurrent mutation
determined by OncodriveCLUST. Genes with adjusted p-value < 0.05 were labeled in red. Middle represents logistic regression results where x-axis means coefficient (β)
of aneuploidy and y-axis stands for adjusted p-value whose null hypothesis is β � 0. Below panel is a Venn diagram by intersecting above two gene sets. (B,C)
Determination of PCa-specific genes related to aneuploidy in (B) methylation profile or (C) gene expression profile. From left to right, first panel is a volcano
representing PCa-specific genes by differential analysis; second panel represents linear regression results where x-axis means coefficients (β) of AS and y-axis stands for
adjusted p-value whose null hypothesis is β � 0. Red means upregulation, blue means downregulation, and gray means insignificant. Third panel, where x-axis means
correlation coefficients (Cor) of AS and y-axis stands for adjusted p-value, represents Spearman correlation analysis results. Red point means positive correlation, blue
means negative correlation, and gray means noncorrelation. Genes were regarded as AS-related genes of both |Cor| > 0.3 and adjusted p-value < 0.01 in Spearman
correlation analysis and adjusted p-value < 0.01 in linear regression. Fourth panel is a Venn diagram by overlapping AS-related genes with PCa-specific genes. (D)
Determination of aneuploidy driver genes regulated by anomalous methylation. (E) Heatmap of methylation and expression levels of driver genes. (F) Chord diagram
illustrates relationships determined by GSEA between driver genes and hallmark pathways.
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of aneuploidy by multi-omics analysis. In the mutation
profile, we identified a recurrent gene mutation in PCa
using the OncodriveCLUST (54) algorithm implemented in
maftools (Mayakonda et al., 2018) package, which distilled
CTNNB1, IDH1, SPOP, BRAF, and PIK3CA with a threshold
of adjusted p-value < 0.05 (Figure 5A). Meanwhile, logistic
regression showed that only TP53 mutation was correlated
with AS with a cutoff of adjusted p-value < 0.01 (Figure 5A).
By intersecting the recurrent gene mutation and aneuploidy-
related gene mutation, we got nil of PCa-specific mutations
related to aneuploidy (Figure 5A). In the methylation profile,
limma showed that 54 genes were up-methylated and 39 genes
down-methylated with a threshold of absolute
log2FoldChange > 0.3 and adjusted p-value < 0.01
(Figure 5B); linear regression and Spearman analysis
indicated a total of 2,093 AS-related DNA methylations.
Together, we identified 77 PCa-specific gene methylations
related to aneuploidy (Figure 5B). As genes mainly
executed their influence by gene expression, we also
determined the PCa-specific gene expression related to
aneuploidy. Considering RNA-seq profile, differential
expression analysis revealed 2,145 upregulated and 2,284
downregulated genes with a threshold of absolute
log2FoldChange > 1 and adjusted p-value < 0.01,
meantime, linear regression, and Spearman analysis
indicated a total of 1,037 AS-related gene expressions
(Figure 5C). Following, we obtained 459 aneuploidy-
related gene expressions (Figure 5C). We intersected the
key genes related to aneuploidy found in methylation
profile with genes in RNA-seq profile, which led to 11
potential driver genes regulated by anomalous DNA
methylation in PCa (GSTM2, HAAO, C2orf88, CYP27A1,
FAXDC2, HFE, C8orf88, GSTP1, EFS, HIF3A, and WFDC2)
(Figure 5D). The DNA methylation value and gene
expression value of these genes are depicted in Figure 5E.
GSEA showed all driver genes highly referred to the
proliferation-related pathway (MYC_TARGETS_V1,
E2F_TARGETS, and G2M_CHECKPOINT) (Figure 5F).

Biological Function and Clinical Correlation
of Driver Genes
Gene Ontology and Kyoto Encyclopedia of Genes and
Genomes analysis suggested that 11 driver genes were
involved in numerous identical processes (noncoding RNA
metabolic process, ribosome biogenesis, cytokine−cytokine
receptor interaction, RNA transport, ribosome, calcium
signaling pathway, herpes simplex virus 1 infection, and so
on) (Supplementary Figure S3). We further analyzed the
associations of 11 driver genes with clinical characteristics. A
slightly negative correlation with the primary Gleason score
was observed for all driver genes. In addition, GSTM2 and
HFE presented statistical significance to the association with
the T stage, and C2orf88, C8orf88, CYP27A1, and EFS were
found to be significantly correlated with both the T stage and
N stage (Supplementary Figure S4).

Associations With Immune Infiltration
Kruskal–Wallis rank-sum test suggested aneuploidy, and its 11
driver genes were significantly correlated with immune subtypes
(Supplementary Figure S5). To further explore the underlying
correlation with immune, Spearman correlation analysis was
conducted, which indicated aneuploidy highly referred to the
methylation (Supplementary Figure S6A) and expression
(Supplementary Figure S6B) of MHC, receptor, chemokine,
immunostimulator, and immunoinhibitor. As expected, the
methylation levels of most of MHC, receptor, chemokine,
immunostimulator, and immunoinhibitor were positively
associated with non-leukocyte fraction and negatively with
leukocyte fraction (Supplementary Figure S6A), and the
expression levels of most of them were contrary to those
mentioned earlier (Supplementary Figure S6B). Spearman
correlation analysis indicated that aneuploidy was statistically
associated with non-leukocyte fraction and stromal fraction but
not with leukocyte fraction, which suggested that the observed
association of aneuploidy with tumor stromal is much based on a
non-leukocyte component in PCa as the previous study has
pointed out (Taylor et al., 2018) (Supplementary Figure S6C).
Similarly, only a few types of immune cells were found to
correlate with aneuploidy (Supplementary Figure S6C).
Nevertheless, 11 aneuploidy driver genes showed consistent
correlation with immune infiltrated cells (B cells naïve, Plasma
cells, T cells CD8, T cells CD4memory resting, NK cells activated,
monocytes, macrophages M2, dendritic cells resting, and Mast
cells resting) (Supplementary Figure S6C).

Validation of Driver Genes
Owing to the close association between aneuploidy and cell cycle
pathway, we firstly applied GSEA with reference to cell cycle
pathway to confirm the underlying connection between
aneuploidy and driver genes, which indicated that all of these
11 driver genes were significantly correlated with cell cycle
pathway (Figure 6). To further validate these 11 driver genes,
we conducted a univariable Cox analysis. Methylation profile
revealed that only HFE, HAAO, and C8orf88 were associated
with the prognosis of PCa (Figure 7A); nevertheless, expression
profile suggested that the expression of all driver genes except
GSTM2 was a protective factor with reference to PFI {GSTM2
[HR: 0.93 (95% CI 0.76–1.13); p-value: 0.45], HAAO [HR: 0.71
(95% CI 0.57–0.90); p-value: 5.11e-03], C2orf88 [HR: 0.57 (95%
CI 0.45–0.73); p-value: 3.81e-06], CYP27A1 [HR: 0.72 (95% CI
0.61–0.85); p-value: 7.41e-05], FAXDC2 [HR: 0.67 (95% CI
0.53–0.83); p-value: 4.41e-04], HFE [HR: 0.67 (95% CI
0.52–0.85); p-value: 1.28e-03], C8orf88 [HR: 0.56 (95% CI
0.42–0.75); p-value: 1.28e-04], GSTP1 [HR: 0.81 (95% CI
0.67–0.97); p-value: 0.03], EFS [HR: 0.79 (95% CI 0.66–0.94);
p-value: 9.01e-03], HIF3A [HR: 0.68 (95% CI 0.56–0.84); p-value:
2.84e-04], WFDC2 [HR: 0.83 (95% CI 0.74–0.94); p-value: 2.52e-
03]}; same observation was found with reference to DFS in
WFDC2 [HR: 0.79 (95% CI 0.64–0.98); p-value: 0.03], HIF3A
[HR: 0.70 (95% CI 0.49–0.99); p-value: 0.04], HFE [HR: 0.55 (95%
CI 0.36–0.84); p-value: 5.34e-03], FAXDC2 [HR: 0.57 (95% CI
0.38–0.86); p-value: 7.66e-03], CYP27A1 [HR: 0.64 (95% CI
0.47–0.87); p-value: 4.19e-03], C8orf88 [HR: 0.45 (95% CI
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0.27–0.76); p-value: 2.67e-03], and C2orf88 [HR: 0.56 (95% CI
0.37–0.85); p-value: 5.84e-03] (Figure 7B). Next, we analyzed the
expression levels of these driver genes in GSE21034, which
indicated that GSTM2, HAAO, C2orf88, CYP27A1, FAXDC2,
HFE, GSTP1, EFS, and WFDC2 were all downregulated in PCa

(Figure 8A). C8orf88 was not found in the GSE21034 dataset.
The Human Protein Atlas was further utilized to explore the
protein levels of driver genes, which suggested that GSTM2,
HAAO, C2orf88, CYP27A1, HFE, C8orf88, GSTP1, EFS,
HIF3A, and WFDC2 showed varying degrees of lower

FIGURE 6 | Demonstration of association of aneuploidy driver genes with cell cycle pathways. Because of crucial contributions of cell cycle pathways on
aneuploidy, GSEA was utilized to confirm association of aneuploidy driver genes with cell cycle pathways.

FIGURE 7 | Validation of prognostic implications of driver genes in (A)methylation profile and (B) expression profile. Univariable Cox analysis was conducted. Label
(*) means p < 0.05, label (**) means p < 0.01, and label (***) means p < 0.001.
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expression in PCa (Figure 8B). FAXDC2 is nonexistent in PCa in
the Human Protein Atlas.

Exploration of the Correlations of Driver
Genes With Unique Characteristics in
Prostate Cancer
By reason of the observed correlation between aneuploidy and
ANDROGEN_RESPONSE (Figure 4), we explored the
associations between AR scores and driver genes, which
indicated that all driver genes were highly correlated with AR
score [GSTM2 (Cor: −0.36; p-value: 7.71e-08), HAAO (Cor:
−0.50; p-value <2.2e-16), C2orf88 (Cor: −0.20; p-value:

3.23e-03), CYP27A1 (Cor: −0.47; p-value <2.2e-16), FAXDC2
(Cor: −0.30; p-value: 1.46e-05), HFE (Cor: −0.35; p-value: 2.19e-
07), C8orf88 (Cor: −0.29; p-value: 3.11e-05), GSTP1 (Cor: −0.40;
p-value: 1.82e-09), EFS (Cor: −0.35; p-value: 2.58e-07), HIF3A
(Cor: −0.29; p-value: 2.03e-05), andWFDC2 (Cor: −0.40; p-value:
2.16e-09)] (Figure 9). Additionally, HAAO, C2orf88, CYP27A1,
FAXDC2, EFS, and WFDC2 also showed correlation with NEPC
scores (Figure 9). As PCa in TCGA mainly referred to localized
PCa, we further analyzed the expression levels of these driver
genes across varying stages of PCa in the GSE80609 and
GSE35988 datasets. GSE80609 suggested insignificant
difference of all driver genes between advanced PCa and
CRPC (Figure 10A). Nevertheless, when comparing CRPC

FIGURE 8 | Validation of differential expression of driver genes. (A) Wilcoxon rank-sum test was applied to test gene expressional difference of driver genes
between PCa and normal control samples. (B) Protein levels of driver genes were explored in Human Protein Atlas.
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with localized PCa, all driver genes except HAAO held statistical
difference (Figure 10B). Due to the correlation between driver
genes and AR-signaling we observed (Figure 5F), we
implemented the Wilcoxon rank sum test and found
significant expression difference of HAAO, C2orf88,
CYP27A1, EFS, and HIF3A between pre-ADT and post-ADT
(Figure 10C).

DISCUSSION

PCa, the most common cancer and the second leading cause of
cancer deaths inmen in theUnited States, contributed to a total of an
estimated 191,930 new cases and 33,330 deaths in 2020 (Siegel et al.,
2020). Emerging pieces of evidence indicated that aneuploidy played
a vital role in the progression of PCa. Here, we conducted a
systematic and comprehensive analysis of aneuploidy in mutation
profile, methylation profile, and gene expression profile.

In the current study, we estimated AS for 459 PCa samples
(Figure 2); univariable Cox analysis and Kaplan–Meier analysis
suggested that aneuploidy was correlated with prognosis of PCa
(Figures 3C,D). Besides, aneuploidy was found to be implicated
in the progression and metastasis of PCa (Figure 3E; Table 1), as
many studies have indicated (20–23).

GSEA revealed that the number of biological processes in
which aneuploidy was involved showed an increasing trend from
mutation profile to expression profile, which implied that the
effects of aneuploidy accumulated and eventually led to the
dysregulation of numerous process pathways (Figure 4). The
high enrichment of the proliferation-related process
(E2F_TARGETS, G2M_CHECKPOINT, MITOTIC_SPINDLE,
P53_PATHWAY, and MYC_TARGETS_V1) also confirmed
the findings mentioned earlier that aneuploidy was associated
with the progression and metastasis of PCa. Among these
pathways, the E2F_TARGETS pathway involves varying cell
cycle progression, including regulation of DNA replication and
mitosis, DNA damage repair, and differentiation and apoptosis
(Dimova and Dyson, 2005; Bracken et al., 2004; Polager and
Ginsberg, 2008)–(Dimova and Dyson, 2005; Bracken et al., 2004;
Polager and Ginsberg, 2008). G2M_CHECKPOINT and
MITOTIC_SPINDLE both were the reflections of mitosis; the
former refers to entry into mitosis and has been reported to be
associated with chromosome instability; the latter mainly
performs the role of segregation of chromosome in cell
division; both of which have intrinsic connections with
aneuploidy (Löbrich and Jeggo, 2007; Mistry and Oh, 2013).
P53, the protein of the TP53 gene, acts as a tumor suppressor and
plays vital importance in the cell cycle (Lane and Levine, 2010).

FIGURE 9 | Exploration of correlation between expression levels of driver genes and unique characteristics of PCa. Spearman correlation analysis was conducted
in SU2C dataset to disclose their associations. AR score: Androgen receptor score; NEPC score: Neuroendocrine prostate cancer score.
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The P53 pathway has been indicated to implicate the
development and metastasis of PCa (Zhang et al., 2020a; He
et al., 2019). Numerous pieces of evidence suggested that
MYC_TARGETS_V1 was also associated with cell cycle
progression and referred to the transformation of carcinoma
(Boxer and Dang, 2001; Grandori et al., 2000; Kim et al., 2008;
Grandori et al., 2000; Boxer and Dang, 2001; Kim et al., 2008).
These all suggested that aneuploidy was highly implicated in the
progression and metastasis of PCa.

Next, we comprehensively and systematically estimated the
aneuploidy-related genes in mutation, DNA methylation, and
gene expression profile. Gene mutations associated with
aneuploidy is limited; only TP53 presented a significant
correlation with aneuploidy, which has been validated in
previous studies (Ciriello et al., 2013; Zack et al., 2013; Davoli
et al., 2017); nevertheless, we did not find any recurrent mutation
related to aneuploidy in PCa. Further methylation analysis and
gene expression analysis refined 11 driver genes (GSTM2,
HAAO, C2orf88, CYP27A1, FAXDC2, HFE, C8orf88, GSTP1,
EFS, HIF3A, and WFDC2). GSEA validated 11 genes greatly

implicated in cell cycle pathway and proliferation-related
pathways (MYC_TARGETS_V1, E2F_TARGETS, and
G2M_CHECKPOINT) in PCa.

With regard to these 11 driver genes (GSTM2, HAAO,
C2orf88, CYP27A1, FAXDC2, HFE, C8orf88, GSTP1, EFS,
HIF3A, and WFDC2), all of which were hyper-methylated and
hypo-expressed in PCa; Cox analysis confirmed their prognostic
implications (except GSTM2). GSE21034 and the Human Protein
Atlas confirmed their differential expression between PCa and
normal control samples (Figure 8). SU2C further indicated that
all driver genes were associated with AR score (Figure 9), so we
explored the expression difference between pre-ADT and post-
ADT; we found that HAAO, C2orf88, CYP27A1, EFS, andHIF3A
were highly related to ADT (Figure 10C). We also explored the
expression levels of 11 driver genes among varied stages of PCa;
the Wilcoxon rank-sum test suggested that most of them
presented the significant difference between advanced PCa
(including CRPC) and localized PCa, which implied they were
involved in the progression and development of PCa. These all
suggested that these genes contributed to the progression of PCa.

FIGURE 10 | Exploration of expression levels of driver genes across varied stages of PCa. (A) GSE80609, (B) GSE35988, and (C) GSE111177. Wilcoxon rank-
sum test was applied between two groups. Kruskal–Wallis rank-sum test was used for more than two groups. Label (*) means p < 0.05, label (**) means p < 0.01, and
label (***) means p < 0.001.
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Several studies about GSTM2 have been conducted in PCa.
Albawardi et al. (2021) found that GSTM2 was amplificated in
PCa based on SNP microarrays. In addition, three previous
studies showed that GSTM2 was hyper-methylated in PCa
(Patel et al., 2019; Angulo et al., 2016; Ashour et al., 2014;
Patel et al., 2019; Angulo et al., 2016; Ashour et al., 2014),
which was consistent with our findings. It was also suggested
that methylation of GSTM2 significantly correlated with the
prognosis of PCa (Angulo et al., 2016). HAAO, which has
been reported as the specific methylation biomarker for PCa,
presented accurate discrimination between PCa and normal
control samples and significantly prognostic implications (Li
et al., 2021; Litovkin et al., 2014; Mahapatra et al., 2012; Li
et al., 2021; Litovkin et al., 2014; Mahapatra et al., 2012).
CYP27A1, which is a P450 enzyme catalyzing androgen-
anabolism, was suggested to be regulated by both genetic and
epigenetic processes in PCa (Maksymchuk and Kashuba, 2020).
Increasing pieces of evidence suggested that CYP27A1 was
downregulated in PCa that was confirmed in both messenger
RNA and protein levels and was associated with the progression
of PCa (Alfaqih et al., 2017; Dambal et al., 2020; Khan et al., 2019).
Tamura et al. (2007) indicated that CYP27A1 was downregulated,
comparing hormone-refractory PCa with hormone-sensitive
PCa. Numerous studies confirmed the prognostic implication
of CYP27A1 in PCa (Maksymchuk and Kashuba, 2020; Alfaqih
et al., 2017). Although that the downregulation of CYP27A1 in
PCa contributed to the progression of PCa has been widely
reported, the underlying association of CYP27A1 with
aneuploidy was firstly confirmed in the current study.
Paradoxically, downregulated expression levels of HFE in PC3
(PCa cells) have been validated to inhibit the development and
metastasis of PC3 cells (Lin et al., 2017). This suggested that our
exploration of the impact of HFE on PCa, both in vivo or in vitro,
was in demand. The hyper-methylation of promoter and
upregulation of expression levels of GSTP1 in PCa has also
been widely reported (Zavridou et al., 2021; Qiu et al., 2020;
Wang et al., 2020; Zhang et al., 2020b; Fatma Karaman et al.,
2019); more than that, the methylation of GSTP1 has been
identified as the specific and accurate biomarker for the
diagnosis of PCa (Guo et al., 2020; Constâncio et al., 2019;
Fiano et al., 2019). Zavridou et al. (2021) revealed that the
hyper-methylation of promoter and the upregulation of the
expression levels of GSTP1 existed in circulating tumor cells
and exosomes of mCRPC and was associated with the overall
survival of PCa. Mohammadi et al. (2020) indicated that GSTP1
was upregulated by hormone therapy, although we did not get a
difference of GSTP1 (Figure 10C), which may be due to lack of
sufficient samples. Three previous studies indicated that EFS was
significantly downregulated in PCa owing to DNA methylation
and was proven to be a tumor suppressor gene in PCa (Wang
et al., 2020; Sertkaya et al., 2015; Vanaja et al., 2009). Consistent
with our study, HIF3A and WFDC2 were validated to be hyper-
methylated and downregulated in PCa (Bjerre et al., 2019;
Geybels et al., 2015; Xiong et al., 2020; Kim et al., 2011; Kim
et al., 2011; Geybels et al., 2015; Bjerre et al., 2019; Xiong et al.,
2020). HIF3A was also suggested to associate with the prognosis
of PCa and could be regarded as a diagnostic biomarker for PCa

with an area under the receiver operating characteristic curve of
more than 0.99 (Mahapatra et al., 2012; Bjerre et al., 2019), and
WFDC2 implicated the development and metastasis of PCa by
regulating EGFR signaling pathway (109). Few studies have been
conducted on C2orf88, C8orf88, and FAXDC2; we first
uncovered the association of them with aneuploidy in PCa.

Nevertheless, there remain some limitations in our study,
other experimental validations for our findings are in demand,
and the detailed molecular mechanism for these driver genes has
not been investigated; therefore, further efforts on the exact
molecular mechanism of GSTM2, HAAO, C2orf88, CYP27A1,
FAXDC2, HFE, C8orf88, GSTP1, EFS, HIF3A, and WFDC2 both
in vitro and in vivo are required.

In conclusion, we systematically demonstrated the molecular
process of aneuploidy in PCa and identified 11 potential driver
genes (GSTM2, HAAO, C2orf88, CYP27A1, FAXDC2, HFE,
C8orf88, GSTP1, EFS, HIF3A, and WFDC2). Our findings
could shed light on the tumorigenesis of PCa and provide a
better understanding of the development and metastasis of PCa;
in addition, all of them could be promising and actionable
therapeutic targets pointing to aneuploidy.
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