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Abstract: 1,8-naphthyridine-3-carboxamide structures were previously identified as a promising
scaffold from which to obtain CB2R agonists with anticancer and anti-inflammatory activity. This
work describes the synthesis and functional characterization of new 1,8-naphthyridin-2(1H)-one-
3-carboxamides with high affinity and selectivity for CB2R. The new compounds were able to
pharmacologically modulate the cAMP response without modulating CB2R-dependent β-arrestin2
recruitment. These structures were also evaluated for their anti-cancer activity against SH-SY5Y and
SK-N-BE cells. They were able to reduce the cell viability of both neuroblastoma cancer cell lines
with micromolar potency (IC50 of FG158a = 11.8 µM and FG160a = 13.2 µM in SH-SY5Y cells) by
a CB2R-mediated mechanism. Finally, in SH-SY5Y cells one of the newly synthesized compounds,
FG158a, was able to modulate ERK1/2 expression by a CB2R-mediated effect, thus suggesting that
this signaling pathway might be involved in its potential anti-cancer effect.

Keywords: neuroblastoma; cannabinoid receptor 2; selective CB2R agonists

1. Introduction

Neuroblastoma (NB) is the most common solid extracranial tumor among children
characterized by a severe mortality rate [1]. NB begins from immature nerve cells of the
sympathetic nervous system and can lead to a wide range of clinical outcomes from sponta-
neous regression to incurable progression, with resistant therapy and poor prognosis [2,3].
Therefore, it is necessary to find novel therapeutic compounds that can achieve effective
and efficient results against neuroblastomas.

Cannabinoid receptor 2 (CB2R), together with cannabinoid receptor 1 (CB1R), belongs
to the endocannabinoid system (ECS), a relatively recently discovered physiological system
known to play a fundamental role in establishing and maintaining human health [4]. CB1R
is abundant in the central nervous system (CNS), where it plays a well-established role in
regulating neuronal excitability [5]. In contrast, CB2R is predominantly expressed at the
peripheral level and is involved in the anti-inflammatory effects of cannabinoids without
causing psychotropic adverse effects, which are mainly associated with the stimulation of
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CB1R [6]. CB2R continues to be of interest because of its involvement in several patholog-
ical conditions including cancers. CB2R is reported to be upregulated in various tumor
tissues, such as melanoma [7], bladder cancer [8], breast cancer [9], colon cancer [10], and
hepatocellular carcinoma [11]. Many CB2R agonists have exhibited an antitumor effect in
several cancers [12,13].

In a recent study reported in the literature, additional therapeutic targets against
high-risk neuroblastoma were defined using an integrative data analysis combined with
experimental evaluation in cell lines from patient-derived xenografts. In this work, CB2R
was identified as one of the most promising targets for the treatment of high-risk neurob-
lastoma [14].

Previously, we reported 1,8-naphthyridin-2(1H)-one-3-carboxamides as suitable scaf-
folds for the development of promising CB2R ligands with agonist behavior. Moreover,
some of these compounds showed a CB2R-dependent anti-proliferative effect in various
cancer cell lines and/or anti-inflammatory activity [15–20] (Figure 1).
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Figure 1. 1,8-naphthyridin-2(1H)-one-3-carboxamide derivatives with antiproliferatve or/and anti-
inflammatory activity.

Several 1,8-Naphthyridine derivatives have gained the attention of researchers for
their anticancer properties and SAR studies on their efficacy as antitumor active compounds
have been reported [21]. Furthermore, many other heterocyclic compounds such as indole,
furano, isoxazole derivatives characterized by a carboxamide substituent have shown
interesting anti-proliferative activity against different cancer cell lines [22–25].

The present work describes the synthesis of the new 1,8-naphthyridin-2(1H)-one-3-
carboxamide derivatives FG158a, FG160a, and FG161a (Figure 2). The new compounds
are structurally similar to the selective CB2R agonist N1-hydroxypentyl derivative LV62
previously reported by us [26] but with the hydroxyl group being replaced by a bromine
atom (FG158a), a chlorine atom (FG160a), or an azido group (FG161a) (Figure 2). The
effectiveness of the novel 1,8-naphthyridine-3-carboxamide derivatives and of compound
LV62 were determined against neuroblastoma cells.
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1,8-naphthyridin-2(1H)-on-3-carboxamide, prepared as previously reported in the liter-
ature [17], was subjected to a N-alkylation reaction by treatment with cesium fluoride
in anhydrous DMF at room temperature for 1 h and then with 1,5-dibromopentane or
1-bromo-5-chloropentane at 30 ◦C for 24 h to yield the desired 1,8-naphthyridin-2-one
derivatives FG158a and FG160a. The synthesis of the azide derivative FG161a included
an additional step starting from compound FG158a with sodium azide at 60 ◦C for 12 h.
Each crude mixture was purified by flash chromatography to produce FG158a, FG160a,
and FG161a; in addition, the separation of the cis and trans isomers of each compound
was achieved.
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2.2. Biological Results

2.2.1. [3H]CP55,940 Binding Assays

The binding affinities (Ki values) of the novel derivatives FG158a, FG160a, and FG161a
and the compound LV62 [26] as a mixture of cis and trans isomers (∼= 1:1) were evaluated at
hCB1R and hCB2R using a [3H]CP55,940 radioligand displacement assay and membranes
derived from Chinese hamster ovary (CHO) cells stably expressing either receptor. The
results are summarized in Table 1. The non-selective orthosteric CBR ligand CP55,490
was used as a reference compound. At hCB2R, the new compounds FG158a, FG160a,
and FG161a fully displaced [3H]CP55,940, proving that they are high-affinity CB2R lig-
ands (Ki values from 45 nM to 16.5 nM) analogously to the reference compound LV62
(Ki = 37 nM) (Table 1). At hCB1R, the new compounds FG158a, FG160a, FG161a, and LV62
were not able to displace [3H]CP55,940, indicating no affinity of these ligands for hCB1R,
and hence high CB2R selectivity (Table 1). These results showed that the replacement of
the hydroxy group of the hydroxypentyl substituent in position 1 of LV62 by the bromine,
chloro, or azido group made it possible to maintain high affinity and selectivity for CB2R.
This finding is in accordance with the result obtained previously by replacement of the
hydroxy group of LV62 by a fluorine atom [26].

Table 1. Radioligand binding data, cAMP inhibition, and β-arrestin2 recruitment.

Cmpds CB2R Ki
(nM) 1

CB1R Ki
(nM) 1

cAMP Inhibition β-Arrestin2 Recruitment

EC50
(95% C.I., nM)

Emax (% CP55,940)
± S.E.M

EC50
(95% C.I., nM)

Emax (% CP55,940)
± S.E.M

CP55,940 34 (2.7–57) 6.6 (2.7–15) 9.4 (3.4–29)) 100 ± 6.4 560 (410–760) 100 ± 3.4
FG158a 21 (12–50) >10,000 >10,000 71 ± 2.5 * >10,000 46 ± 1.8 *
FG160a 16.5 (10–45) >10,000 600 (73–870) * 90 ± 3.1 >10,000 41 ± 1.0 *
FG161a 45 (32–75) >10,000 760 (150–2,900) * 78 ± 11 >10,000 47 ± 1.8 *

LV62 37 (13–89) >10,000 34 (3.9–220) 110 ± 8.8 63 (49–82) * 65 ± 1.4 *
1 For radioligand binding, membranes from CHO cells stably expressing human CB2R or CB1R were treated
with 0.1 nM-10 µM compounds in the presence of 0.7 nM [3H]CP55,940. Data are expressed as % radioligand
bound. Data are fit to a nonlinear regression (three parameter, GraphPad v. 9.0) to determine Ki (nM) with 95%
confidence interval (C.I.). n = 3 independent experiments. For cAMP inhibition and β-arrestin2 recruitment, CHO
cells stably expressing human CB2R were treated with 0.1 nM–10 µM compounds for 90 min. Data are expressed
as % CP55,940 response and presented in Figure 3A,B. Data are fit to a nonlinear regression (three parameter,
GraphPad v. 9.0) to determine EC50 (nM) with 95% C.I. and Emax (% CP55,940 ± S.E.M.). n = 3–6 independent
experiments performed in duplicate. * p < 0.05 compared to CP55,940 as determined by non-overlapping 95% C.I.
or two-way ANOVA followed by Bonferroni’s post hoc analysis.
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2.2.2. CB2R Functional Activity: cAMP and β-Arrestin2 Assays

Following the initial [3H]CP55,940 binding assessment, FG158a, FG160a, FG161a,
and LV62 (as a mixture of cis and trans isomers) were evaluated for their functional
activity to modulate the Gαi/o-dependent inhibition of forskolin (FSK)-stimulated cAMP
accumulation and β-arrestin2 recruitment in CHO cells stably expressing hCB2R. The
non-selective orthosteric CBR ligand CP55,490 was used as a reference compound. For the
cAMP inhibition assay, cells were treated with 10 µM FSK and synthetized compounds
for 90 min to assess compound concentration-dependent activity. The results showed that
LV62 displayed the highest potency (34 (3.9–220)) nM and efficacy (110 ± 8.8). (Table 1).
FG160a and FG161a were able to modulate the cAMP response but their potency and
efficacy were lower than those of the compound LV62 (Table 1). Conversely, compound
FG158 proved not to affect this signaling pathway (Figure 3A; Table 1).

Compounds FG158a, FG160a, FG161a, and LV62 were also evaluated for their ability
to recruit β-arrestin2, since G protein-coupled receptors also interact with β-arrestin, which
facilitates receptor internalization, recycling, degradation, and signaling. Interestingly, the
trend relating the potency and efficacy values for compounds FG158a, FG160a, and FG161a
suggests that these were not able to modulate β-arrestin2 recruitment (EC50 > 10,000 nM)
(Figure 3A; Table 1). In contrast, compound LV62 produced an increase in the β-arrestin2
recruitment (Figure 3B; Table 1).

2.2.3. Investigation of Toxicity Levels against the Neuroblastoma Cells

The cytotoxic anticancer activity of CBR agonists has been suggested by several
studies [12,13]. The selective CB2R agonist JWH-133 inhibits SH-SY5Y cell proliferation,
presumably via a CB2R-independent mechanism [27]. We tested the anti-proliferative
activity of the novel CB2R agonists FG158a, FG160a, FG161a, and LV62 in neuroblastoma
cell lines (Figure 4). The compounds were assayed as a mixture of cis and trans isomers. We
observed that in SH-SY5Y cells after 24 h (Figure 4A), 48 h (Figure 4B), and 72 h (Figure 4C)
of treatment, FG158a, FG160a, FG161a, and LV62 inhibited cell viability. After 72 h of
treatment, the effect was higher and could also be observed at lower concentrations. The
inhibitory effect was confirmed in another neuroblastoma cell line, SK-N-BE cells. After
72 h of treatment, the compounds inhibited cell viability (Figure 4D).
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Figure 4. Inhibition of cell viability. The effect on cell viability by CB2R agonists was determined
by sulforhodamine B (SRB) assays in SH-SY5Y and SK-N-BE cell lines. SH-SY5Y cells were treated
with the compounds indicated in the figure for 24 h (A), 48 h (B), and 72 h (C) at the concentrations
reported in the histograms. SK-N-BE cells were treated with the same compounds for 72 h (D).
Figures report cell viability (mean of at least 3 independent experiments ± SEM) as percent of
cell survival vs. untreated cells (considered as 100% of survival). In SH-SY5Y cells after 72 h
of treatment, the IC50 values were: FG158a = 11.8 µM; FG160a = 13.2 µM, FG161a = 27.53 µM,
LV62 = 38.11 µM. The statistical significance was calculated with two-way ANOVA using Dunnett’s
multiple comparisons test.

To address a CB2R-mediated mechanism, we tested FG158a, LV62, and FG160a at in-
hibitory concentrations in SH-SY5Y cells pre-incubated with the CB2R antagonist SR144528.
After 72 h of treatment, we observed a reversion in cell viability at 20 and 40 µM of FG158a
and FG160a in the presence of SR144528. The inhibitory effect of LV62 was reverted only
at 40 µM (Figure 5). These data suggest that CB2R agonists can arrest neuroblastoma cell
viability and that their effect is mediated by CB2R.

2.2.4. Effect of FG158a on ERK1/2

Among the CB2R agonists tested, we selected FG158a as it provides the best dose–
response curve in SH-SY5Y cells (Figure 4B). The effect of CB2R agonists on the ERK
pathway has been previously detected in other tumor models such as a breast cancer
model [28]. The dysregulation of the ERK/MAPK pathway is crucial in neuroblastoma. In
neuroblastoma primary cells, the ERK/MAPK pathway has been observed to be highly acti-
vated [29]. We addressed the effect of FG158a on MAPK kinase activation by the evaluation
of its component ERK1/2 in the presence and in the absence of the antagonist SR144528
(Figure 6). We observed that 20 µM FG158a inhibited ERK1/2 expression with respect to
the untreated control cells, whereas the antagonist SR144528 reversed the inhibitory effect
of the agonist. These data demonstrate the activity of FG158a on ERK1/2 levels and that
the effect is mediated by CB2R.
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Figure 6. FG158a inhibition of ERK1/2 is mediated by CB2R. Western blot and densitometric analysis
of ERK protein is shown for FG158a treated SH−SY5Y cells and the combined effect with SR144528
is also shown. Vinculin was used as a control for normalization. The blots are representative of at
least 3 independent experiments and the densitometric analysis reports the mean of the experiments.
The statistical analysis was performed by parametric two tailed t-test (* p < 0.05 FG158a calculated
with respect to the CTR; & p < 0.01 FG158a+SR144528 calculated with respect to FG158a).
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3. Material and Methods
3.1. Chemistry

Commercially available reagents were purchased from Merk Life Science (Milano,
Italy) or Fluorochem (Glossop, UK) and used without purification. 1H NMR and 13C
NMR were recorded at 400 and 100 MHz, respectively, on a Bruker AVANCE IIITM 400
spectrometer (Mannheim, Germany). Chemical shift (δ) is reported in parts per million
related to the residual solvent signal, while coupling constants (J) are expressed in Hertz
(Hz). Organic solutions were dried over anhydrous Na2SO4. Evaporation was carried
out in vacuo using a rotating evaporator. Silica gel flash chromatography was performed
using silica gel 60 Å (0.040–0.063 mm; Merck Life Science S.r.l., Milano, Italy). Reactions
were monitored by TLC on Kieselgel 60 F254 (Merck Life Science S.r.l., Milano, Italy) with
detection by UV light (λ = 254 nm). All reactions involving air- or moisture-sensitive
reagents were performed under nitrogen atmosphere using anhydrous solvents. Melting
points were determined on a Kofler hot-stage apparatus and are uncorrected. Elemental
analyses were performed in our analytical laboratory and agreed with theoretical values to
within ± 0.4%.

3.1.1. Synthesis of 1-(5-bromopentyl)-N-(4-methylcyclohexyl)-2-oxo-1,2-dihydro-1,8-
naphthyridine-3-carboxamide (FG158a)

Cesium fluoride (798 mg, 5.25 mmol) was added to a solution of N-(4-methylcyclohexyl)-
1,8-naphthyridin-2(1H)-on-3-carboxamide [17] (500 mg, 1.75 mmol) in anhydrous DMF
(5.25 mL). The solution was stirred at room temperature for about one hour and then
treated with 1,5-dibromopentane or 1-bromo-5-chloropentane (0.72 mL, 5.25 mmol). The
reaction mixture was stirred at 30 ◦C for 24 h. After that, the solvent was removed under
reduced pressure and the obtained residue was dissolved in CHCl3 and washed with
water. The organic phase was dried over Na2SO4, filtered, and evaporated under reduced
pressure yielding a crude product that was purified by flash column chromatography
using hexane/AcOEt 5:5 to yield the desired 1,8-naphthyridine-3-carboxamides FG158a
as a cis/trans diastereoisomeric mixture. The separation of cis and trans isomers was also
achieved. FG158a: Yield: 46%. 1H-NMR (CDCl3) δ 10.01 and 9.63 (2d, 1H, J = 7.2 Hz, NH);
8.86 (s, 1H, H4); 8.71 (dd, 1H, J = 4.6 Hz, 2.0 Hz, H7); 8.08 (dd, 1H, J = 7.6 Hz, 2.0 Hz, H5);
7.28 (dd, 1H, J = 7.6 Hz, 4.6 Hz, H6); 4.59 (t, 2H, J = 7.8 Hz, NCH2); 4.27 and 3.92 (2m, 1H,
CH); 3.44 (t, 2H, J = 6.8 Hz, CH2Br); 2.10–1.09 (m, 15H, cyclohexyl + 3xCH2); 0.98 and 0.91
(2d, 3H, J = 6.8 Hz, CH3). 13C-NMR (CDCl3) δ 162.84, 162.06, 152.13, 149.78, 142.07, 138.64,
123.36, 119.21, 115.19, 49.03, 45.91, 41.35, 34.12, 33.18, 32.20, 31.47, 30.63, 30.48, 29.66, 27.43,
25.74, 22.81, 21.66. Anal. Calcd. for C21H28BrN3O2; C, 58.07; H, 6.50; N, 9.67; Found C,
58.23; H, 6.42; N, 9.72. FG158a-trans: Yield 16%; mp 121–123 ◦C. 1H-NMR (CDCl3) δ 9.63
(d, 1H, J = 7.2 Hz, NH); 8.86 (s, 1H, H4); 8.71 (dd, 1H, J = 4.6 Hz, 2.0 Hz, H7); 8.08 (dd, 1H,
J = 7.6 Hz, 2.0 Hz, H5); 7.28 (dd, 1H, J = 7.6 Hz, 4.6 Hz, H6); 4.59 (t, 2H, J = 7.8 Hz, NCH2);
3.92 (m, 1H, CH); 3.44 (t, 2H, J = 6.6 Hz, CH2Br); 2.10–1.09 (m, 15H, cyclohexyl + 3xCH2);
0.91 (d, 3H, J = 6.8 Hz, CH3). 13C-NMR (CDCl3) δ 163.16, 162.55, 152.66, 150.30, 142.48,
139.07, 123.80, 119.66, 115.59, 49.43, 42.24, 34.55, 33.62, 33.01, 32.64, 31.58, 27.61, 26.28, 22.89.
Anal. Calcd. for C21H28BrN3O2; C, 58.07; H, 6.50; N, 9.67; Found C, 58.15; H, 6.57; N, 9.70.
FG158a-cis: Yield 21%; mp 116–118 ◦C. 1H-NMR (CDCl3) δ 10.01 (d, 1H, J = 7.2 Hz, NH);
8.86 (s, 1H, H4); 8.71 (dd, 1H, J = 4.6 Hz; 2.0 Hz, H7); 8.08 (dd, 1H, J = 7.6 Hz; 2.0 Hz, H5);
7.28 (dd, 1H, J = 7.6 Hz; 4.6 Hz, H6); 4.59 (t, 2H, J = 7.8 Hz, NCH2); 4.27 (m, 1H, CH); 3.44
(t, 2H, J = 6.6 Hz, CH2Br); 2.03–1.28 (m, 15H, cyclohexyl + 3xCH2); 0.98 (d, 3H, J = 6.8 Hz,
CH3). 13C-NMR (CDCl3) δ 162.53, 161.88, 151.97, 149.68, 141.66, 138.44, 123.19, 118.96,
114.89, 45.62, 41.47, 33.65, 32.35, 31.03, 30.18, 29.58, 26.93, 25.59, 21.51. Anal. Calcd. for
C21H28BrN3O2; C, 58.07; H, 6.50; N, 9.67; Found C, 58.33; H, 6.37; N, 9.55.
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3.1.2. Synthesis of 1-(5-chloropentyl)-N-(4-methylcyclohexyl)-2-oxo-1,2-dihydro-1,8-
naphthyridine-3-carboxamide (FG160a)

Compound FG160a was prepared as described for compound FG158 using 1-bromo-
5-chloropentane and purified by flash column chromatography on silica gel using hex-
ane/AcOEt 5:5 to yield the desired 1,8-naphthyridine-3-carboxamides FG160a as a cis/trans
diastereoisomeric mixture. The separation of cis and trans isomers was also achieved.
FG160a: Yield: 44%. 1H-NMR (CDCl3) δ 10.01 and 9.63 (2d, 1H, J = 7.2 Hz, NH); 8.86 (s,
1H, H4); 8.71 (dd, 1H, J = 4.8 Hz, 1.6 Hz, H7); 8.07 (dd, 1H, J = 7.6 Hz, 1.6 Hz, H5); 7.28
(dd, 1H, J = 7.6 Hz, 4.8 Hz, H6); 4.60 (2t, 2H, J = 7.8 Hz, NCH2); 4.25 and 3.91 (2m, 1H,
CH); 3.58 (2t, 2H, J = 6.8 Hz, CH2Cl); 2.10–1.09 (m, 15H, cyclohexyl + 3xCH2); 0.97 and
0.91 (2d, 3H, J = 6.6 Hz, CH3). 13C-NMR (CDCl3) δ 162.53, 161.93, 152.03, 149.66, 141.76,
138.38, 123.20, 119.00, 114.93, 48.79, 44.93,45,70, 44.93, 41.65, 41.55, 33.91, 32.98, 32.24, 32.01,
30.20, 29.59, 27.11, 24.37, 24.34, 22.26, 21.49. Anal. Calcd. for C21H28ClN3O2; C, 64.69; H,
7.24; N, 10.78; Found C, 64.44; H, 7.15; N, 10.65. FG-160a-trans: Yield 18%; mp 124–126 ◦C.
1H-NMR (CDCl3) δ 9.63 (d, 1H, J = 7.2 Hz, NH); 8.86 (s, 1H, H4); 8.71 (dd, 1H, J = 4.8 Hz,
1.6 Hz, H7); 8.07 (dd, 1H, J = 7.6 Hz, 1.6 Hz, H5); 7.28 (dd, 1H, J = 7.6 Hz, 4.8 Hz, H6);
4.58 (t, 2H, J = 7.8 Hz, NCH2); 3.91 (m, 1H, CH); 3.57 (t, 2H, J = 6.8 Hz, CH2Cl); 2.10–1.09
(m, 15H, cyclohexyl + 3xCH2); 0.91 (d, 3H, J = 6.6 Hz, CH3). 13C-NMR (CDCl3) δ 162.58,
161.98, 152.09, 149.72, 141.90, 138.49, 123.21, 119.08, 115.00, 48.85, 44.94, 41.69, 33.98, 33.04,
32.29, 32.06, 27.17, 24.43, 22.31. Anal. Calcd. for C21H28ClN3O2; C, 64.69; H, 7.24; N,
10.78; Found C, 64.71; H, 7.35; N, 10.85. FG-160a-cis: Yield 22%; mp 104–106 ◦C. 1H-NMR
(CDCl3) δ 10.01 (d, 1H, J = 7.2 Hz, NH); 8.86 (s, 1H, H4); 8.70 (dd, 1H, J = 4.6 Hz; 1.6 Hz,
H7); 8.07 (dd, 1H, J = 7.6 Hz; 1.6 Hz, H5); 7.28 (dd, 1H, J = 7.6 Hz; 4.6 Hz, H6); 4.60 (t, 2H,
J = 7.8 Hz, NCH2); 4.25 (m, 1H, CH); 3.58 (t, 2H, J = 6.8 Hz, CH2Cl); 1.93–1.27 (m, 15H,
cyclohexyl + 3xCH2); 0.97 (d, 3H, J = 6.6 Hz, CH3). 13C-NMR (CDCl3) δ 162.61, 161.97,
152.03, 149.76, 141.71, 138.44, 123.27, 119.01, 114.96, 45.70, 44.95, 41.57, 32.27, 31.09, 30.25,
29.64, 27.14, 24.37, 21.55. Anal. Calcd. for C21H28ClN3O2; C, 64.69; H, 7.24; N, 10.78; Found
C, 64.60; H, 7.19; N, 10.84.

3.1.3. Synthesis of 1-(5-azidopentyl)-N-(4-methylcyclohexyl)-2-oxo-1,2-dihydro-1,8-
naphthyridine-3-carboxamide (FG161a)

A mixture of the bromo derivative FG158a (0.20 g 0.46 mmol) and NaN3 (89.7 mg,
1.38 mmol) in anhydrous DMF (5.0 mL) was heated in a sealed vial at 60 ◦C for 12 h. After
cooling, the solvent was removed under reduced pressure and the residue was treated with
water and repeatedly extracted with dichloromethane. The organic phases were collected,
dried over Na2SO4, filtered, and evaporated under reduced pressure to produce a solid
residue that was purified by flash column chromatography using using hexane/AcOEt
4:6 to yield FG161a as a cis/trans diastereoisomeric mixture. The separation of cis and
trans isomers was also achieved. 1H- and 13C-NMR Spectra of compounds FG158a-trans,
FG158a-cis are shown in Figures S2 and S3. FG161a: Yield 52%. 1H-NMR (CDCl3) δ 10.00
and 9.64 (2d, 1H, J = 7.6 Hz, NH); 8.86 (s, 1H, H4); 8.70 (dd, 1H, J = 4.6 Hz, 1.8 Hz, H7);
8.08 (dd, 1H, J = 7.8 Hz, 1.8 Hz, H5); 7.28 (dd, 1H, J = 7.8 Hz, 4.6 Hz, H6); 4.60 (2t, 2H,
J = 7.6 Hz, NCH2); 4.25 and 3.92 (2m, 1H, CH); 3.31 (2t, 2H, J = 6.8 Hz, CH2N3); 2.10–1.08
(m, 15H, cyclohexyl + 3xCH2); 0.98 and 0.92 (2d, 3H, J = 6.4 Hz, CH3). 13C-NMR (CDCl3)
δ 162.45, 161.82, 151.91, 149.60, 141.66, 138.32, 123.10, 118.90, 114.84, 51.43, 48.52, 45.73,
41.49, 33.64, 32.70, 31.73, 31.10, 30.27, 29.66, 28.48, 27.26, 24.09, 21.97, 21.56. Anal. Calcd.
for C21H28N6O2; C, 63.62; H, 7.12; N, 21.20; Found C, 63.51; H, 7.02; N, 21.07. FG161-trans:
Yield 16%; mp 115–117 ◦C. 1H-NMR (CDCl3) δ 9.64 (bd, 1H, NH, J = 8.0 Hz); 8.86 (s, 1H,
H4); 8.70 (dd, 1H, J = 4.6 Hz, 1.8 Hz, H7); 8.08 (dd, 1H, J = 7.8 Hz, 1.8 Hz, H5); 7.28 (dd,
1H, J = 7.8 Hz, 4.6 Hz, H6); 4.58 (t, 2H, J = 7.6 Hz, NCH2); 3.92 (m, 1H, CH); 3.30 (t, 2H,
J = 6.8 Hz, CH2N3); 2.10–1.08 (m, 15H, cyclohexyl + 3xCH2); 0.92 (d, 3H, J = 6.4 Hz, CH3).
13C-NMR (CDCl3) δ 162.26, 161.65, 151.76, 149.40, 141.58, 138.16, 122.88, 118.75, 114.68, 51.06,
48.52, 41.36, 33.64, 32.70, 31.73, 28.32, 27.10, 23.94, 21.97. Anal. Calcd. for C21H28N6O2;
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C, 63.62; H, 7.12; N, 21.20; Found C, 63.55; H, 7.22; N, 21.37. FG161-cis: Yeld 19%; mp
111–113 ◦C. 1H-NMR (CDCl3) δ 10.00 (bd, 1H, NH, J = 7.6 Hz); 8.87 (s, 1H, H4); 8.70 (dd,
1H, J = 4.6 Hz; 1.8 Hz, H7); 8.07 (dd, 1H, J = 7.8 Hz; 1.8 Hz, H5); 7.27 (dd, 1H, J = 7.8 Hz;
4.6 Hz, H6); 4.60 (t, 2H, J = 7.6 Hz, NCH2); 4.25 (m, 1H, CH); 3.31 (t, 2H, J = 6.8 Hz, CH2N3);
1.86–1.25 (m, 15H, cyclohexyl + 3xCH2); 0.98 (d, 3H, J = 6.4 Hz, CH3). 13C-NMR (CDCl3)
δ 162.64, 161.99, 152.06, 149.80, 141.74, 138.47, 123.31, 119.04, 114.99, 51.43, 45.73, 41.61,
31.10, 30.27, 29.66, 28.66, 27.42, 24.24, 21.56. Anal. Calcd. for C21H28N6O2; C, 63.62; H, 7.12;
N, 21.20; Found C, 63.82; H, 7.19; N, 21.36.

3.2. Biological Assays
3.2.1. Reagents and Cell Lines

CP55,940 was purchased from Cayman Chemicals (Ann Arbor, MI, USA). [3H]CP55,940
(174.6 Ci/mmol) was obtained from PerkinElmer (Guelph, ON, Canada). CHO cells stably
expressing hCB1R or hCB2R were maintained at 37 ◦C and 5% CO2 in Gibco Ham’s F-12
nutrient mix (Fisher Scientific, Loughborough, UK ) supplemented with 2 mM L-glutamine,
10% fetal bovine serum (FBS), 0.6% penicillin−streptomycin (Fisher Scientific, Loughbor-
ough UK), and the disulfate salt of geneticin (G418) as previously described (Sigma-Aldrich,
Poole, UK) [24]. For subsequent radioligand displacement assays, membranes were pre-
pared by scraping cells from flasks, centrifuging the cells, and storing the cell pellet at
−20 ◦C. When required for us, cell pellets were defrosted and diluted in tris buffer (50 mM
Tris-HCl and 50 mM Tris-base). As we have described in previous studies, HitHunter
(cAMP) and PathHunter (βarrestin2) CHO-K1 cells stably expressing hCB1R or hCB2R
from DiscoveRx® (Eurofins, Fremont, CA, USA) were maintained at 37 ◦C, 5% CO2 in F-12
DMEM containing 10% FBS and 1% Pen/Strep with 800 µg/mL geneticin (HitHunter) or
800 µg/mL G418 and 300 µg/mL hygromycin B (PathHunter) [30].

Human neuroblastoma SHSY5Y and SK-N-BE cell lines were grown in DMEM (GIBCO,
Paisley, UK) and MEM (Sigma-Aldrich, St.Louis, MO, USA), respectively, supplemented
with 2 mM l-glutamine, 50 ng/mL streptomycin, 50 units/mL penicillin and 10% heat-
inactivated fetal bovine serum (FBS) in a humidified atmosphere (5% CO2 at 37 ◦C).
Cells were detached as previously described [31] with 0.25% trypsin (Sigma-Aldrich)
at 70–80% confluence.

3.2.2. Radioligand Displacement Assay

We have previously described radioligand displacement assays in detail [30]. Briefly,
0.7 nM [3H]CP55,940, tris binding buffer (50 mM Tris-HCl, 50 mM Tri-base, 0.1% BSA,
pH 7.4), and 50 µg hCB1R or hCB2R cell membranes were used to a total assay volume
of 500 µL per reaction at 37 ◦C for 60 min. Binding reactions were terminated by ice-cold
tris binding buffer and subsequent vacuum filtration (24-well sampling manifold (Brandel
cell harvester; Brandel Inc., Gaithersburg, MD, USA)) using Brandel GF/B filters soaked
in wash buffer at 4 ◦C for at least 24 h. Filters were washed with 1.2 mL of tris-binding
buffer six times, then oven-dried for 60 min before being incubated in 3 mL of scintillation
fluid (Ultima Gold XR, PerkinElmer, Seer Green, Buckinghamshire, UK). Radioactivity
was quantified by liquid scintillation spectrometry. All compounds were first prepared at
10 mM solutions in DMSO. The final vehicle concentration for assays was 0.1% DMSO. All
assays were performed in duplicate.

3.2.3. HitHunter® cAMP Assay

The quantification of FSK-stimulated cAMP accumulation using the DiscoveRx HitHunter
assay (DiscoveRx, Eurofins, Fremont, CA, USA) has been described in detail previously
elsewhere [30]. Briefly, 20,000 cells/well were plated in low-volume 96-well plates and
incubated overnight in Opti-MEM with 1% FBS at 37 ◦C and 5% CO2. The next day, the
media were replaced with cell assay buffer (DiscoveRx). Immediately after this, the cells
were simultaneously treated with 10 µM FSK and ligands for 90 min. Subsequent additions
of cAMP antibody solution and cAMP working detection solutions followed the manufac-
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turer’s directions (DiscoveRx) and cells were stored for 60 min at room temperature. cAMP
solution A (DiscoveRx) was added according to the manufacturer’s directions followed by
another 60 min room temperature incubation prior to chemiluminescence being measured
on a Cytation5 plate reader (top read, gain 200, integration time 10,000 ms).

3.2.4. PathHunter® CB1R β-Arrestin2 Assay

The quantification of β-arrestin2 recruitment using the DiscoveRx PathHunter assay
has been described by our group previously and is summarized here. [30]. Twenty thou-
sand cells/well were grown overnight in Opti-MEM containing 1% FBS at 37 ◦C and 5%
CO2 in low-volume 96 well plates. The next day, cells were treated with compounds for
90 min at 37 ◦C. Detection solution was added to cells according to the manufacturer’s
directions (DiscoveRx) and cells were stored for 60 min at room temperature. After this
incubation, chemiluminescence was quantified on a Cytation5 plate reader (top read, gain
200, integration time 10,000 ms).

3.2.5. Sulforhodamine B (SRB) Assay

Cells seeded for 24 h in triplicate in 96-well plates at a density of 8000 cells/well
were left to adhere overnight. CB2R agonists were added to the culture in triplicate
at concentrations ranging from 2.5–40 µM. After 24 h, 48 h, and 72 h, cells were fixed,
shaking for 2 h at 4 ◦C with 50% v/v trichloroacetic acid and washed with distilled water.
Cells left overnight to dry were stained with 0.4% w/v SRB in 1% v/v acetic acid (at
room temperature for 30 min on a shaker) and then washed with 1% acetic acid to allow
for the removal of the unbound dye. TRIS-HCl 10 mM, pH 7.4 was added to the cells
and absorbance was measured at 495 nm as previously shown [32,33] using a Glomax®

Discover Microplate Reader (Promega, Madison, WI, USA). In combinatory assays, similar
procedures were adopted and the CB2R antagonist SR144528 (1 µM) was added 1 h before
the CB2 agonists (10, 20 and 40 µM) to SHSY5Y cells that were harvested as described
above after 72 h of incubation.

3.2.6. Electrophoresis and Immunoblots

After the treatment with FG158a (20 µM) in the presence and absence of SR144528
(added 1 h before the CB2R agonist at the concentration of 1 µM), SHSY5Y cells were
centrifuged and cell pellets were lysed in R.I.P.A. buffer (50 mM Tris-HCl, pH = 7.4; 150 mM
NaCl; 0.5M EDTA, 1% NP-40; 0.5% sodium deoxycholate; 0.1% SDS; 1:100 phosphatase
and protease inhibitors, both added before the lysis). Samples were centrifuged (17,900× g
20′ at 4 ◦C) and protein concentration was determined by Bio-Rad Protein Assay (Bio-
Rad, Berkeley, CA, USA) as previously described [34]. Lysates (30 µg of proteins) re-
suspended in Laemmli sample buffer were electrophoresed on 10% SDS-polyacrylamide
gel. Samples were resolved under constant voltage (100 mA) and transferred to PVDF
membranes (Millipore Corporation, Darmstadt, Germany). Blots were blocked with 5%
BSA in TBS containing 0.1% Tween-20 for 1 h at room temperature. Filters were incubated
overnight at 4 ◦C with 1:1000 dilution of ERK1/2 (SC-514302, Santa Cruz Biotechnology
Inc., Santa Cruz, CA, USA) and vinculin (SC-73614, Santa Cruz Biotechnology Inc., Santa
Cruz, CA, USA). Afterwards, blots were incubated for 1 h with horseradish peroxidase-
conjugated goat ant-mouse IgG (Biorad, Berkeley, CA, USA) and then revealed by an
enhanced chemiluminescence (ECL) system (Thermo Scientific, Rockford, IL, USA) [35].
Densitometry analysis was performed using Image j software.

3.2.7. Statistical Analysis

[3H]CP55,940 radioligand competition binding data are provided as % change from
maximal 3H bound (i.e., 100%). Data for HitHunter cAMP and PathHunter β-arrestin2 data
are shown as % of maximal CP55,940 response (i.e., 100%). Estimates of Ki, EC50, and Emax
were determined using non-linear regression three-parameters (GraphPad, Prism, v. 9.0).
Data are mean with 95% confidence interval (C.I.) (EC50) or mean ± SEM, n = 3–6 indepen-
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dent experiments performed in duplicate. Statistical analyses were by nonoverlapping C.I.
or two-way ANOVA followed by Bonferroni’s post hoc test. * p < 0.05 relative to CP55,940
within assay. The details of statistical analyses performed for SRB assays and densitometry
analysis is reported in the figure legends.

4. Conclusions

Beyond the well-documented effects of CB2R agonists in inflammatory and neurode-
generative diseases, CB2R has been recently identified as a novel target in xenograft models
of neuroblastoma, suggesting its promising role in high-risk neuroblastoma. Additionally,
the anti-proliferative activity in neuroblastoma cell lines of the gold standard CB2 agonist
JWH-133 has been reported. Here, we explored the anti-cancer activity of novel CB2R
agonists addressing their inhibitory effects in neuroblastoma cell lines. We observed that
the arrest of cell viability by these novel compounds was mediated by the CB2R. The
ERK/MAPK signaling pathway is known to play a role in neuroblastoma, contributing to
the progression toward a pro-tumor cell phenotype, and is also involved in resistance to
chemotherapy. In SH-SY5Y cells, we observed that FG158a was able to modulate ERK1/2
expression and that the effect is mediated by CB2R, thus suggesting that the potential
anti-cancer effect of this compound might involve this signaling pathway.

The advantage of the CB2R-selective compounds described here might be the docu-
mented anti-inflammatory activity of CB2R agonists. It is well known that inflammation
can promote cancer and alteration of the tumor microenvironment contributing to tumor
progression, inhibition of apoptosis, induction of angiogenesis, and resistance to chemother-
apeutics. The crucial role of CB2R in neurodegeneration and in various types of tumors,
due to its involvement in the (neuro)-inflammatory processes, makes highly selective CB2R
agonists compelling compounds against neuroblastoma.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
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