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Summary 
Ly-1 B cells have the distinctive property of continuous self-replenishment and, as we have shown 
previously, can be further distinguished from conventional B cells on the basis of greatly elevated 
constitutive and inducible production of the recently described cytokine interleukin 10 (IL-10). 
To test the possibility that II--10 acts as either an autocrine or paracrine growth factor for Ly-1 
B cells, we treated mice continuously from birth to 8 wk of age with a monoclonal rat IgM 
antibody that specifically neutralizes mouse IL-10. Mice treated in this way lacked peritoneal- 
resident Ly-1 B cells, contained greatly reduced serum immunoglobulin M levels, and were unable 
to generate significant in vivo antibody responses to intraperitoneal injections of od,3-dextran 
or phosphorylcholine, antigens for which specific B cells reside in the Ly-1 B cell subset. In contrast, 
conventional splenic B cells of anti-Ilcl0-treated mice were normal with respect to total numbers, 
phenotype, and in vitro responsiveness to B cell mitogens and the thymus-dependent antigen 
trinitrophenyl-keyhole limpet hemocyanin (TNP-KLH). The mechanism ofLy-1 B cell depletion 
appeared to be related to elevation of endogenous interferon 3' (IFN-3,) levels in anti-IL-10-treated 
mice, since coadministration of neutralizing anti-IFN-3' antibodies substantially restored the number 
of peritoneal-resident Ly-1 B cells in these mice. These results implicate Ibl0 as a regulator of 
Ly-1 B cell development, and identify a procedure to specifically deplete Ly-1 B cells, thereby 
allowing further evaluation of the role of these cells in the immune system. 

" [ - 1  B cells (1-5) comprise "~2% of the total B cells of an 
l . a  adult mouse and exhibit several intriguing properties that 
distinguish them from conventional B cells: although barely 
detectable in most primary and secondary lymphoid tissues 
(6), they are greatly enriched in the peritoneal and pleural 
cavities, as are their progeny in gut-associated lymphoid tissue 
(7, 8); they develop and predominate in early ontogeny (7), 
and are then self-replenishing for the life of the animal (1, 
9); they produce a restricted repertoire (10) of low-affinity 
antibodies that are highly cross-reactive with self-determinants 
(11), and do not appear to mature by somatic mutation (10, 
12); they generate most of the IgM antibody found in serum 
(6, 9, 11), and produce the entire antibody response elicited 
by several bacterial determinants, such as phosphorylcholine 
and od,3-dextran (9, 13). Although their precise role in the 
immune system is unclear, the various models that have been 
advanced, based on the specificities of antibodies produced 
by Ly-1 B cells, include roles in antibacterial immunity (14, 
15), in clearance of host cellular debris such as senescent 
erythrocytes (16, 17), and in modulation of the antibody reper- 
toire during development (18-21). Our recent finding that 
Ly-1 B cells are potent producers of IL-10 (22, 23), an im- 

munosuppressive cytokine that downregulates production of 
several monokines (24, 25) and T cell-derived cytokines (26, 
27), raises the possibility of a broader immunoregulatory role 
of Ly-1 B cells. Many of these distinguishing features are 
difficult to evaluate in humans, but a population of Lyl-bearing 
human B lymphocytes with related properties has been 
identified (5, 28-32). In this manuscript we test the possi- 
bility that constitutive Ibl0 production by Ly-1 B cells (22, 
23) contributes either directly or indirectly to their demon- 
strated ability for self-replenishment. 

Materials and Methods 
Mice. Mid-term pregnant BALB/c mice and C3H/HeJ mice 

were obtained from Simonsen Laboratory (Gilroy, CA). 
Anti-ll_,lO Treatment. 5-10 age-matched BALB/c mice were in- 

jected intraperitoneally three times per week from birth until 8 
wk of age with the neutralizing rat IgM anti-mouse Ib l0  anti- 
body designated SXC.1 (33) (0.2 mg/injection for week one, 0.5 
rag/injection for week two, 1.0 mg/injection for weeks three to 
eight), equivalent amounts of an isotype control designated J5/D, 
or equivalent volumes (100 or 200/zl) of PBS. Untreated age- 
matched BALB/c mice were included in all experiments for com- 
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parison. The SXC.1 and J5/D antibodies were obtained from serum- 
free hybridoma supernatants, and purified by two sequential 35% 
ammonium sulfate precipitation steps. In some experiments, mice 
received similar amounts of a separate rat IgG1 anti-mouse Ibl0 
antibody designated 2A5 or its isotype, control GLl13. After this 
treatment regimen, pooled spleens, thymuses, lymph nodes, or peri- 
toneal wash cells were collected from each of the four groups of 
mice and analyzed by flow cytometry and functional assays. In some 
experiments, mice additionally received the neutralizing rat IgG1 
anti-mouse IFN-~/antibody designated XMG1.2 (34), or its iso- 
type control GLl13. These latter antibodies were administered in- 
traperitoneally at 0.5 mg/injection for week one, 1 mg/injection 
for week two, 2 mg/injection for weeks three to eight, according 
to the previously established regimen of Coffman et al. (35). 

lmmunofluorescence. Washed cells were stained with combina- 
tions of the following reagents: fluoresceinated anti-mouse IgM 
antibody (DS-1; Pharmingen, San Diego, CA); biotinylated rat 
anti-mouse IgD antibody (11-26c, produced by J. Kearney); 
fluoresceinated anti-mouse CD3 antibody (145-2Cll, Boehringer 
Mannheim Corp., Indianapolis, IN); and biotinylated anti-mouse 
B220 antibody (RA3-6B2; Caltag Labs., South San Francisco, CA). 
Biotinylated reagents were used in conjunction with phycoerythrin- 
conjugated streptavidin (Becton Dickinson & Co., Mountain View, 
CA). Cells were analyzed using a FACScan | and dead cells were 
excluded on the basis of forward angle and side scatter. Results 
show the fluorescence intensities of 5,000 live cells counted from 
each experimental group. 

Antibody ELISAs. Serum samples collected after 8 wk of treat- 
ment were assayed for the presence of mouse IgM using a sand- 
wich ELISA where rat anti-mouse IgM (R8-103, Pharmingen) was 
coated at 5/zg/ml on PVC microtiter plates, dilutions of serum 
samples, or a mixture of several purified myeloma mouse IgM pro- 
teins (provided by Dr. Coffman, DNAX) as standard were added, 
and immune complexes were subsequently detected using bi- 
otinylated rat anti-mouse IgM (R19-15, Pharmingen) and avidin- 
conjugated horseradish peroxidase (CalBiochem Corp., La Jolla, 
CA), plus 1/zg/ml substrate (2,21-azinobis [3-ethylbenzthiazolin 
sulforic acid; Sigma Chemical Corp.). 

Specific antibody responses against phosphorylcholine and c,l,3- 
dextran were determined after challenging anti-IL-10 or control 
mice intraperitoneally with 0.5 ml saline, 50/xg c*l,3-dextran de- 
rived from Leuconostoc raesentewides provided by Dr. Slodki (U.S. 
Department of Agriculture Agricultural Research Service), or 2 
x 10 s heat-killed Streptococcus pneuraoniae as a source of phos- 
phorylcholine, as previously described (36, 37). Sera were collected 
from all mice 7 d later, and analyzed for specific antibody to cd,3- 
dextran or phosphorykholine using ELISAs described in detail else- 
where (36, 37). Specific antibody responses against TNP-KLH were 
determined after challenging mice intraperitoneally with 10 #g 
TNP-KLH, and collecting sera 7 d later for IgM analysis, and 10 
and 14 d later for IgG analysis. TNP-specific antibodies were quan- 
titated using an ELISA described in detail elsewhere (38). In all 
cases, anti-Ibl0 treatment was continued between antigen chal- 
lenge and sera collection. 

Proliferation Assays. Pooled spleen cells at 2 x 106/ml obtained 
from three mice in each group were cultured for 3 d in medium 
alone, or medium supplemented with LPS (50 /~g/ml), goat 
anti-mouse-IgM antibodies (0611-0201; Cappel Laboratories, 
Cochranville, PA) (50/zg/ml), or hamster anti-mouse CD3 anti- 
bodies (a gift from Dr. J. Bluestone, University of Chicago, Chicago, 
IL) (5/~g/ml). For anti-CD3 stimulation, the antibody was coated 
onto the microtiter plate before addition of spleen cells. Prolifera- 
tion was evaluated via incorporation of [3H]thymidine, after a 16-h 

pulse with 1/~Ci/well [3H]thymidine (NET 027; New England 
Nuclear, Boston, MA). 

IFN- T ELISA. Serum samples collected from anti-IL-10-treated 
or control mice were assayed for murine IFN-3~ using a cytokine- 
specific ELISA described in detail elsewhere (34, 35). 

R.esults 

Continuous IblO Neutralization Depletes Mice of Ly-1 B 
Cells. Male and female BALB/c mice were injected three 
times per week from birth to 8 wk of age with graded doses 
of a neutralizing rat IgM anti-mouse IL-10 mAb designated 
SXC.1 (33), and subsequently analyzed for Ly-1 B cell number 
and function. Control groups of age-matched BALB/c mice 
receiving no treatment or equivalent injections of either PBS 
or an irrelevant rat IgM isotype control (designated JS/D) 
were included for comparison. Antibodies were administered 
either intraperitoneally or subcutaneously without significant 
alteration of the outcome. The antibody injection regimen 
used yielded an average serum rat IgM level at 8 wk of 50 
#g/ml as measured by a rat IgM-specific ELISA in the case 
of both SXC.1 and J5/D antibodies (data not shown). After 
the 8 wk of treatment, the anti-IL-10-treated mice were in- 
distinguishable from the three control groups of mice in terms 
of the following criteria: total body weight, gross histolog- 
ical examination of liver, spleen, thymus, lymph nodes, in- 
testines, and lungs; hematocrits; total numbers of white blood 
cells in spleen, thymus, lymph nodes, and peritoneum; and 
proportions of B cells, T cells, and non-B/-T cells in spleen, 
lymph nodes, and thymus (data not shown). In contrast, im- 
munofluorescent phenotyping of cells obtained in the pooled 
peritoneal washes collected from the 5-10 mice comprising 
each of the four experimental groups described revealed a 
striking depletion of IgM + and IgD + cells in the anti- 
IL-10 (SXC.1)-treated mice, but not in any of the control 
animals (Fig. 1). Identical data have been obtained in 24 in- 
dependent experiments including two using C3H/HeJ mice, 
and several using a separate rat IgG1 anti-IL-10 neutralizing 
antibody. Anti-IL-10-treated animals were also depleted of 
B220- bearing peritoneal cells, as evaluated by immunofluores- 
cence (data not shown), and of LPS-responsive peritoneal cells, 
as evaluated by the ability of these cells to incorporate [3H]- 
thymidine after 3 d of coculture with 50 gg/ml LPS (not 
shown). These findings suggest that anti-II:10-treated BALB/c 
mice contain no B cells in their peritoneal cavities, in con- 
trast to the 1-5 x 106 B cells that can normally be recov- 
ered from this site. It is significant that we show elsewhere 
(23) by three-color immunofluorescence that the peritoneal 
cavities of 8-wk-old BALB/c mice in our animal facility con- 
tain very few (<5%) conventional B cells. The results shown 
in Fig. 1 therefore represent a depletion of Ly-1 B cells, pre- 
dominantly. Despite this striking depletion of peritoneal B 
cells, the total cellularity of the peritoneal cavities of anti-IL- 
10-treated mice did not differ significantly from those of the 
control groups (data not shown). Further immunofluores- 
cence analyses, together with differential hemopoietic cell 
counts, showed that the loss of B cells was compensated by 
an increase in peritoneal CD4 + T cells and granulocytes in 
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Figure 1. Immunofluorescence analysis of surface IgM and IgD expres- 
sion by total live peritoneal wash cells obtained from anti-Ilcl0-treated 
and control mice. BALB/c mice were injected from birth until 8 wk with 
SXC-1 anti-Ibl0 antibody, J5/D isotype control antibody, PBS, or nothing, 
as described in Materials and Methods. Results show the fluorescence in- 
tensities of 5,000 live cells counted from each experimental group. 
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the anti-IL-10 treated animals (data not shown). Two other 
observations indicated that depletion of  Ly-1 B cells in anti- 
Ibl0-treated mice occurred throughout the immune system 
and was not restricted to the peritoneal cavity. First, anti- 
Ibl0-treated mice exhibited a striking 90-100% reduction 
in serum IgM levels compared with the three control groups, 
as monitored by a mouse IgM-specific ELISA (Fig. 2). Second, 
anti-II:10-treated mice were profoundly deficient in their abil- 
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Figure 2. Serum IgM levels of anti-lL-10-treated and control mice tested 
after 8 wk of treatment. The results show the geometric mean _+ SEM 
of five individual sera in each group, and include data from two different 
experiments. Three additional experiments gave identical results. 

Figure 3. In vivo antibody responses of anti-IL-10-treated and control 
mice to od,3 dextran or phosphorylcholine. BALB/c mice were injected 
from birth to 9 wk with SXC.1 anti-lbl0 antibody, JS/D isotype control 
antibody, PBS, or left untreated. At 8 wk, mice were challenged with 
od,3-dextran, or heat killed Streptococcus pneumoniae as a source of phos- 
phorylcholine, as described in Materials and Methods. Results show the 
geometric mean +_ SEM of specific antibody levels detected in five in- 
dividual sera. 

ities to generate in vivo antibody responses to c~l,3-dextran 
or phosphorylcholine (36, 37) (Fig. 3), two thymus-indepen- 
dent antigens for which functionally responsive B cells re- 
side entirely within the Ly-1 B cell subset (9, 13). 

A nti-II_,10-treated Mice Contain Phenotypically and Function- 
ally Normal Conventional B Cells. In view of the striking 
effect of anti-IL-10 treatment on Ly-1 B cells, it was impor- 
tant to carefully evaluate the status of  conventional B cells 
in these animals. As stated above, the total number of  white 
blood cells in spleens of  anti-IIA0-treated or control animals 
did not differ significantly in 24 independent experiments. 
Fig. 4 shows that the proportions of B220 + B cells, CD3 + 
T cells, and non-B/T cells (B220-CD3- )  did not differ in 
any of  the four experimental groups of mice. Equivalent data 
were obtained when Ig + B cells or CD4 + T cells were com- 
pared (data not shown). These data indicate that the total 
number and phenotype of splenic B cells in anti-Ibl0-treated 
mice are the same as that of each of the control groups. The 
immunocompetence of conventional B cells in anti-IL-10- 
treated mice was tested in two ways. First, anti-IIA0-treated 
mice developed normal IgM and IgG antibodies in response 
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Figure  4. Immunofluorescence analysis of surface B220 and CD3 ex- 
pression of live splenic lymphoid cells obtained from SXC.1 anti-Ibl0- 
treated and control mice. For further details, see Fig. 1 legend. 

to injection with the thymus-dependent antigen TNP-KLH 
(Fig. 5). Secondary responses to TNP-KLH were also normal 
in anti-Ibl0-treated mice (data not shown). Second, splenic 
B cells from anti-Ibl0-treated mice developed normal in vitro 
proliferative responses to 50 #g/ml LPS or anti-IgM anti- 
body (Table 1). The background proliferative responses of 
spleen cells from anti-II_-10-treated mice were frequently three- 
to fivefold higher than that of controls, however, the 
significance and explanation for this is not yet clear (Table 
1). Collectively, these data suggest that conventional B ceils 
in anti-Ibl0-treated mice are quantitatively and functionally 
indistinguishable from those in control mice. 

Mechanism of Ly-1 B Cell Depletion. Several possible mech- 
anisms were considered as explanations for the depletion of 
Ly-1 B cells in anti-IL-10-treated mice. This effect did not 
appear to involve selective cytotoxicity of Ly-1 B cells by the 
anti-IL-10 antibodies, as injection of the same antibodies into 
adult mice had no effect on subsequent recoveries of total 
peritoneal wash cells (not shown), or total peritoneal B cells 
(Fig. 6) 1, 2, or 3 d later. As an alternative explanation, we 
considered the possibility that Ly-1 B cell depletion reflected 
a secondary consequence of some other endogenous cytokine 
perturbation. Indeed, anti-ID10-treated mice were generally 
found to have elevated serum IFN-3~ levels (Fig. 7), an obser- 
vation that was consistent with the previously reported ability 
of IL-10 to suppress IFN-'y production by Thl  and NK cells 
in vitro (26, 27, 39). To test the possibility that this anti-Ib 
10-induced elevation of IFN-~/was either directly or indirectly 
responsible for depletion of Ly-1 B cells, mice were injected 
from birth to adulthood with a combination of anti-IL-10 
and anti-IFN-~/-neutralizing antibodies, or anti-IL-10 and an 
appropriate isotype control antibody. The results showed that 
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Figure 5. In vivo antibody response of anti-IL-10-treated or control mice 
to TNP-KLH. Mice were injected from birth until 10 wk of age with 
anti-IL-10 antibody (O), or an isotype control (O). At 8 wk, the animals 
were challenged intraperitoneally with 10/~g of TNP-KLH. Serum levels 
of TNP-specific IgM and IgG were determined 7 and 14 d after immuni- 
zation, respectively. The results show three separate experiments, with 
each circle representing an individual mouse. 

coadministration of anti-IFN-y antibodies (Fig. 8), but not 
its isotype control (data not shown), substantially reduced 
the ability of anti-Ibl0 treatment to deplete mice of perito- 
neal Ly-1 B cells. It is important to note that continued ad- 

Table 1. In Vitro Proliferative Response of Spleen Cells from 
Anti-IL-lO-treated and Control Mice to LPS, Anti-IgM, and 
Anti-CD3 Stimulation 

[3H]thymidine 

Animal group* + 0 + LPS + Anti-IgM + Anti-CD3 

c~m 
Untreated 224 22,570 3,346 90,093 

PBS 320 42,298 3,821 115,692 

J5/D 547 46,748 2,897 135,172 

SXC.1 2,779 61,609 7,218 96,389 

* Animals were treated from birth to 8 wk of age as described in Fig. 
1. Pooled spleen cells at 2 x 106/ml obtained from three mice in each 
group were cultured for 3 d in medium alone, or medium supplemented 
with LPS (50 #g/ml), goat anti-mouse IgM antibodies (50/~g/ml), or 
hamster anti-mouse CD3 antibodies (5 #g/m1). For anti-CD3 stimula- 
tion, the antibody was coated onto the microtiter plate before addition 
of spleen cells. Proliferation was evaluated via incorporation of 
[3H]thymidine, after a 16 h pulse with 1/~C/well [3H]thymidine (NET 
027; New England Nuclear, Boston, MA). 
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Figure 6. Anti-IL-10 antibodies 
are not directly cytotoxic for peri- 
toneal wash B calls. Unprimed 
8-wk-old BALB/c mice were in- 
jected intraperitoneaUy with 1 mg 
anti-IL-10 antibody (SXC.1), or 
1 mg of an isotype control (J5/D). 
Peritoneal wash cells were collected 
from different animals 1, 2, or 3 d 
later, and analyzed for coexpression 
of surface lgD and IgM. Results 
show the fluorescence intensities of 
5,000 live cells counted from each 
experimental group. 

ministration of anti-IFN-3, antibodies alone, or the combi- 
nation of anti-Ibl0 plus anti-IFN-T antibodies, did not alter 
the recovery of total peritoneal wash cells from mice treated 
with just anti-Ibl0 or its isotype control. We interpret these 
data as evidence in support of the concept that Ly-1 B cell 
depletion is at least in part a consequence of IFN-3' elevation 
in anti-IL-10-treated mice. 

D i s c u s s i o n  

The data outlined in this study indicate that continuous 
treatment of mice from birth to adulthood with anti-IL-10 
antibodies drastically reduces total Ly-1 B cell number and 
function, without altering the number, phenotype, or im- 
munocompetence of conventional B cells located in spleens 
of these same animals. Several observations support the pro- 
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Serum IFN-T levels in anti-Ibl0-treated or control mice. 
BALB/c mice were injected from birth until 8 wk with anti-lL-10 anti- 
body (e) or an isotype control (O). Sera collected at 8 wk were analyzed 
for IFN-'y by immunoassay (34, 35). The results show five separate experi- 
ments, with each circle representing an individual mouse. 

posed depletion of Ly-1 B cells in anti-Ibl0-treated mice: 
(a) anti-Ibl0-treated mice contain few or no B cells in their 
peritoneal cavities, a site of Ly-1 B cell enrichment in normal 
mice. It is significant that we show elsewhere that peritoneal 
wash cells of 8-wk-old B A L B / c  mice in our animal facility 
contain fewer than 5% conventional B cells by phenotypic 
analysis (22, 23); (b) anti-ID10-treated mice contain 0-10% 
of normal serum IgM levels, which is consistent with previous 
reconstitution ~periments identifying Ly-1 B cells as the pre- 
dominant source of circulating IgM (7, 9, and 11); and (c) 
anti-IL-10-treated mice generate little or no antibody in re- 
sponse to injection with phosphorylcholine and od,3-dextran, 
antigens for which specific B cells reside in the Ly-1 B cell 
subset (9, 13). The data suggesting an unaltered conventional 
B cell compartment in anti-IL,10-treated mice are equally com- 
peUing, with unchanged numbers of splenic B cells displaying 
normal cell surface marker phenotypes, and responding nor- 
mally to a thymus-dependent antigen and B cell mitogens. 
The selective depletion of Ly-1 B cells in anti-IL-10-treated 
mice was found to be transient, as Ly-1 B cells reappeared 
in the peritoneal cavities of these animals several weeks after 
anti-IL,10 treatment was discontinued (H. Ishida, et al., manu- 
script in preparation). 

Several possible mechanisms were considered as explana- 
tion for the selective depletion of Ly-1 B cells in anti-Ibl0- 
treated mice. The data presented indicate that this is at least 
partially the consequence of IFN-T elevation after anti-IL-10 
treatment, since coadministration of neutralizing anti-II:10 
and anti-IFN-3, antibodies substantially prevented the deple- 
tion of peritoneal B cells in these studies. The implication 
that IFN-T either directly or indirectly inhibits Ly-1 B cell 
development is reminiscent of our previous observations that 
IFN-3' causes slight suppression of Ib5 induced in vitro 
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Figure 8. Coadministration of anti-IFN-"/antibodies reduces the ability 
of anti-Ibl0 treatment to deplete mice of peritoneal B cells. BALB/c mice 
were treated from birth to 8 wk with anti-IL-10 antibodies, anti-Ibl0 
plus anti-IFN-3~ antibodies, or were untreated. Peritoneal wash cells were 
then analyzed for coexpression of B220 and of IgM. Results show the 
fluorescence intensities of 5,000 live cells counted from each experimental 
group. 

proliferation of the Ly-1 + B lymphoma BCL1 (40). To ex- 
tend these studies, we have recently observed IFN-3~-mediated 
suppression of LPS-induced proliferation of peritoneal cells, 
but not spleen cells from normal BALB/c mice (O'Garra and 
Howard, unpublished observations). Whether the elevation 
of IFN-3' in anti-II--10-treated mice totally accounts for Ly-1 
B cell depletion, and whether this reflects a direct action of 
IFN-3' on Ly-1 B cells or some IFN-3,-mediated indirect effect, 
awaits further study. It is possible to imagine other changes 
in anti-Ibl0-treated mice that may additionally contribute 
to the depletion of Ly-1 B cells. Based on previously pub- 
lished in vitro data (24, 25), it is likely that anti-Ibl0 treat- 
ment will lead to elevation of endogenous monokine levels. 
Indeed, we show elsewhere (H. Ishida et al., manuscript in 
preparation) that anti-IL-10-treated mice are ~,50-fold more 
susceptible to death by LPS-induced shock, an event that is 
known to be mediated by monokines (41-44), and that 5 
of 32 individual anti-IL-10-treated mice contained substan- 
tial levels of serum II,-6, a monokine that is generally not 
found in the circulation of normal animals and that could 

not be detected in the sera of any of 10 control mice from 
these experiments. On this point however, it is worth con- 
sidering that II~6 transgenic mice or animals with greatly 
elevated serum monokine levels resulting from in vivo ad- 
ministration of LPS appear to have normal serum IgM levels 
(45, 46), suggesting unchanged numbers of Ly-1 B cells. Our 
initial premise that II~10 acts as an autocrine growth factor 
for Ly-1 B cells but not conventional B cells, a notion derived 
from our previous findings that Ly-1 B cells, but not conven- 
tional B cells generate constitutive and inducible I1,-10 (22, 
23), now seems unlikely in light of the substantial numbers 
of peritoneal Ly-1 B cells recovered from mice treated with 
both anti-IL-10 and anti-IFN-'y antibodies. 

The Ly-1 B cell-depleted mouse we have created by con- 
tinuous anti-Ibl0 treatment bears considerable similarity to 
the previously described immunodeficient xid mouse, a spon- 
taneous mutant strain derived from CBA/CaH mice which 
lacks Ly-1 B cells, and is unresponsive to a subset of thymus- 
independent antigens (7, 47). Despite these similarities, our 
preliminary investigations have revealed that xid mice pro- 
duce Ib l0  normally, and contain functional Ib l0  receptors 
(N. Go and M. Howard, manuscript in preparation), thus 
distinguishing x/d mice and anti-Ibl0-treated mice mechanisti- 
cally. Furthermore, one property that distinguishes anti-IL- 
10-treated mice from xid mice is the in vitro responsiveness 
of spleen cells to anti-IgM stimulation, exhibited by the former 
(Table 1), but not the latter animals (48). Further efforts to 
characterize the responsiveness of anti-Ibl0-treated mice to 
the variety of thymus-independent type II antigens and 
microorganisms that are not recognized by xid mice are in 
progress. Whatever the relationship between xid mice and 
anti-IL-10-treated mice, it is hoped that the latter procedure 
will allow us to generate Ly-1 B cell-depleted mice of any 
haplotype, thereby allowing us to explore the role of this 
numerically small population of B cells within the context 
of the various genetic restrictions that underlie responsive- 
ness to different antigens and microorganisms. 
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