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Cells are exposed and respond to various mechanical forces and physical cues stemming
from their environment. This interaction has been seen to differentially regulate various
cellular processes for maintenance of homeostasis, of which autophagy represents one of
the major players. In addition, autophagy has been suggested to regulate mechanical
functions of the cells including their interaction with the environment. In this minireview, we
summarize the state of the art of the fascinating interplay between autophagy and the
mechanotransduction machinery associated with cell adhesions, that we name
¨Mechanoautophagy¨
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1 INTRODUCTION

How the mechanics of cellular environment influence biological properties is an emerging but yet
poorly understood field of investigation. This is particularly true for macroautophagy (herein
referred to as autophagy), a dynamic clearance process whereby cellular components, such as
misfolded proteins, abnormal protein aggregates and damaged organelles, are sequestered and
digested by lysosomes for degradation and recycling (Boya et al., 2013; Ortiz-Rodriguez and Arevalo,
2020; Aman et al., 2021; Hernández-Cáceres et al., 2021). At the molecular level, activation of the
autophagic pathway begins with the dissociation of the ULK1/mTORC1 complex, where Unc-51
Like Autophagy Activating Kinase (ULK)1 initiates the recruitment of the autophagic machinery
when freed from the inhibitory effect of the kinase mammalian target of rapamycin (mTORC)1
(Shang and Wang, 2011; Park et al., 2016). Downstream of inactivation of mTORC1-repressor
function, there are around 20 autophagy-related proteins (collectively called ATGs) that initiate the
process by recruiting the necessary machinery for phagophore formation (Geng et al., 2008),
(Gómez-Sánchez et al., 2021). Following these initial steps, the phagophore elongates and closes into
a double-membrane organelle, called autophagosome that matures into an autolysosome through
fusion with lysosomes (Lőrincz and Juhász, 2020). This last step enables digestion of faulty cellular
components, recycling of metabolic materials and rejuvenation of the cytosol. A mechanistic
description of the whole process can be found in Hernandez et al., Frontiers 2021 (Hernández-
Cáceres et al., 2021). In addition to be constantly needed as housekeeping process to maintain cellular
homeostasis (Rabinowitz andWhite, 2010; Galluzzi et al., 2014; Kaur and Debnath, 2015), autophagy
is essential during stress response, such as starvation, where, by degrading cytosolic material,
autophagy provides nutrients and metabolites necessary for the cell to cope with stress and ensure its
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survival (Rabinowitz and White, 2010; Das et al., 2012; Müller
et al., 2015). Similar stress responses activating autophagy include
oxidative stresses, DNA damage and pathogen infection
(Filomeni et al., 2015; Eliopoulos et al., 2016; Ravanan et al.,
2017; Evans et al., 2018). In addition to these biochemical stresses,
we have recently proposed a possible mechanism for autophagy
activation in response tomechanical stimuli through involvement
of the mechanically activated mTORC2 and its well-known
inhibitory effect over mTORC1 (Hernández-Cáceres et al.,
2021; Ballesteros-Álvarez and Andersen, 2021).

Cells are exposed and respond to various mechanical forces
and physical cues stemming from their micro- and macro-
environment. These include properties of the extracellular
matrix (e.g., composition, density, and stiffness), nano and
micro-scale geometrical cues (e.g., topography, size,
confinement, curvature) that can influence cortex and
membrane tension, interaction with neighboring cells (e.g., cell
crowding and migratory forces), and the large-scale tissue and
organ dynamics (e.g., shear stress, fluid pressure, stretching and
compression) (Ingber, 2008; Geiger and Bershadsky, 2002;
Iskratsch et al., 2014; Sheetz and Yu, 2018). Mechanical forces
are sensed by cells through various mechanosensors, such as
adhesion complexes (e.g., adherens junction and focal adhesion),
proteins sensing tension and curvature of the plasma membrane
(e.g., BAR proteins) and of the cytoskeleton (e.g., filamin), and
stretch activated ion channels (e.g., TRP and piezo) (Hernández-
Cáceres et al., 2021; Sheetz and Yu, 2018). The mechanical input
acting on these mechanosensors triggers cellular responses that
may involve direct mechanical responses (largely through
cytoskeletal and membrane dynamics) and signaling cascades
that convert the mechanical stimulus into a biochemical response
(i.e., mechanotransduction) leading to cytoskeletal
reorganization, membrane and organelles trafficking, gene
expression regulation and consequent modulation of various
cellular functions (Iskratsch et al., 2014). Specifically, the
interaction between cells and their physical environment
regulates positively and negatively the autophagic process
(Hernández-Cáceres et al., 2021; King et al., 2011; Dupont and
Codogno, 2016; Claude-Taupin et al., 2021; Zhang et al., 2022).
On the other hand, autophagic catabolism affects mechanical
functions of the cells including their interaction with the
environment (Hernández-Cáceres et al., 2021; King et al.,
2011; Dupont and Codogno, 2016; Claude-Taupin et al.,
2021). In this minireview, we aim to summarize the state of
the art of the fascinating interplay between autophagy and the
mechanotransduction machinery associated with adhesions that
we named ¨Mechanoautophagy¨.

2 EXTRACELLULAR MATRIX AND
AUTOPHAGY

The extracellular matrix (ECM) is a dynamic network with
different macromolecular composition, structural architecture,
and rheological properties that, through its constant remodeling
by the cells, contributes to regulating tissue homeostasis (Vogel,
2018). It is indeed this continuous transformation of the ECM

that eventually influences a wide array of biological functions
(i.e., adhesion and cohesion, proliferation, differentiation,
migration, etc) and cellular phenotypes, thus having a
dramatic effect on intracellular signaling. This fundamental
physiological role implies that the deregulation of such
extracellular microniche could lead to diseases. Typically,
aberrant ECM organization is observed in various pathological
scenarios such as fibrosis and cancer, where ECM composition
and rheological properties are altered as compared to the
corresponding physiological tissue (Vogel, 2018; Lu et al., 2011).

Specific components associated with the ECM have been
reported to play opposing roles on autophagy (Lock and
Debnath, 2008; Neill et al., 2014; Schaefer and Dikic, 2021).
Inhibitors of autophagy comprise laminin α2, an ECM-
associated protein, and two proteoglycans, lumican and
perlecan. Laminin α2 is the heavy chain of the laminin
glycoprotein complex and it works as a connector between
ECM and the cell membrane in skeletal muscles, Schwann
cells, pericytes and astrocytes (Yurchenco et al., 2018).
Laminin α2 functions as an autophagy inhibitor, as indicated
by the increase in autophagic flux in laminin α2-deficient muscle
cells and by recovery of the typical muscle morphology upon
chemical inhibition of laminin α2 in congenital muscular
dystrophy models (Carmignac et al., 2011; Durbeej, 2015).
Lumican has been reported to inhibit autophagy in pancreatic
ductal adenocarcinoma through downregulation of AMP-
activated protein kinase (AMPK) (Li et al., 2016). Finally,
perlecan, as a whole molecule, has been seen to hinder
autophagy through mTORC1 activation (Ning et al., 2015).
On the other hand, several ECM-associated proteins such as
collagen VI, kringle 5, endostatin, and various proteoglycans like
decorin, endorepellin, biglycan function as activators of the
autophagic process (Nguyen et al., 2007; Nguyen et al., 2009;
Gubbiotti and Iozzo, 2015; Castagnaro et al., 2018). Collagen VI,
similarly to the associated leucine-rich proteoglycan decorin, has
pro-survival and autophagy instructive properties through
inactivation of the Akt/mTOR/p70S6K pathway (Castagnaro
et al., 2018), and through AMPK via the hepatocyte and the
epithelial growth factors (HGF/Met and EGF, respectively).
Together with decorin, another leucine-rich proteoglycan,
biglycan, has been reported to evoke autophagy in
macrophages via a novel CD44/Toll-like receptor 4 signaling
cascade (Poluzzi et al., 2019). Interestingly, while the whole
perlecan molecule has inhibitory functions, its c-terminus
(AKA endorepellin) enhances autophagy through
transcriptional upregulation of pro-autophagic genes such as
PEG3, BECN1, and MAP1LC3A (Poluzzi et al., 2014). Kringle
5, the fifth kringle domain in human plasminogen, activates
autophagy in a similar manner as endostatin, by enhancing
BECN1 expression through β-catenin and Wnt-mediated
signaling pathways (Nguyen et al., 2007).

While there are some evidences on how ECM can influence
autophagy, little is known about the role of autophagy in
regulating cell-ECM interactions. Interestingly, the term
¨secretory autophagy¨ has been coined to indicate the non-
lytic autophagic pathway where autophagosomes, instead of
fusing with a lysosome, fuse with the plasma membrane and
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help excrete particulate substrates (Kimura et al., 2017; Ponpuak
et al., 2015). The secretion of matrix components could possibly
rely on such a mechanism, since deletion of ATG7 in mouse
embryonic fibroblast cells produces a deficiency in the expression
of collagen I, fibronectin, and periostin (Zhuo et al., 2013).
Furthermore, the autophagic process can also influence
conventional secretory pathways (i.e., constitutive and
regulated secretion) by promoting the translocation of integral
membrane proteins to the plasma membrane.

3 FOCAL ADHESIONS AND AUTOPHAGY

Mechanical and chemical signals from the extracellular matrix in
normal and in pathological conditions are sensed by the integrin-
mediated adhesions, also known as focal adhesions
(Kanchanawong et al., 2010; Iskratsch et al., 2014). This
supramolecular complex physically connects the ECM to the
actin cytoskeleton through an intricate plaque of proteins (AKA
adhesome network) organized in three distinct layers: a signaling
layer composed of transmembrane integrins and adaptor proteins
(e.g., paxillin), an intermediate force-transduction layer with
mechanotransduction molecules (i.e., talin, vinculin) and
signaling molecules (e.g., FAK, Src, PI3K), and, finally, an
actin-regulatory layer with actin and actin linker proteins (e.g.,
filamin, α-actinin) (Kanchanawong et al., 2010; Xia et al., 2019).
Mature focal adhesions are highly integrated with the
cytoskeleton, as suggested by their presence at the anchor
points of actin stress fibers. As such, they are instrumental in
transmitting forces internally generated by the actomyosin
network to the ECM, and vice versa (Burridge and Guilluy,
2016). Furthermore, focal adhesion assembly normally occurs
in actin-rich regions, where clusters of integrins are delivered
together by actin polymerization driven by actin retrograde flow
(Oakes and Gardel, 2014). Interaction between integrin
heterodimers (α and β) and ECM proteins initiates tension-
induced conformational change in integrin cytoplasmic tails
with consequent activation of the dimer and its engagement
with talin and paxillin (Shattil et al., 2010). The increased
tension prompts recruitment of proteins of the signaling layer
(e.g., FAK, Src etc.) that, in turn, start the signaling cascade
leading to actin polymerization and to the strengthening and
growth of the adhesion (Iskratsch et al., 2014). Such a process of
conversion of the extracellular mechanical stimuli into
biochemical signals (mechanotransduction) is strongly related
to several stress responses, including autophagy. One of the first
pieces of evidence reporting the bidirectional connection between
focal adhesion and autophagy comes from studies on hepatocytes’
osmosensing (Dahl et al., 2003). In this model, integrins have
been shown to mediate the activation of Src kinase when
anchorage to the extracellular matrix and polarity of
hepatocyte was preserved. This interaction triggers the
activation of p38MAPK and Erk-1/Erk-2, promoting
autophagy and proteolysis (Dahl et al., 2003). This study, was
the first that suggested a relation between integrins signaling and
autophagic proteolysis, which was then corroborated by more
recent studies thatidentified additionaldownstream effectors of

the integrin-dependent control of autophagy (Vlahakis and
Debnath, 2017). In particular, simply providing detached cells
with a laminin-rich ECM, re-establishing cell-ECM contact,
abolishes autophagy; this effect is reversed when integrin β1
are blocked by using a specific antibody thus inhibiting the
FAK and ILK (Integrin Linked Kinase) signaling cascade.
Decrease of mechanical forces at the FA, due to detachment
from ECM or changes in substrate rheology, leads to dissociation
of FAK from integrin and FA (Martino et al., 2018). Soluble FAK
can phosphorylate and activate mTORC2 and consequently
initiate autophagy (Case et al., 2011). Furthermore, following
cell detachment, integrin β1 and receptor tyrosine kinase c-Met
are removed from the cell membrane and recruited to LC3
autophagic membranes (Barrow-McGee et al., 2016). The pool
of internalized integrin β1 prompts the c-Met dependent
phosphorylation and consecutive activation of ERK1/2, that
allows for resistance to anoikis (a programmed cell death
occurring upon cell detachment from the ECM (Barrow-
McGee et al., 2016)). The activation of autophagy mediated by
integrin detachment from ECM, could be thought as a failsafe
mechanism to delay the onset of apoptosis and allow cell
adaptation and survival (Lock and Debnath, 2008), (Vlahakis
and Debnath, 2017), (Anlaş and Nelson, 2020). Unfortunately,
this autophagy-mediated survival mechanism could also aid
cancer onset and tumor progression (Buchheit et al., 2014).

On the other hand, it has been demonstrated that autophagy
plays a crucial role in regulating focal adhesion dynamics. During
cell migration, FAs undergo continuous assembling and
disassembling cycles that depend on tension and
phosphorylation, which is partially mediated by autophagy.
For instance, autophagy targets integrin β1 during nutrient
starvation (Vlahakis and Debnath, 2017) regulating FA
dynamics and promoting their turnover (Sharifi et al., 2016).
This occurs via different pathways involving LC3 and autophagy
receptors that target specific FA components such as the selective
autophagy cargo adaptor NBR1 that can bind to a variety of FA
proteins (i.e., vinculin, FAK, paxillin, and zyxin), and recruits
LC3-containing autophagosomes to FAs (Chang et al., 2017),
(Kenific and Debnath, 2016). In addition, once phosphorylated
by Src, paxillin is also targeted by LC3-containing-
autophagosomes via its direct association with LC3. Finally,
active Src can be targeted by the cargo adaptor, Cbl, which
recruits autophagosomes to FA for Src degradation (Chang
et al., 2017; Cecconi, 2012). An interesting venue of interplay
between FAs and autophagy could also involve regulation of actin
contractility and cytoskeletal dynamics. Autophagy can alter
these processes by specifically degrading RhoA via the
autophagic receptor p62/SQSTM1 (Bjørkøy et al., 2009).

4 CELL-CELL ADHESIONS AND
AUTOPHAGY

Besides the adhesion between cells and ECM, integrity,
homeostasis and dynamics of cells and tissues are regulated by
physical interaction between neighboring cells. Despite the
variety of adhesion complexes mediating adhesion and
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communication between neighboring cells, in this minireview we
will focus on adherens junctions (AJs) because of their role as
mechanotransducers (Angulo-Urarte et al., 2020). AJs, also
known as cadherin-mediated adhesion, mediate force
transduction between cells by specialized transmembrane
receptors (i.e., cadherins) that are connected to the
cytoskeleton via a protein complex termed the cadhesome
network (Zaidel-Bar, 2013). Superresolution microscopy
experiments demonstrated that AJs share remarkable
similarities with FAs, including a multilayered architecture
(Kanchanawong et al., 2010; Bertocchi et al., 2017) with a
signaling layer composed by cadherin, β-catenin, α-catenin,
p120-catenin, a force transduction layer where vinculin, zyxin
and VASP are and an actin regulatory layer with actin, α-actinin,
and eplins (Bertocchi et al., 2017). Due to these similarities, one
could expect that a comparable bidirectional control between
autophagy and adhesions could be found. However, this is only
partially true, and substantial investigations unveiling these
interactions are still missing. It has been observed that
autophagy-dependent survival was promoted in vascular
smooth muscle cells following T-cadherin upregulation and
activation of MEK1/2-Erk1/2 (Kyriakakis et al., 2017).
Furthermore, it has been demonstrated that force application
to E-cadherin adhesion, prompts autophagy through activation of
Liver Kinase B1 (LKB1), which recruits AMPK at the site of the
AJs (Bays et al., 2017). Similarly to what is observed for FAs,
autophagy machinery also contributes to AJs turnover. In
particular, it has been observed that in breast cancer,
E-cadherin physically interacts with p62/SQSTM1 to mediate
LC3 targeting and consequent delivery to LC3-containing
autophagosomes (Damiano et al., 2020; Santarosa and
Maestro, 2021). Additionally, LC3 has been found to directly
interact with β-catenin to target its degradation (Petherick et al.,
2013). Autophagy has been reported to degrade transcription
factors SNAIL and SLUG, which control E-to N-cadherin switch
during Epithelial to Mesenchymal Transition (EMT) process, via
binding to the autophagy adaptor p62/SQSTM1 (Bertrand et al.,

2015). This results in reduced migration and invasion of cancer
cells (i.e. glioblastoma) and leads to reversing EMT. This EMT
modulatory role of autophagy has been corroborated by the
observation that its deficiency or suppression enhance cell
migration, invasion, and proliferation, potentially due to the
stabilization of transcription factor Twist1 by p62/SQSTM1
(Qiang and He, 2014). However additional sets of evidence
support the opposing view that inhibition of autophagy (either
chemically, or by silencing of core autophagy genes such as
Beclin1 or ATG7) could foster the expression of epithelial
markers, whereas its induction could lead to activation of
SNAIL transcription factor and consequently EMT (Chen
et al., 2019). Thus, lack of sufficient body of evidence leaves
open to debate the effective role and actual importance of
autophagy in maintaining tissue homeostasis and in
regulating EMT.

5 YES-ASSOCIATED PROTEIN/
TRANSCRIPTIONAL CO-ACTIVATOR WITH
PDZ-BINDING MOTIF MECHANICAL
RESPONSE AND AUTOPHAGY

Yes-associated protein (YAP) and the transcriptional co-activator
with PDZ-binding Motif (TAZ) are proto-oncogenes that can
modulate gene expression in response to changes of the
mechanical environment (Sudol, 1994; Low et al., 2014).
Piccolo and co-workers have been the pioners in the study of
YAP/TAZ mechanosensing mechanisms and demonstrated
changes in localization of these two transcriptional activators,
depending on mechanical forces. In particular, they have shown a
differential translocation in and out of the nucleus (and
consequent activation or inactivation), depending on
extracellular matrix stiffness, cell density and cell geometry
(Dupont et al., 2011). E-cadherin/catenin complex and
integrins function as an upstream regulators of the Hippo

FIGURE1 | (A) Schematic representation of the known interplays between the mechanosensitive cell adhesions complexes and autophagy. Red and blue texts on
white background indicate protein showing a negative or positive regulation of autophagy, respectively. Text in black on white background indicates proteins of the
autophagy machinery targeting specific disassembly and recycling of Adherens Junction, Focal Adhesion, or Extracellular Matrix. (B). Schematic representation of
regulatory interaction involving cell mechanics, Autophagy and YAP/TAZ mechano-signaling. Black on white background text indicates the main proteins involved
in the regulatory feedbacks.
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signaling pathway in signal transduction in mammalian cells
(Kim et al., 2011; Kim and Gumbiner, 2015; Short, 2015; Block
et al., 2020); it has been shown that in subconfluent epithelial cell
cultures or when cells are seeded on a stiff ECM, YAP and TAZ
remain in the nucleus where they promote cell proliferation,
through their interaction with TEAD family of transcription
factors (Aragona et al., 2013; Panciera et al., 2017). In high-
cell density population, where contact between cells is preserved,
or when cells are on a soft substrate, YAP and TAZ are not active
and localize in the cytoplasm (Zhao et al., 2007). This is part of a
self-defending mechanism that allows noncancerous cells to
stop proliferating when they contact one another. Such contact
inhibition appears deregulated in cancer cells, that bypass the
command from cell adhesions and keep on proliferating (Pavel
et al., 2018). In different cell types, it has been shown a
contrasting effect on YAP/TAZ signaling in response to
alteration of autophagy; some studies correlate defect of
autophagy with inhibition of YAP/TAZ, failure in
modulation of myosin-II gene expression and consecuent
loss of F-actin stress fibers. In a feedback loop this loss of
F-actin fibers leads to impairment in autophagosome formation
by altering the amount of ATG16L1 puncta and by reduced co-
localization with ATG9A-LC3 (Pavel et al., 2018). Low cell
density induced YAP/TAZ activation in the nucleus, results in
actin stress fibers formation and autophagosomes assembly.
These results suggest a feedback loop between autophagy and
Hyppo pathway.

On the other hand, other groups reported that autophagy
alteration, by Beclin silencing or by cloroquine treatment, can
induce expression of YAP in cancer cell lines (from lung,
breast and colon) (Wang et al., 2019). These opposite
responses in different cell types seems to be related to α-
catenins levels (Pavel et al., 2021). Interestingly, α-catenins
are common key signalling effectors between autophagy and
Hyppo pathway; they are known to interact with LC3 and they
can inhibit YAP/TAZ signaling. When α-catenins levels are
low [i.e., in cancer cells from lung, breast, colon (Sun et al.,
2014)], YAP/TAZ activity is increased upon autophagy
inhibition, while, YAP/TAZ activity is reduced by
autophagy when α-catenin levels are high (Pavel et al.,
2021). Viceversa, inhibition of the Hyppo pathway, in
response to the physical properties of the cell
microenvironment (high cell density) (Pavel et al., 2018)
reduces the efficiency of the autophagic flux (Totaro et al.,
2019). At last, mTORC1 regulates YAP by mediating its
autophagic degradation (Liang et al., 2014), further linking
cellular nutrient status to YAP activity (Pocaterra et al., 2020),
and strenghtening the hypothesis for crosstalk between the
transcriptional coactivatorsYAP/TAZ and autophagy.

6 CONCLUSION

This minireview highlights a novel and exciting field of study, the
Mechanoautophagy, that aims at understanding how autophagy
regulates mechanotransduction machinery and mechanical
processes of the cells regulate autophagy. While literature on
this topic is in its infancy, this interplay plays an undoubtedly
important role during cancer transformation where cancer cells
manage to survive in a mechanical microenvironment that in
normal conditions would lead to apoptotic clearance. For
instance, cancer cells manage to survive in stiff and
unstructured ECM, under growing pressure coming from
cellular crowding where both cell-substrate and cell-cell
adhesions are topologically misconfigured and subject to
abnormal forces. Interestingly, escape from programmed cell
death is a cancer hallmark that heavily rely on the aid of
autophagy. Even more interesting, it has been reported that
autophagy provides a mechanism to escape anoikis, i.e., a
specific type of apoptosis that lead to clearance of adherence
cells lacking proper connection to the ECM. Thus, autophagy is
clearly involved in a large number of mechanically related cellular
functions, which we only have started to appreciate. Additionally,
while we have only discussed the role of mechanoautophagy in
cancer transformation, there is a whole plethora of physio/
pathological contexts where the study of mechanoautophagy is
needed, such as development and/or obesity where the study of
autophagy andmechanical forces per se, but not their synergy, has
been considered. Thanks to technological innovations in creating
biomimetic substrates, high temporal and special resolution
microscopy as wells the adoption of interdisciplinary
approaches, this new field of study could provide fundamental
knowledge for a variety of medical conditions. We are thus
convinced that better understanding of mechanoautophagy
will open the possibility for novel therapeutic interventions
targeting for mechanical pathways.
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