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A B S T R A C T   

Adults with spinal cord injury (SCI), a destructive neurological injury, have a significantly higher 
incidence of osteoarthritis (OA), a highly prevalent chronic joint disorder. This study aimed to 
dissect the neuroimmune-related regulatory mechanisms of SCI and OA using bioinformatics 
analysis. Using microarray data from the Gene Expression Omnibus database, differentially 
expressed genes (DEGs) were screened between SCI and sham samples and between OA and 
control samples. Common DEGs were used to construct a protein-protein interaction (PPI) 
network. Weighted gene co-expression network analysis (WGCNA) was used to mine SCI- and OA- 
related modules. Shared miRNAs were identified, and target genes were predicted using the 
Human MicroRNA Disease Database (HMDD) database. A miRNA-gene-pathway regulatory 
network was constructed with overlapping genes, miRNAs, and significantly enriched pathways. 
Finally, the expression of the identified genes and miRNAs was verified using RT-qPCR. In both 
the SCI and OA groups, 185 common DEGs were identified, and three hub clusters were obtained 
from the PPI network. WGCNA revealed three SCI-related modules and two OA-related modules. 
There were 43 overlapping genes between the PPI network clusters and the WGCNA network 
modules. Seventeen miRNAs shared between patients with SCI and OA were identified. A regu
latory network consisting of five genes, six miRNAs, and six signaling pathways was constructed. 
Upregulation of CD44, TGFBR1, CCR5, and IGF1, while lower levels of miR-125b-5p, miR-130a- 
3p, miR-16-5p, miR-204-5p, and miR-204-3p in both SCI and OA were successfully verified using 
RT-qPCR. Our study suggests that a miRNA-gene-pathway network is implicated in the 
neuroimmune-related regulatory mechanisms of SCI and OA. CD44, TGFBR1, CCR5, and IGF1, 
and their related miRNAs (miR-125b-5p, miR-130a-3p, miR-16-5p, miR-204-5p, and miR-204-3p) 
may serve as promising biomarkers and candidate therapeutic targets for SCI and OA.  
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1. Introduction 

Spinal cord injury (SCI) is a devastating and intractable neurological disease that leads to physiological dysfunction below the 
damaged segments [1]. SCI has increased global incidence in recent years and remains a significant source of enormous economic 
burden on society [2]. Osteoarthritis (OA) is a highly prevalent musculoskeletal disease that damages the joint cartilage and affects 
other joint tissues [3]. It negatively affects people’s daily lives and is responsible for significant socioeconomic costs [4]. There is 
evidence that the incidence and risk of OA are significantly elevated in adults with SCI [5]. SCI leads to bone loss, low bone mineral 
density, and muscle atrophy [6,7]. Metabolic dysfunction induced by SCI exacerbates bone loss, thereby increasing the risk of bone 
fractures and promoting abnormal ossification [8]. Additionally, joint contractures are aggravated by motor dysfunction and 
decreased plasticity after SCI [9]. All of these musculoskeletal disorders contribute to the high risk and incidence of OA in the pop
ulation with SCI. 

Neuroinflammation plays a key role in the pathophysiology of SCI, involving activation of various inflammatory cell types, such as 
macrophages, neutrophils, and lymphocytes, and release of inflammatory cytokines, such as tumor necrosis factor (TNF)-α and 
interleukin (IL)-6 [10]. Inflammation is also a well-established cause of OA, resulting in an imbalance between anabolic and katabolic 
processes [11,12]. Moreover, a recent study provided evidence that communication between circulating immune cells (e.g., macro
phages, T cells, and neutrophils) and neurons is critical for pain-related diseases such as SCI and OA [13]. It has been reported that the 
expression of pro-inflammatory cytokines (IL-1β and IL-6) could be upregulated in SCI or OA, while the levels of anti-inflammatory 
cytokines (IL-10 and tumor growth factor-β) were decreased [14,15]. These inflammation- and immune-related mechanisms may 
explain the high susceptibility of SCI to OA. Deciphering the underlying mechanisms can help explore novel therapeutic possibilities 
for patients with concurrent SCI and OA. 

Weighted gene co-expression network analysis (WGCNA) is a widely used method for constructing functional networks to inves
tigate the correlation between gene expression and clinical data at an unbiased system level [16]. It allows the simultaneous iden
tification of many hub genes and provides a solution for the complicated pathogenesis of diseases [17]. WGCNA identified common 
hub genes and signaling pathways between Alzheimer’s disease and type 2 diabetes mellitus [18] and between systemic lupus ery
thematosus and pulmonary arterial hypertension [19]. Li et al. [20] identified eight immune-related core genes (FZD7, IRAK3, 
KDELR3, PHC2, RHOB, RNF170, SOX13, and ZKSCAN4) that could be used to diagnose patients with OA and metabolic syndrome. 
Another study identified B2m, Itgb5, and Vav1 as immune-related hub genes in SCI and found that B2m and Itgb5 were located in 
microglia, whereas Vav1 was mainly expressed in macrophages [21]. Furthermore, molecular docking showed that the proteins 
corresponding to B2m, Itgb5, and Vav1 could accurately bind to decitabine, as well as pro-inflammatory factor (TNF-α and IL-1β) levels 
were decreased, and anti-inflammatory factor (IL-4, and IL-10) levels were increased in decitabine-treated SCI mice. However, the 
neuroimmune-related regulatory mechanisms underlying SCI and OA remain unclear. 

SCI is divided into acute, middle, and late stages. Studies have shown that after SCI, most of the dynamic changes occur three days 
after injury; by day 14, a second wave of microglia activation appears, accompanied by changes in various cell types, including 
neurons; by day 38, the dominant cell types still deviate greatly from the undamaged state, showing long-term changes [18,19]. OA is a 
chronic degenerative disease that can be divided into four stages: pre-stage, early stage, advanced stage, and late stage. Many reports 
have shown that after two weeks of injury, the OA rat model is in the early stages of OA [20–22]. In this study, to eliminate analytical 
biases caused by different time points, we chose a specific time point of two weeks for analysis. Combining transcriptome and clinical 
data, we identified common differentially expressed genes (DEGs) in SCI and OA and built a protein-protein interaction (PPI) network. 
Using the WGCNA network, we mined SCI-related- and OA-related modules and then identified the shared signature genes. The 
miRNAs shared between SCI and OA were extracted and used to construct a miRNA-gene pathway network, and the identified DEGs 
were used to establish a transcriptional factor regulatory network. The identified genes were used for the immune analysis. Finally, the 
expression of the identified key signature genes was validated using independent datasets and tissue samples. 

2. Materials and methods 

2.1. Data download and preprocessing 

From the National Center for Biotechnology Information Gene Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih. 
gov/geo/), we downloaded the GSE45006 [22] and GSE20907 [23] datasets of SCI (GPL1355[Rat230_2] Affymetrix Rat Genome 
230 2.0 Array platform). In GSE45006, we selected four spinal cord samples harvested from rats two weeks after SCI and four sham 
samples as the discovery cohort. In GSE20907, we selected two spinal cord samples from rats with two weeks of SCI and four sham 
samples as the validation cohort. 

For OA, we obtained GSE103416 [24] (GPL17117[RaGene-2_0-st] Affymetrix Rat Gene 2.0 ST Array [transcript (gene) version]) 
and GSE42295 (GPL1355[Rat230_2] Affymetrix Rat Genome 230 2.0 Array). We focused on the OA samples harvested at two weeks in 
accordance with the SCI samples. Therefore, we selected four OA tissue samples and four control samples from GSE103416 and three 
OA tissue samples and three control samples from GSE42295. These were used as discovery and validation cohorts for OA, 
respectively. 
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2.2. Screening significant DEGs in SCI and OA 

Using limma [25] package in R software (version3.34.7, https://bioconductor. org/packages/release/bioc/html/limma.html), 
with a false discovery rate (FDR) < 0.05 and |Log2 fold change (FC)| > 1 as the cutoff, we screened DEGs between SCI and sham 
samples, and between OA and control samples. Hierarchical clustering analysis was performed for all identified DEGs using the 
pheatmap package [26] (version 1.0.8) in R. The common DEGs shared by SCI and OA were subjected to subsequent gene ontology 
(GO) [27] function and Kyoto Encyclopedia of Genes and Genomes (KEGG) [28] pathway enrichment analysis (FDR <0.05) using the 
Database for Annotation, Visualization, and Integrated Discovery software (version 6.8). 

2.3. PPI network analysis 

To investigate the interactions between shared DEGs in SCI and OA, we constructed a PPI network using STRING [29] (version 
11.0). The confidence score cutoff was set at 0.4. The topological properties of the network were analyzed using the CentiScaPe plugin 
[30] (version 2.2) of the Cytoscape [31] software (version 3.9.0), including the average shortest path length, betweenness centrality (a 
parameter of network strength), closeness centrality (closeness of a node to other nodes), and degree (the number of interactions with a 
specific node). Nodes with the highest degrees were defined as hub genes. Network modules (degree cutoff = 2, node score cutoff =
0.2, and K-core = 2) were mined using the Mcode plugin (version 1.4.2). The significant GO biological processes of these modules (p <
0.05) were determined using the BINGO plugin (version 2.44). Genes in the identified network modules were defined using gene set 1. 

2.4. WGCNA network analysis 

Using the WGCNA package (version 1.61) in R, WGCNA [32] was applied to explore the gene co-expression modules related to SCI 
and OA in the GSE45006 and GSE103416 datasets, respectively. Specifically, appropriate soft power β of the adjacency matrix was 
determined according to scale-free network property. The soft power β was set to 12 and 10 for GSE45006 and GSE103416, respec
tively. The topological overlap matrix (TOM) and the corresponding dissimilarity (1-TOM) were then calculated. A hierarchical 
clustering dendrogram was further constructed, and genes with similar expression were clustered into modules with the cutoff of 
module size ≥100 and cutHeight = 0.995. 

The selected SCI-related- and OA-related modules then overlapped. The intersection of the overlapping module genes (gene set 2) 
and shared DEGs was defined as gene set 3 and used in subsequent analyses. 

2.5. The miRNA-target gene network analysis 

Human MicroRNA Disease Database (HMDD, version 3.2; http://www.cuilab. cn/hmdd) contained many miRNA-disease associ
ation entries [33]. We downloaded SCI-related- and OA-related miRNAs from the HMDD database and identified the common miRNAs 
shared by both diseases. Target genes of common miRNAs were predicted using the miRWalk database [34] (version 3.0). Subse
quently, the genes shared between the predicted target genes and gene set 3 were selected and combined with the shared miRNAs to 
construct an miRNA-target gene network. 

KEGG pathway enrichment analysis was performed for the genes in the miRNA-target gene network to identify significantly 
enriched signaling pathways (p < 0.05). The mirPathv3 database is dedicated to deciphering the regulatory roles of miRNAs and 
rendering KEGG pathway annotations of miRNAs [35]. We identified significant KEGG signaling pathways regulated by these miRNAs 
contained in the miRNA-target gene network. Finally, overlapping signaling pathways for genes and miRNAs in the network were 
selected to construct regulatory networks. 

2.6. Analysis of the transcriptional factors (TFs) regulatory network and correlation between genes and immune cells 

The database of Transcriptional Regulatory Relationships Unraveled by Sentence-based Text mining (https://www.grnpedia.org/ 
trrust/) was used to download all TFs and the connection information of the regulated target genes, which were retained to construct a 
regulatory network. 

In addition, the Tumor Immune Estimation Resource (https://cistrome.shinyapps.io/timer/) was used to evaluate the proportion of 
immune cells based on the GSE45006 and GSE103416 datasets, and the Kruskal-Wallis test was employed to compare the distribution 
differences in the proportion of each immune cell. Next, the correlation between the significantly different distributions of immune 
cells and the expression levels of the five important genes was analyzed. 

2.7. Expression validation of common key genes in validation sets 

We analyzed the expression levels of common key genes in SCI and sham samples from the GSE45006 and GSE20907 datasets, 
respectively. The expression levels of key genes in the OA and control samples were compared using the GSE103416 and GSE42295 
datasets, respectively. Comparisons between groups were performed using Student’s t-test. 
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2.8. Real-time quantitative PCR (RT-qPCR) 

The expression levels of the five identified DEGs (CD44, TGFBR1, CCR5, CLEC7A, and IGF1) were significantly associated with SCI 
and OA, and the levels of their related miRNAs (miR-125b-5p, miR-130a-3p, miR-16-5p, miR-204-5p, miR-204-3p, and hsa-miR-30b- 
3p) were verified in tissue samples using RT-qPCR. The SCI rat model was constructed as previously reported [36,37], and the OA rat 
model was established based on our previous research [38]. Rat thoracic spinal cord samples from the control and SCI groups (n = 5 
per group) and rat knee joint synovium samples from the control and OA groups (n = 5 per group) were collected. Total RNA was 
extracted from all the samples using the RNAiso Plus kit (Trizol, Takara, Beijing, China) according to the instructions of the manu
facturer and then was reverse transcribed into cDNA using the PrimeScript™ II 1st Strand cDNA synthesis kit (Takara). The RT-qPCR 
reaction was initiated at 95 ◦C for 3 min, followed by 40 cycles of 95 ◦C for 10 s and 60 ◦C for 30 s. The sequences of all primers are 
listed in Table 1. The levels of all the miRNAs were measured using the stem-loop method, with U6 serving as the reference gene. 
GAPDH was used as a housekeeping gene to calculate the DEGs. The levels of related DEGs and miRNAs were all analyzed using the 
2− ΔΔCt method. All animal experiments were conducted in accordance with the National Medical Advisory Committee guidelines and 
approved by the Animal Care and Use Committee of Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of 
Medicine. 

3. Results 

3.1. A total of 185 common DEGs identified in SCI and OA 

The overall analytical flowchart of the study is shown in Fig. 1. We paired GSE45006 and GSE103416 as the discovery cohorts for 
SCI and OA, respectively. In GSE45006, 1475 DEGs (FDR < 0.05, |Log2FC| > 1) were identified in SCI samples compared with sham 
samples, including 557 downregulated and 918 upregulated DEGs (Fig. 2A). Using the GSE103416 data, 1164 DEGs (FDR < 0.05, | 
Log2FC| > 1) were identified in OA samples relative to control samples, consisting of 557 downregulated and 918 upregulated DEGs 
(Fig. 2B). 

As shown in the Venn diagram (Fig. 2C), SCI and OA shared 185 common DEGs, including 52 downregulated and 133 upregulated 
DEGs. These common DEGs were significantly enriched in 31 GO biological processes and 16 KEGG signaling pathways. The GO 

Table 1 
The sequences of all primers.  

Primer Sequences (5’-3’) 

rat-U6 RT: CGCTTCACGAATTTGCGTGTCAT 
F: GCTTCGGCAGCACATATACTAAAAT 
R: CGCTTCACGAATTTGCGTGTCAT 

rno-miR-125b-5p RT: GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACT 
GGATACGACTCACAA 
F: TCCCTGAGACCCTAAC 

rno-miR-130a-3p RT: GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACT 
GGATACGACATGCCC 
F: GCGCCAGTGCAATGTTAAAA 

rno-miR-16-5p RT: GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACT 
GGATACGACCGCCAA 
F: GCGCTAGCAGCACGTAAATA 

rno-miR-204-5p RT: GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACT 
GGATACGACAGGCAT 
F: GCCGTTCCCTTTGTCATCCT 

rno-miR-204-3p RT: GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACT 
GGATACGACAACGTC 
F: ATGCTGGGAAGGCAAAGG 

rno-miR-30b-3p RT: GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACT 
GGATACGACGACGTA 
F: GCCCTGGGATGTGGATGTT 

Universal downstream primer GTGCAGGGTCCGAGGT 
GAPDH F: AGACAGCCGCATCTTCTTGT 

R: CTTGCCGTGGGTAGAGTCAT 
CD44 F: GATGCAAGAAGAGGTGGAAGTC 

R: CGTTGGAGTCAGTAGCAAGAGTC 
TGFBR1 F: GTCTCTGCTTTGTCTCAGTCACC 

R: AAGGTCCTGTAGTTGGGAGTTC 
CCR5 F: ACCCCTACTTGTCATGGTCATC 

R: GTCATCCCAAGAGTCTCTGTCAC 
CLEC7A F: GTGCTTGCTCACAGTAGTGGTC 

R: TAGTTCTGCCCTTGCCTGTAGT 
IGF1 F: CACATCTCTTCTACCTGGCACTC 

R: GTACATCTCCAGCCTCCTCAGAT  
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biological processes mainly contained “extracellular matrix organization,” “cell adhesion,” “response to hypoxia,” “inflammatory 
response,” “response to lipopolysaccharide,” “positive regulation of apoptotic process,” and “positive regulation of cell migration,” 
which included 13 (MMP2, MMP14, POSTN, etc.), 16 (CX3CR1, POSTN, B4GALT1, etc.), 14 (POSTN, BNIP3, MMP2, etc.), 14 (CX3CR1, 
STK39, IL18, etc.), 12 (CASP3, CCL2, LY96, etc.), 13 (B4GALT1, TNFRSF12A, MMP2, etc.), and 12 genes (MMP14, GPNMB, MYOC, 
etc.), respectively (Table 2). In addition, KEGG pathways showed that these identified DEGs were significantly enriched in “Toll-like 
receptor signaling pathway,” “TNF signaling pathway,” “NF-kappa B signaling pathway,” “chemokine signaling pathway,” “phag
osome,” and “cytokine-cytokine receptor interaction,” which contained six genes (CTSK, CCL4, CCL3, LY96, FOS, and LBP), six genes 
(MMP14, CASP3, BCL3, CCL2, FOS, and JUNB), five genes (PLAU, CCL4, LY96, LBP, and GADD45G), seven genes (CX3CR1, CCL7, 
CCL4, CCL3, CCL2, CCR5, and CXCL14), nine genes (SEC61A1, TUBB6, CLEC7A, etc.), and 11 genes (CX3CR1, TNFRSF12A, CCL7, etc.), 
respectively (Table 2). 

3.2. Three modules extracted from the PPI network 

We obtained 731 PPIs (confidence score >0.4) for 185 common DEGs from the STRING database and used them to construct a PPI 
network. As shown in Fig. 3A, the network included 169 nodes. The topological parameters of the top 20 nodes are shown in Table 3; 
Ccl2 (degree = 42), Timp1 (degree = 41), Mmp2 (degree = 38), Igf (degree = 37), and Cd44 (degree = 36) had the highest degrees. 

Subsequently, we obtained three network modules (degree cutoff = 2, node score cutoff = 0.2, and K-core = 2) by applying the 
Mcode plugin, which contained 44 DEGs (gene set 1). Module 1 had 30 upregulated genes, module 2 had six upregulated genes and one 
downregulated gene, and module 3 had 10 upregulated genes (Fig. 3B). The three modules were significantly enriched in 30, 27, and 
55 GO biological processes, respectively. 

3.3. SCI and OA-related WGCNA network modules 

WGCNA network analysis was conducted to cluster genes into modules to identify SCI- and OA-related modules using GSE45006 
and GSE103416, respectively. Consequently, eight SCI-related-and seven OA-related modules were obtained. Subsequently, with a 
correlation coefficient (r) > 0.3 as the cutoff, we retained the brown module (r = 0.55, p = 0), turquoise module (r = 0.96, p = 0), and 
yellow module (r = 0.55, p = 0) for SCI, and turquoise module (r = 0.97, p = 0) and green module (r = 0.31, p = 1e-126) for OA (Fig. 4A 
and B). As shown in Fig. 4C and 634 common signature genes were shared by positively correlated modules of SCI and OA (gene set 2). 
Consequently, by considering the intersection of gene sets 1 and 2, we obtained 43 overlapping genes (gene set 3; Table 4). 

3.4. Construction of common miRNA-target gene-pathway network 

From the HMDD database (version 3.2), we extracted 44 SCI-related and 61 OA-related miRNAs, 17 of which were shared between 

Fig. 1. Overall study design.  
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both diseases. The target genes of each shared miRNA were predicted using the miRWalk database (version 3.0). Overlapping genes 
between the predicted target genes and gene set 3 were retained. Consequently, we acquired eight miRNA-target gene pairs, including 
six miRNAs (miR-125b-5p, miR-130a-3p, miR-16-5p, miR-204-5p, miR-204-3p, and miR-30b-3p) and five genes (cluster of 
differentiation-44 (CD44), transforming growth factor-beta receptor 1 (TGFBR1), CC chemokine receptor 5 (CCR5), C-type lectin 
domain family 7 member A (CLEC7A), and insulin-like growth factor 1 (IGF1)). 

Fig. 2. Identification of common differentially expressed genes (DEGs) between SCI and OA. (A) Volcano plot and heatmaps of DEGs in SCI (A) and 
OA (B). (C) Venn diagram of the common upregulated and downregulated genes between SCI and OA. Count represents the number of genes. 
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Table 2 
Significant GO biological processes and KEGG signaling pathways for the common DEGs in SCI and OA.  

Category Term Count PValue FDR Genes 

GOTERM_BP_DIRECT GO:0030198~extracellular matrix 
organization 

13 8.60E- 
08 

1.40E- 
04 

POSTN, B4GALT1, MMP2, TNFRSF11B, MMP12, 
LGALS3, MMP14, COL5A1, ADAMTS1, COL5A3, 
COL5A2, BCL3, MMP19 

GOTERM_BP_DIRECT GO:0007155~cell adhesion 16 1.31E- 
06 

8.99E- 
04 

CX3CR1, POSTN, B4GALT1, TNFRSF12A, PRKCE, 
COL12A1, LSAMP, THBS2, THBS4, VCAN, GPNMB, 
COL5A1, PDPN, SDC1, MFGE8, CD44 

GOTERM_BP_DIRECT GO:0031663~lipopolysaccharide-mediated 
signaling pathway 

7 1.65E- 
06 

8.99E- 
04 

PRKCE, CD180, CCL3, IL18, CCL2, LY96, LBP 

GOTERM_BP_DIRECT GO:0001666~response to hypoxia 14 2.67E- 
06 

1.09E- 
03 

POSTN, BNIP3, MMP2, IL18, IGF1, HK2, TGFBR1, 
MMP12, MMP14, PLAU, CASP3, CCL2, HMOX1, 
SOX4 

GOTERM_BP_DIRECT GO:0048245~eosinophil chemotaxis 5 1.16E- 
05 

3.07E- 
03 

LGALS3, CCL7, CCL4, CCL3, CCL2 

GOTERM_BP_DIRECT GO:0048246~macrophage chemotaxis 5 1.16E- 
05 

3.07E- 
03 

CX3CR1, LGALS3, MMP2, CCL3, CCL2 

GOTERM_BP_DIRECT GO:0006954~inflammatory response 14 1.37E- 
05 

3.07E- 
03 

CX3CR1, STK39, IL18, TCIRG1, CCL7, PDPN, CCL4, 
CCL3, SDC1, CCL2, OLR1, S1PR3, CCR5, CD44 

GOTERM_BP_DIRECT GO:2000503~positive regulation of natural 
killer cell chemotaxis 

4 1.50E- 
05 

3.07E- 
03 

CCL7, CCL4, CCL3, CXCL14 

GOTERM_BP_DIRECT GO:0061760~antifungal innate immune 
response 

5 2.41E- 
05 

4.38E- 
03 

CX3CR1, CLEC4A, CLEC4A1, CLEC4A3, CLEC7A 

GOTERM_BP_DIRECT GO:0032496~response to lipopolysaccharide 12 5.53E- 
05 

8.20E- 
03 

CASP3, CCL2, LY96, IGF1, FOS, LBP, CCR5, LITAF, 
LOXL1, TIMP4, SNCA, ABCG2 

GOTERM_BP_DIRECT GO:0030335~positive regulation of cell 
migration 

12 5.53E- 
05 

8.20E- 
03 

MMP14, GPNMB, MYOC, CCL7, CLEC7A, PLAU, 
MMP2, PDPN, ITGAX, CCL3, IGF1, TGFBR1 

GOTERM_BP_DIRECT GO:0071560~cellular response to 
transforming growth factor beta stimulus 

8 6.34E- 
05 

8.62E- 
03 

CX3CR1, POSTN, CTSK, PDE2A, FOS, CCR5, 
TGFBR1, RUNX1 

GOTERM_BP_DIRECT GO:0071222~cellular response to 
lipopolysaccharide 

12 8.60E- 
05 

1.08E- 
02 

CX3CR1, SBNO2, PLAU, CD180, PDE2A, IL18, CCL2, 
LY96, LBP, CCR5, CD68, LITAF 

GOTERM_BP_DIRECT GO:0032720~negative regulation of tumor 
necrosis factor production 

7 1.02E- 
04 

1.19E- 
02 

CLEC4A, CLEC4A3, GPNMB, BCL3, IGF1, LBP, 
LILRB4 

GOTERM_BP_DIRECT GO:0042542~response to hydrogen peroxide 7 1.17E- 
04 

1.26E- 
02 

GNAO1, NR4A3, MMP2, CASP3, OLR1, SDC1, 
HMOX1 

GOTERM_BP_DIRECT GO:0032760~positive regulation of tumor 
necrosis factor production 

8 1.23E- 
04 

1.26E- 
02 

CLEC7A, CCL4, CCL3, IL18, CCL2, LY96, LBP, CCR5 

GOTERM_BP_DIRECT GO:0030199~collagen fibril organization 6 1.50E- 
04 

1.44E- 
02 

COL5A1, LUM, COL5A2, SERPINH1, LOXL1, 
TGFBR1 

GOTERM_BP_DIRECT GO:0070098~chemokine-mediated signaling 
pathway 

6 1.93E- 
04 

1.66E- 
02 

CX3CR1, CCL7, CCL4, CCL3, CCL2, CCR5 

GOTERM_BP_DIRECT GO:0014070~response to organic cyclic 
compound 

12 2.02E- 
04 

1.66E- 
02 

MMP12, GNAO1, MMP14, LUM, CTSK, CASP3, 
SERPINH1, IGF1, FOS, JUNB, TGFBR1, CD44 

GOTERM_BP_DIRECT GO:0002548~monocyte chemotaxis 5 2.04E- 
04 

1.66E- 
02 

LGALS3, CCL7, CCL4, CCL3, CCL2 

GOTERM_BP_DIRECT GO:0030574~collagen catabolic process 5 2.31E- 
04 

1.79E- 
02 

MMP12, MMP14, MMP2, CTSK, MMP19 

GOTERM_BP_DIRECT GO:0043065~positive regulation of apoptotic 
process 

13 3.36E- 
04 

2.49E- 
02 

B4GALT1, TNFRSF12A, BNIP3, MMP2, IL18, 
TGFBR1, IGF2R, GADD45G, CASP3, HMOX1, CTSD, 
SOX4, GPLD1 

GOTERM_BP_DIRECT GO:0007568~aging 12 3.83E- 
04 

2.62E- 
02 

GNAO1, MMP2, CCL2, IGF1, FOS, TIMP1, CCR5, 
CD68, LITAF, TGFBR1, SNCA, ABCG2 

GOTERM_BP_DIRECT GO:0071356~cellular response to tumor 
necrosis factor 

9 3.85E- 
04 

2.62E- 
02 

POSTN, CCL7, CTSK, CCL4, CCL3, IL18, CCL2, FOS, 
CCR5 

GOTERM_BP_DIRECT GO:0001649~osteoblast differentiation 7 4.02E- 
04 

2.62E- 
02 

GPNMB, MYOC, CCL3, IL18, IGF1, JUNB, CTHRC1 

GOTERM_BP_DIRECT GO:0042060~wound healing 8 5.03E- 
04 

3.16E- 
02 

POSTN, B4GALT1, PLAU, CASP3, SDC1, IGF1, 
TIMP1, TSKU 

GOTERM_BP_DIRECT GO:0030593~neutrophil chemotaxis 6 6.41E- 
04 

3.87E- 
02 

LGALS3, CCL7, CCL4, CCL3, CCL2, LBP 

GOTERM_BP_DIRECT GO:0009612~response to mechanical stimulus 7 6.86E- 
04 

3.93E- 
02 

MMP14, POSTN, MMP2, CCL2, IGF1, FOS, JUNB 

GOTERM_BP_DIRECT GO:0055093~response to hyperoxia 5 7.07E- 
04 

3.93E- 
02 

PLAU, BNIP3, MMP2, PDPN, IL18 

GOTERM_BP_DIRECT GO:0006508~proteolysis 13 7.23E- 
04 

3.93E- 
02 

C1S, MMP2, PCOLCE, MMP12, MMP14, PLAU, 
ADAMTS1, CTSK, CASP3, MMP19, NRIP3, MASP1, 
CTSD 

GOTERM_BP_DIRECT GO:0001501~skeletal system development 7 7.52E- 
04 

3.95E- 
02 

LGALS3, MMP14, VCAN, COL5A2, TGFBR1, SOX4, 
RUNX1 

(continued on next page) 
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These DEGs were significantly enriched in six signaling pathways, whereas these miRNAs were significantly involved in 23 
signaling pathways (p < 0.05), according to the mirPathv3 database. Six overlapping signaling pathways, together with six miRNAs 
and five genes, were used to construct the miRNA-gene-pathway regulatory network, including the forkhead box O (FoxO) signaling 
pathway, proteoglycans in cancer, endocytosis, mitogen-activated protein kinase (MAPK) signaling pathway, cytokine-cytokine re
ceptor interaction, and cancer pathways (Fig. 5A). As shown in Fig. 5A, CD44 expression was regulated by miR-125b-5p, miR-16-5p, 
and miR-204-3p. Endocytosis and FoxO signaling pathways were significantly associated with all six miRNAs. These five genes are 
regarded as key common genes in SCI and OA. 

3.5. Establishment of TF regulatory network and immune analysis 

A total of 68 connection pairs were obtained in the TF regulatory network (Fig. 5B), and FOS and HMOX1 were linked with more 
TFs (including TRP3, ELK1, CREBBP, and NFE2L2) compared with the other DEGs. Based on this network, we observed that the TFs of 
SMARCA2 and TCF4 activated the expression of CD44 as well as ESR1 activated IGF1 expression, and HTATIP2 repressed the 
expression of IGF1 (Fig. 5B). 

After immune analysis, five types of immune cells were significantly infiltrated in SCI (p < 0.05), including B cells, CD4+ T cells, 
macrophages, neutrophils, and myeloid dendritic cells (mDCs); in OA, three types of immune cells were significantly infiltrated, 
including B cells, CD4+ T cells, and mDCs (p < 0.05, Fig. 5C). The shared significantly different distributions of immune cells between 
SCI and OA were B cells, CD4+ T cells, and mDCs, while macrophages and neutrophils were unique in SCI. The correlations between the 
five important DEGs and the significantly different distributions of immune cells in SCI and OA were calculated. In SCI, CCR5 was 
significantly negatively correlated with CD4+ T cells and macrophages (p < 0.05), whereas CD44, CLEC7A, IGF1, and TGFBR1 were all 
significantly positively correlated with the five types of immune cells with significantly different distributions (p < 0.05, Fig. 5D). In 
OA, the five important DEGs (CCR5, CD44, CLEC7A, IGF1, and TGFBR1) were significantly negatively associated with B cells and CD4+

T cells (p < 0.05), whereas all were positively associated with mDCs (p < 0.05, Fig. 5D). 

3.6. Verification of the identified DEGs in the validation datasets and rat tissue samples 

In the discovery cohorts (GSE45006 and GSE103416), we found that CD44, TGFBR1, CCR5, CLEC7A, and IGF1 were all significantly 
upregulated in both SCI and OA samples compared with control samples (p < 0.005, Fig. 6A). The expression of the five identified 
DEGs was analyzed in validation cohorts (GSE20907 and GSE42295) and rat tissue samples. In GSE20907, the CCR5 and TGFBR1 
expression was significantly upregulated in SCI compared with the control samples (p < 0.05), while in GSE42295, the expression 

Table 2 (continued ) 

Category Term Count PValue FDR Genes 

KEGG_PATHWAY rno04060:Cytokine-cytokine receptor 
interaction 

11 1.08E- 
06 

8.72E- 
04 

CX3CR1, TNFRSF12A, CCL7, CCL4, CCL3, IL18, 
CCL2, TNFRSF11B, CCR5, CXCL14, TGFBR1 

KEGG_PATHWAY rno04145:Phagosome 9 1.38E- 
06 

1.12E- 
03 

SEC61A1, TUBB6, CLEC7A, OLR1, SEC61B, TCIRG1, 
THBS2, FCGR1A, THBS4 

KEGG_PATHWAY rno04380:Osteoclast differentiation 7 2.95E- 
06 

2.39E- 
03 

CTSK, TNFRSF11B, FOS, FCGR1A, JUNB, LILRB4, 
TGFBR1 

KEGG_PATHWAY rno05323:Rheumatoid arthritis 6 3.44E- 
06 

2.79E- 
03 

CTSK, CCL3, IL18, CCL2, TCIRG1, FOS 

KEGG_PATHWAY rno04512:ECM-receptor interaction 6 3.62E- 
06 

2.93E- 
03 

COL6A2, SDC1, COL6A3, THBS2, THBS4, CD44 

KEGG_PATHWAY rno04620:Toll-like receptor signaling pathway 6 4.83E- 
06 

3.91E- 
03 

CTSK, CCL4, CCL3, LY96, FOS, LBP 

KEGG_PATHWAY rno04142:Lysosome 7 4.90E- 
06 

3.97E- 
03 

GLB1, CTSK, TCIRG1, CD68, LITAF, CTSD, IGF2R 

KEGG_PATHWAY rno00052:Galactose metabolism 4 6.72E- 
06 

5.44E- 
03 

B4GALT1, GLB1, HK2, AKR1B8 

KEGG_PATHWAY rno04974:Protein digestion and absorption 6 7.45E- 
06 

6.03E- 
03 

COL5A1, COL6A2, COL5A3, COL5A2, COL12A1, 
COL6A3 

KEGG_PATHWAY rno04668:TNF signaling pathway 6 1.02E- 
05 

8.23E- 
03 

MMP14, CASP3, BCL3, CCL2, FOS, JUNB 

KEGG_PATHWAY rno05205:Proteoglycans in cancer 8 1.08E- 
05 

8.74E- 
03 

FZD1, PLAU, LUM, MMP2, CASP3, SDC1, IGF1, 
CD44 

KEGG_PATHWAY rno05417:Lipid and atherosclerosis 8 1.13E- 
05 

9.19E- 
03 

CASP3, CCL3, IL18, OLR1, CCL2, LY96, FOS, LBP 

KEGG_PATHWAY rno04062:Chemokine signaling pathway 7 2.06E- 
05 

1.67E- 
02 

CX3CR1, CCL7, CCL4, CCL3, CCL2, CCR5, CXCL14 

KEGG_PATHWAY rno05202:Transcriptional misregulation in 
cancer 

7 2.73E- 
05 

2.21E- 
02 

NR4A3, PLAU, TSPAN7, IGF1, FCGR1A, RUNX1, 
GADD45G 

KEGG_PATHWAY rno04064:NF-kappa B signaling pathway 5 3.03E- 
05 

2.45E- 
02 

PLAU, CCL4, LY96, LBP, GADD45G 

KEGG_PATHWAY rno04210:Apoptosis 5 5.77E- 
05 

4.67E- 
02 

CTSK, CASP3, FOS, CTSD, GADD45G  
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levels of CD44, TGFBR1, CCR5, and CLEC7A were higher in OA samples than in the control samples (p < 0.05, Fig. 6B). In the rat tissue 
samples, we also observed that compared with the control group, four of the five genes were significantly upregulated in the SCI tissue 
samples (p < 0.05), and the five identified DEGs were significantly upregulated in the OA tissue samples (p < 0.05, Fig. 6C). Related 
miRNAs were analyzed using RT-qPCR. Except for miR-30b-3p, the levels of miR-125b-5p, miR-130a-3p, miR-16-5p, miR-204-5p, and 
miR-204-3p were significantly lower in the SCI and OA groups than in the control group (p-value <0.05; Fig. 6D). These results 
indicated that the consistency rates in the RT-qPCR and bioinformatics-based expression analyses of DEGs and miRNAs were 80 % and 
83.33 %, respectively, implying high relative reliability of the bioinformatics results. 

4. Discussion 

SCI is strongly associated with OA in clinical practice, resulting in a high incidence of disability and socioeconomic costs [9]. 

Fig. 3. Protein-protein interactions (PPI) among DEGs. (A) A PPI network was constructed. (B) Three modules extracted from the PPI network. Blue 
and red nodes stand for down and upregulated genes, respectively. Node size represents the degree of a specific node. A link between two nodes 
represents the interaction between two proteins. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 
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Patients with SCI are more prone to OA [5]. CXCL10 is upregulated in SCI [39,40], and the CXCR3/CXCL10 axis is associated with SCI 
and OA development [39,41]. However, limited information is available on the co-occurrence of SCI and OA. The current study 
focused on deciphering the common molecular mechanisms underlying SCI and OA using comprehensive bioinformatics analyses. In 
this study, 185 common DEGs were identified in the pathogenesis of SCI and OA, and three hub modules were extracted from the 
constructed PPI network. Three SCI-related and two OA-related modules were identified using WGCNA, and 43 overlapping genes 
were identified. Subsequently, a regulatory network composed of six common miRNAs, five common target genes, and six significant 
signaling pathways was constructed. The six significant signaling pathways included proteoglycans in cancer, endocytosis, 
cytokine-cytokine receptor interactions, pathways in cancer, MAPK signaling, and FoxO signaling. Proteoglycan is an important 
component of the extracellular matrix, providing biomechanical properties essential for its proper functioning, and is a key participant 
in cartilage diseases, especially in the degradation of the extracellular matrix [42]. These results indicate that proteoglycans are closely 
associated with OA and SCI progression. Feng et al. [43] reported that cytokine-cytokine receptor interactions and T-cell receptor 
signaling pathways were significantly upregulated in OA. Endocytosis is a process by which cells actively internalize molecules and 
surface proteins through endocytic vesicles and is associated with OA progression [44]. The MAPK signaling pathway is involved in 
inducing cell senescence, chondrocyte differentiation, matrix metalloproteinase synthesis, and pro-inflammatory factor production, all 
of which are associated with the pathogenesis of OA [45]. Tian et al. [46] also showed that umbilical cord stem cells can repair SCI in 
rats via the MAPK signaling pathway. Oxidative stress plays an important role in the pathogenesis of SCI and OA. The FoxO signaling 
pathway is associated with oxidative stress [47]. It can be inferred that the proteoglycan pathways in cancer, endocytosis, 
cytokine-cytokine receptor interactions, MAPK, and FoxO may participate in the occurrence and development of SCI and OA. How
ever, their specific roles in SCI and OA need to be explored in future studies. 

In the constructed miRNA-gene-pathway network, CD44, TGFBR1, CCR5, CLEC7A, and IGF1 were identified as the important 
signature genes, and it was found that CD44, TGFBR1, CCR5, and IGF1 were significantly upregulated in the SCI tissue samples, and the 
five identified DEGs were significantly upregulated in the OA tissue samples. CD44, a cell adhesion molecule, plays an essential role in 
modulating leukocyte adhesion and migration [48]. Upregulated CD44 expression was found in the damaged articular cartilage of 
patients with OA and in the SCI rat model, which is in concordance with our results [49]. Our TF regulatory network showed that 
SMARCA2 and TCF4 activated the expression of CD44; however, the effects of SMARCA2 and TCF4 on CD44 should be further verified. 
TGFBR1 is an established key receptor of the immune-modulatory TGFB1 signaling pathway involved in the neuronal regenerative 
mechanism following SCI [50]. TGFBR may inhibit OA progression during aging [51]. CC chemokine receptor 5 is expressed on the 
surface of immune cells (monocytes, macrophages, activated T cells, and NK cells) and participates in the recruitment of immune cells 
to inflammation sites. Suppression CCR5 facilitates SCI-related locomotor recovery in mice models [52]. CCR5 ablation inhibits 
cartilage degeneration during the development of post-traumatic OA [53]. Moreover, CCR5 blockade alleviates neuropathic pain and 
has been suggested as an innovative therapeutic strategy [54]. CLEC7A, namely dectin1, is expressed by macrophages and other 
immune cells [55]. A recent study reported that CLEC7A is a diagnostic signature gene in patients with OA [56]. IGF1 plays an 
important role in many aspects of growth, development, and metabolism and is mediated by the IGF1 receptor, whose function is 
related to the MAPK and phosphoinositide 3-kinase signaling pathways [57]. A previous study showed that IGF1 overexpression could 
improve the survival rate of stem cells and promote the recovery of nerve function after SCI [58]. Another study showed that 
cartilage-specific SIRT6 deficiency increases the severity of OA in mice by inhibiting IGF1 [59]. Our results showed that ESR1 activates 
IGF1 expression, whereas HTATIP2 repressed the expression of IGF1. Together with our results, these reports suggest that CD44, 
TGFBR1, CCR5, and IGF1 are shared molecular biomarkers and promising therapeutic targets in SCI and OA. 

Table 3 
Node topology information of protein-protein interaction network.  

name AverageShortes tPathLength Betweenness 
Centrality 

Closeness 
Centrality 

Degree 

Ccl2 2 0.10942875 0.5 42 
Timp1 1 0.30196212 1 41 
Mmp2 1.1875 0.55975967 0.84210526 38 
Igf1 1.71698113 1.05122062 0.58241758 37 
Cd44 2.14705882 0.41345196 0.46575342 36 
Casp3 2.07627119 0.25789525 0.48163265 31 
Lgals3 1.62962963 0.70779912 0.61363636 31 
Cd68 2.11627907 0.23038544 0.47252747 30 
Itgax 1.72727273 0.78778405 0.57894737 30 
Postn 1.33333333 0.16838037 0.75 29 
Fos 2.01351351 1.49738119 0.4966443 29 
Mmp12 1.55555556 0.32248947 0.64285714 25 
Col5a2 2.66315789 0.74394372 0.37549407 25 
Sdc1 1.375 0.08477356 0.72727273 23 
Lum 1.47826087 0.18781264 0.67647059 23 
Il18 1.91666667 0.23661417 0.52173913 23 
Vcan 0 0 0 21 
Col5a1 3.16666667 0.47272803 0.31578947 21 
Mmp14 1.42105263 0.12385881 0.7037037 21 
Thbs2 1.28571429 0.09010671 0.77777778 20  
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The five crucial target DEGs in the miRNA-gene-pathway network were regulated by six miRNAs: miR-125b-5p, miR-130a-3p, miR- 
16-5p, miR-204-5p, miR-204-3p, and miR-30b-3p. RT-qPCR validation showed that in addition to miR-30b-3p, the levels of the 
remaining miRNAs were significantly lower in the SCI and OA groups. miR-125b-5p negatively regulates the expression of inflam
matory genes in human OA chondrocytes [60]. Downregulation of miR-130a-3p improves SCI-induced neuropathic pain [61]. Multiple 
studies show that miR-130a-3p is implicated in the progression of OA and suppresses chondrocyte autophagy [62,63]. miR-130a-3p is 
a well-defined upstream regulator of TGFBR1 [64]. Consistently, the miRNA-gene-pathway network showed that miR-130a-3p reg
ulates downstream TGFBR1. Therefore, miR-130a-3p/TGFBR1 signaling may play an important role in SCI and OA. miR-16-5p 
expression is increased in SCI mouse models, decreases cell viability, and promotes inflammation and oxidative stress [65]. More
over, miR-16-5p knockdown suppresses neuronal apoptosis and inflammation caused by SCI by activating the MAPK pathway [66], 
which is in agreement with our finding that miR-16-5p is significantly related to the MAPK pathway. miR-204-5p may ameliorate 
neuropathic pain and inhibit inflammation [67]. Bioinformatics analysis suggested that miR-204-5p may be a potential biomarker of 
SCI [68]. miR-204-5p regulates downstream CCR5 [69] and suppresses synovial fibroblast inflammation in OA [70]. Moreover, 
growing evidence supports the negative role of miR-204-5p in the progression of OA [71,72]. These studies are in concordance with 
our findings that miR-204-5p targets CCR5 in the regulatory network and is a common mechanism in SCI and OA. Therefore, we 
hypothesized that miR-125b-5p, miR-130a-3p, miR-16-5p, miR-204-5p, and miR-204-3p may be involved in the progression of SCI and 

Fig. 4. WGCNA network analysis. (A) Cluster dendrogram and module-trait relationships in SCI (GSE45006). (B) Cluster dendrogram and module- 
trait relationships in OA (GSE103416). (C) Analysis of the shared genes between three SCI-related modules and two OS-related modules. 

Table 4 
The 43 overlapped genes in gene set 3.   

Gene symbol 
GSE45006 GSE103416 

FDR logFC FDR logFC 

Adamts1 2.62E-03 2.040143 0.005557 1.801482 
Casp3 2.65E-02 1.613434 0.00794 1.145859 
Ccl2 1.52E-04 6.420283 0.002537 1.884328 
Ccl3 2.29E-04 1.534402 0.004825 1.586507 
Ccl4 9.90E-03 3.017314 0.0125 1.199681 
Ccl7 1.54E-02 1.524259 0.00157 3.209442 
Ccr5 4.09E-02 1.37823 0.008708 1.658978 
Cd44 2.94E-03 2.509303 0.008342 1.0712 
Cd68 1.33E-03 8.255697 0.006231 1.395853 
Clec7a 5.77E-03 5.63262 0.042423 1.275015 
Col12a1 3.99E-02 1.943092 0.000408 2.246732 
Col5a1 2.87E-02 2.002988 0.014656 1.09525 
Col5a2 3.07E-03 2.97501 0.0052 1.205014 
Col5a3 1.61E-03 1.465275 0.000942 1.832335 
Col6a2 1.21E-02 3.384046 0.010298 1.078639 
Col6a3 2.75E-03 4.401078 0.002376 1.37552 
Ctsk 9.32E-04 4.618641 0.005383 1.521575 
Cx3cr1 1.25E-02 1.264628 0.002737 1.780696 
Efemp2 1.92E-03 4.181263 0.012806 1.127108 
Fcgr1a 2.54E-03 3.138032 0.047525 1.002116 
Fos 3.23E-02 1.463319 0.006397 1.502521 
Gpx7 8.03E-03 1.830792 0.029318 1.02613 
Hmox1 4.76E-03 5.243781 0.002138 1.908782 
Igf1 5.71E-04 2.636773 0.00739 1.0546 
Il18 2.85E-03 1.752243 0.030085 1.053536 
Itgax 2.80E-02 2.180905 0.020316 1.095645 
Lgals3 6.46E-03 2.352598 0.008009 1.371294 
Loxl1 2.37E-02 2.81465 0.004506 1.227315 
Lum 5.37E-03 3.234917 0.001917 1.406198 
Mmp12 1.23E-03 5.941201 0.00032 4.000497 
Mmp14 8.17E-03 2.11305 0.000392 1.959506 
Mmp19 9.45E-04 1.97182 0.001906 1.76592 
Mmp2 5.35E-04 5.231318 0.001917 1.337119 
Pcolce 1.70E-02 3.255378 0.008775 1.059503 
Plau 1.02E-03 4.136138 0.003925 1.661092 
Postn 1.94E-03 5.663375 0.001514 1.632114 
Sdc1 2.49E-03 3.092865 0.00949 1.423815 
Serpinh1 1.36E-02 1.006211 0.013866 1.09171 
Tgfbr1 9.06E-03 2.118774 0.030619 1.037802 
Thbs2 2.46E-03 3.467432 0.002439 1.355989 
Thbs4 4.01E-02 1.598017 0.005666 1.510782 
Timp1 9.71E-03 3.093405 0.001448 1.730227 
Vcan 2.81E-02 1.330399 0.002886 1.595628 

FDR, false discovery rate; FC, fold change. 
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OA and may be potential therapeutic targets for both SCI and OA. 
However, this study has some limitations. First, the datasets used had a limited sample size, and further experiments need to be 

conducted with larger sample sizes. Second, signature expression differences between specific cell populations should be evaluated to 
analyze the heterogeneity between cell types and regions within SCI and OA samples. Third, the relationships between the associated 
gene/miRNA expression levels and the quantified metrics of injury severity or OA progression should be analyzed in the future using 
more data. Additionally, in vitro functional studies involving the knockdown or overexpression of some of the identified signature 
genes and miRNAs in cell line models should be conducted to elucidate their specific mechanistic roles in SCI and OA pathology. 

5. Conclusion 

Our study suggests a miRNA-target gene-pathway network that depicts possible common mechanisms of SCI and OA based on 

Fig. 5. The construction of the miRNA-gene-pathway network and transcriptional factors (TFs) regulatory network, and immune analysis. (A) The 
miRNA-gene-pathway network based on the five important DEGs. Red links represent correlations between miRNAs and target genes. Green and 
grey links denote significant enrichments of miRNAs and DEGs in KEGG pathways, respectively. (B) The TFs regulatory network of the 43 identified 
DEGs. Red and blue links represent activation and repression, respectively. The red circles denote the up-regulate genes both in SCI and OA; and the 
yellow squares denote the TFs. (C) The proportion of each type of immune cells in each sample in SCI and OA. (D) The correlation heatmaps between 
the five important DEGs and the significantly different distribution of immune cells in SCI and OA. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the Web version of this article.) 
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Fig. 6. Expression levels of the five identified key DEGs and their related miRNAs. (A) The expression of the five identified DEGs in the discovery 
cohorts (GSE45006, and GSE103416). (B) The expression of the five identified DEGs in the validation cohorts (GSE20907, and GSE42295). (C) The 
expression of the five identified DEGs in the SCI and OA tissue samples. (D) The levels of the related miRNAs in the SCI and OA tissue samples. * 
0.01< p < 0.05, ** 0.005 < p < 0.01, ***p < 0.005. 
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shared gene signatures, miRNAs, and signaling pathways from comprehensive bioinformatics analysis. CD44, TGFBR1, CCR5, and 
IGF1, and their related miRNAs (miR-125b-5p, miR-130a-3p, miR-16-5p, miR-204-5p, and miR-204-3p) may serve as promising 
biomarkers and candidate therapeutic targets for SCI and OA. Our study advances knowledge concerning the common regulatory 
mechanisms of SCI and OA and may have important implications for patients with concurrent SCI and OA. 

Ethics approval and consent to participate 

All animal experiments were conducted in accordance with the National Medical Advisory Committee guidelines and approved by 
the Animal Care and Use Committee of Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine. 

Consent for publication 

Not applicable. 

Availability of data and materials 

The data that support the findings of this study are available from Gene Expression Omnibus (GEO) database (http://www.ncbi. 
nlm.nih.gov/geo/) with accession numbers of GSE45006, GSE20907, GSE103416 and GSE42295. 

Funding 

This study was funded by the Science and Technology Committee of Fengxian District, Shanghai, China (No. FK20201501), the 
Natural Science Foundation of Shanghai, Shanghai, China (No. 22ZR1437600), the Health Commission of Huangpu District, Shanghai, 
China (No. HLQ202104), the Science and Technology Bureau of Kunshan, Suzhou, China (No. KS2252), and the Hainan Provincial 
Natural Science Foundation of China, Hainan, China (No. 823QN364). 

CRediT authorship contribution statement 

Yuxin Zhang: Writing – original draft, Methodology, Investigation, Formal analysis, Conceptualization. Dahe Zhang: Writing – 
original draft, Validation, Methodology, Investigation, Conceptualization. Xin Jiao: Validation, Software, Resources, Methodology, 
Investigation. Xiaokun Yue: Software, Methodology, Investigation, Data curation. Bin Cai: Resources, Methodology, Investigation, 
Data curation. Shenji Lu: Resources, Methodology, Investigation, Formal analysis. Renjie Xu: Writing – review & editing, Supervi
sion, Funding acquisition, Formal analysis, Conceptualization. 

Declaration of competing interest 

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper. 

Acknowledgements 

None. 

List of abbreviations 

SCI spinal cord injury 
OA osteoarthritis 
DEGs differentially expressed genes 
PPI protein-protein interaction 
WGCNA weighted gene co-expression network analysis 
TNF tumor necrosis factor 
IL interleukin 
GEO Gene Expression Omnibus 
GO gene ontology 
KEGG Kyoto Encyclopedia of Genes and Genomes 
TOM topological overlap matrix 

Y. Zhang et al.                                                                                                                                                                                                          

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/


Heliyon 10 (2024) e30336

16

References 

[1] S.A. Quadri, M. Farooqui, A. Ikram, A. Zafar, M.A. Khan, S.S. Suriya, C.F. Claus, B. Fiani, M. Rahman, A. Ramachandran, et al., Recent update on basic 
mechanisms of spinal cord injury, Neurosurg. Rev. 43 (2) (2020) 425–441. 

[2] W. Ding, S. Hu, P. Wang, H. Kang, R. Peng, Y. Dong, F. Li, Spinal cord injury: the global incidence, prevalence, and disability from the global burden of disease 
study 2019, Spine 47 (21) (2022) 1532–1540. 

[3] B. Abramoff, Caldera FE: osteoarthritis: pathology, Diagnosis, and treatment options, Med. Clin. 104 (2) (2020) 293–311. 
[4] E.R. Vina, C.K. Kwoh, Epidemiology of osteoarthritis: literature update, Curr. Opin. Rheumatol. 30 (2) (2018) 160–167. 
[5] G. Rodriguez, M. Berri, P. Lin, N. Kamdar, E. Mahmoudi, M.D. Peterson, Musculoskeletal morbidity following spinal cord injury: a longitudinal cohort study of 

privately-insured beneficiaries, Bone 142 (2021) 1–27. 
[6] L.S. Lundell, M. Savikj, E. Kostovski, P.O. Iversen, J.R. Zierath, A. Krook, A.V. Chibalin, U. Widegren, Protein translation, proteolysis and autophagy in human 

skeletal muscle atrophy after spinal cord injury, Acta Physiol. 223 (3) (2018) 1–10. 
[7] S. Abdelrahman, A. Ireland, E.M. Winter, M. Purcell, S. Coupaud, Osteoporosis after spinal cord injury: aetiology, effects and therapeutic approaches, 

J. Musculoskelet. Neuronal Interact. 21 (1) (2021) 26–50. 
[8] X. Wu, X. Xu, Q. Liu, J. Ding, J. Liu, Z. Huang, Z. Huang, X. Wu, R. Li, Z. Yang, et al., Unilateral cervical spinal cord injury induces bone loss and metabolic 

changes in non-human primates (Macaca fascicularis), Journal of orthopaedic translation 29 (2021) 113–122. 
[9] J. Lo, L. Chan, S. Flynn, A systematic review of the incidence, prevalence, costs, and activity and work limitations of amputation, osteoarthritis, rheumatoid 

arthritis, back pain, multiple sclerosis, spinal cord injury, stroke, and traumatic brain injury in the United States: a 2019 update, Arch. Phys. Med. Rehabil. 102 
(1) (2021) 115–131. 

[10] X. Liu, Y. Zhang, Y. Wang, T. Qian, Inflammatory response to spinal cord injury and its treatment, World neurosurgery 155 (2021) 19–31. 
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